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Abstract: The structure properties of complex networks are an open issue. As the most important
parameter to describe the structural properties of the complex network, the structure entropy has at-
tracted much attention. Recently, the researchers note that hub repulsion plays an role in structural
entropy. In this paper, the repulsion between nodes in complex networks is simulated when calcu-
lating the structure entropy of the complex network. Coulomb’s law is used to quantitatively express
the repulsive force between two nodes of the complex network, and a new structural entropy based
on the Tsallis nonextensive statistical mechanics is proposed. The new structure entropy synthesizes
the influence of repulsive force and betweenness. We study several construction networks and some
real complex networks, the results show that the proposed structure entropy can describe the structural
properties of complex networks more reasonably. In particular, the new structural entropy has better
discrimination in describing the complexity of the irregular network. Because in the irregular network,
the difference of the new structure entropy is larger than that of degree structure entropy, betweenness
structure entropy and Zhang’s structure entropy. It shows that the new method has better discrimina-
tion for irregular networks, and experiments on Graph, Centrality literature, US Aire lines and Yeast
networks confirm this conclusion.

Keywords: complex networks; structure entropy; coulomb’s law; tsallis nonextensive statistical
mechanics

1. Introduction

In the real world, many systems can be modeled as the complex network [1–5]. It has been proved
that it is generally successful to use complex networks to describe their various characteristics [6–8].
Research shows that the complex networks have small world property [9], scale-free property [10] and

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021455


9254

fractal property [11–13]. Based on these properties, scholars have made a deep exploration and put
forward the concepts of node importance [14–16], self similarity of network [16, 17] and community
division [18].

With the development of the research, the quantification of network complexity has become an
important topic. The structure entropy is developed from information entropy [19, 20], which can be
used to quantify the complexity of the network. After analyzing the topology of the network, many
researchers have proposed different structure entropy [21–25]. However, these methods have some
limitations. For example, the degree structure entropy [22] can only describe the local properties of
complex networks, and the global structure properties are not reflected. The betweenness structure en-
tropy [23] is opposite to that, which reflects the global structure property but neglects the local structure
property. Even if both properties are taken into account, the existing methods still have insufficient dis-
crimination when describing the complexity of some irregular networks. In order to comprehensively
describe the structural properties of complex networks, we need to find a more reasonable structural
entropy. The new structural entropy proposed in this paper can fill this gap.

Hubs play an important role in the study of complex networks [26–28]. According to the related
research [29], in the dynamic evolution process of complex networks, the hub preferentially connects
with nodes with fewer links to generate a more robust network structure. In other words, nodes with
high degree do not connect directly, which means hub exclusion plays an important role in network con-
nection. Therefore, it is reasonable to model the repulsion between nodes in complex networks when
calculating the structure entropy of networks. In Coulomb’s law, if two charges have the same sign,
the electrostatic force between them is repulsive. Inspired by the repulsive force model in Coulomb’s
law, we use this law to quantitatively express the repulsive force between two nodes. In our model,
the connecting nodes in the complex network are regarded as charges, and there is interaction between
them. Therefore, the importance of each node is no longer measured by the number of nodes connected
with it, but by the total force that the linked nodes put on it.

In this paper, a new structure entropy based on the Tsallis nonextensive statistical mechanics [30–
32] and Coulomb’s laws is proposed. The new entropy synthesizes the repulsive force between nodes
and the influence of betweenness. The model is verified on several networks, and the results show that
the proposed structural entropy is reasonable.

The rest of this paper is organized as follows. The Section 2 introduces some basic concepts in-
volved in this paper. In Section 3, a new complex network model inspired by Coulomb’s law is pro-
posed. In Section 4, the proposed method is verified. Finally, the conclusion is drawn in the last
part.

2. Preliminaries

In this section, some basic concepts of complex networks, several centralities and structure en-
tropise, will be briey introduced.

2.1. Degree centrality

In complex network G = (V, E), V and E represent set of nodes and set of links respectively. The
degree [33] of node i is defined as DC(i), which represents the number of direct neighbors of node i,
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The formula is shown as follows:
DC(i) =

∑
j

ai j, (2.1)

where A = {ai j} is the adjacency matrix of complex network G. The ai j is equal to 1 if node i and node
j are directly connected, otherwise it is marked 0. Degree centrality is a local index to describe the
importance of nodes. The more links the node has, the more important the node is.

2.2. Betweenness centrality

Betweenness centrality [34] is another index to describe the importance of nodes. It is defined based
on the shortest path. Different from degree centrality, it represents the global properties of complex
networks, the mathematical expression is as follows:

BC(i) =
∑

i,s,i,t,s,t

gi

gst
, (2.2)

where gst is the number of shortest paths between nodes s and t, and gi is the number of shortest paths
which have go to through the vertex i. It is emphasized that s , i , t.

2.3. Coulomb’s law

In this paper, Coulomb’s law [35] is used to express the repulsive force between two nodes.
Coulomb’s law is the law of the interaction force of static point charge, which is proportional to the
product of their charge quantity and inversely proportional to the square of their distance. The direc-
tion of the force is on their line. Suppose that the charge quantity of two point charges is Q1 and Q2

respectively, and the distance between them is r, then the force F between them can be calculated by
the following formula:

F = k
Q1Q2

r2 , (2.3)

if two charges have the same sign, then the electrostatic force between them is repulsive force. If the
charge sign between them is different, then the electrostatic force between them is attractive force.

2.4. Some existing structure entropies

The structure entropy of complex networks is developed from information entropy, which can be
used to describe the structure properties of complex networks. Therefore, it is necessary to introduce
information entropy briefly. In the signal source, we consider not the uncertainty of a single symbol
but the average uncertainty of all possible situations of the signal source. If the signal source symbol
has n values: X = {x1, x2, · · · , xn}, the corresponding probability is: P = {p(x1), p(x2), · · · , p(xn)} and
n∑

i=1
pi = 1, where the appearance of each symbol is independent of each other. At this time, the average

uncertainty of signal source should be the statistical average (E) of all symbol uncertainties, which can
be called information entropy:

H = E[− log pi] = −

n∑
i=1

pi log pi, (2.4)

where the logarithm is usually 2. However, other logarithm bases can also be taken, which can be
converted by the formula of changing base.
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2.4.1. Degree structure entropy

At present, there are many scholars, such as Zhang Qi [31] and Wang Bing [32], who have proposed
different structure entropy to describe the complexity of network, and most of the structure entropy is
based on the degree. When pi is expressed as the degree distribution of nodes:

pi =
DC(i)

n∑
i=1

DC(i)
, (2.5)

we get the degree structure entropy [36]: Hdeg = −
n∑

i=1
pi log pi, this is a structure entropy that charac-

terizes the properties of local structure.

2.4.2. Betweenness structure entropy

As mentioned above, degree structure entropy describes the local structure properties of complex
networks, which has some limitations. In order to describe the complexity of networks more compre-
hensively, some scholars proposed the betweenness structure entropy [25]:

Hbet = −

n∑
i=1

βi log βi, (2.6)

where βi =
BC(i)

n∑
i=1

BC(i)
, BC(i) is the betweenness, which is an index to measure the global properties of

complex networks.

2.4.3. Structure entropy based on tsallis nonextensive statistical mechanics

However, the above two kinds of structure entropy have defects. The degree structure entropy only
considers the local structure properties of complex networks, but does not take into account the global
structure properties, the betweenness structure entropy is just the opposite. For this reason, structural
entropy based on Tsallis nonextensive statistical mechanics [31] is proposed:

Hzqs = −

n∑
i=1

pqi
i − pi

1 − qi
, (2.7)

where n is the number of nodes, pi =
DC(i)

n∑
i=1

DC(i)
is the degree distribution, qi = 1 + (BCmax −

BC(i)), {BCmax = max[BC(i), (i = 1, 2, 3, · · · , n)]} is given by the denition of the betweenness and
the principle of the Tsallis entropy.

3. The proposed method

In this paper, a new structure entropy based on the Tsallis nonextensive statistical mechanics and
Coulomb’s laws is proposed. The new entropy synthesizes the weighted degree and the influence of
betweenness. In contrast, the entropy fuses degree and the influence of betweenness in reference [31],
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Figure 1. Each network has six nodes. Graph A is the original network, graph B marks the
degree value of each node, and graph C calculates the weighted degree of each node by using
Coulomb’s law on the basis of graph B.

what is more, B wang et al. [32] get a structure entropy based on nonextensive statistical mechanics
and similarity of nodes, but the degree or similarity of a node is characterized by the number of nodes
connected to it. In real life, the importance of each node is not the same, and the contribution to the
neighbor node is not the same too. For example, if a person is the president, there are many people
who have intersection with him. But a person is an ordinary people, there are few people who have
intersection with him. So they both have different influence on another person. Therefore, the weighted
degree is considered for calculating our entropy. Inspired by Coulomb’s law, this paper regards the
degree of each node as the point charge. The charge of each node is the same symbol, and there is
repulsive force between the connected charges. At this time, the importance of a node is equal to the
sum of the repulsive scalars between it and its neighbors. DC(i) and DC( j) is the degree of node i and
node j respectively. The network studied in this paper is a node weighted network, but the length of the
edge ei j between node i and node j is 1, then the repulsive force between them is expressed as follows:

fi j = DC(i) × DC( j), (3.1)

where the repulsive force only exists between two directly connected nodes, and its magnitude depends
on the degree value of them. That is ei j = 0, then there is no repulsive force between node i and node
j. Based on the previous description, the weighted degree is defined as follows:

ωi =
∑

j
fi j, (3.2)

The node j is the neighbor of node i, and the the weighted degree of node i is equal to the sum of the
repulsion scalar of all neighbor nodes, it is shown in Figure 1.

In this paper, we propose a new structure entropy of complex network based on Coulomb’s law,
which we will get through the following steps.

Step 1: Calculate the degree and betweenness of each node with formula which we gave above.
Step 2: The repulsive force between two nodes in complex network is calculated by formula fi j =

DC(i) × DC( j), and get a series of values.
Step 3: Calculate the distribution rate of weighted degree. Here we use this function γi = ωi

n∑
i=1
ωi

, the

required value is obtained, where n is the number of nodes in a complex network.
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Figure 2. Each network is composed of six nodes, but the connection mode of nodes is
different. The weighted degree of nodes in the graph is calculated according to Coulomb’s
law and marked next to the corresponding node, here we assume that the length of each edge
is 1.

Table 1. The structure entropy of the test networks.

Networks A B C D

Hdeg 1.7918 1.7918 1.7753 1.7046
Hbet 1.7918 1.7918 1.6154 1.3102
Hzqs 1.7918 1.7918 0.7861 0.1151
Hnew 1.7918 1.7918 0.8762 0.0692

Step 4: we define an index qi, it is a component in the formula of nonexpansive statistical me-
chanicsand, the formula is defined as follows:qi = 1 + (BCmax − BC(i)), {BCmax = max[BC(i), (i =

1, 2, 3, · · · , n)]}.
Step 5: The formula combines two new indexes and obtains a different functional equation.

Hnew = −

n∑
i=1

γ
qi
i − γi

1 − qi
, (3.3)

where n is the number of nodes in a complex network.
The new structure entropy is defined above, pi and qi are nonexpansive statistical mechanical pa-

rameters, where pi is defined based on degree and qi is defined based on betweenness. However,
considering the different contributions of each node to its neighbors, the importance of nodes can not
be simply expressed by degree. We use the weighted degree instead of the traditional degree value to
describe the importance of nodes, so in the formula we use γi instead of pi, that is: pi = γi, in addition,
we let qi keep the same as before, the new structure entropy can better describe the complexity of the
network.

Table 2. The degree of the complexity in those test networks.

Networks A B C D

Hdeg Network A ≡ Network B > Network C > Network D
Hbet Network A ≡ Network B > Network C > Network D
Hzqs Network A ≡ Network B > Network C > Network D
Hnew Network A ≡ Network B > Network C > Network D
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Table 3. The structure entropy of the small world networks.

Nodes Edges Hdeg Hbet Hzqs Hnew

50 300 3.8841 3.7519 3.2904 3.1475
100 600 4.5812 4.4912 4.2507 4.1730
200 1200 5.2679 5.1636 4.9747 4.8848
400 2400 5.9564 5.8329 5.6085 5.5096
600 3600 6.3644 6.2399 6.0502 5.9521

According to Figure 2, network A is a global coupled network, network B is a nearest neighbor
coupled network, network C is a symmetric network, and network D is a spindle network. We use
Coulomb’s law to calculate the weighted degree of each node, and then calculate the new structure
entropy combined with the betweenness of nodes.

In order to prove the rationality of our proposed structure entropy, we improve the four networks
constructed by other one, as shown in Figure 2. Here we calculate the complexity of the four networks
by using degree structure entropy, betweenness structure entropy, structure entropy based on Tsallis
nonextensive statistical mechanics and the proposed structure entropy respectively. The results are
shown in Table 1. The size relationship is shown in Table 2. The degree structure entropy of network
A is equal to that of network B, the degree structure entropy of network B is greater than that of network
C, and the degree structure entropy of network C is greater than that of network D. The betweenness
entropy and Zhang’s entropy have the same law as the degree entropy. Finally, let’s take a look at the
new structural entropy. Its conclusion is consistent with the previous three methods. It shows that our
method can not only distinguish some special networks, but also it has the same function as the existing
methods in other aspects.

From Table 1, our evaluation results are completely equal to those of the first three methods in global
coupled network A and nearest neighbor coupled network B. However, in network C and network D,
the difference of the evaluation results of the same method is different. The largest numerical difference
is 0.8762 − 0.0692 = 0.8070, The other three values are 0.0707, 0.0353 and 0.6710. It shows that the
new method has better discrimination for irregular networks, so it is better than the previous methods.

4. Application

In order to prove the effectiveness of the proposed method, we construct five small world networks,
which are often used for feasibility experiments because of their complex topology. The specific con-
struction steps are as follows: Firstly, input the number of the network nodes. Secondly, given the
number of neighbors of each node in the network. Then define the rewiring probability of random con-
nection between nodes. Finally, run the Matlab program to get some required small world networks.
We implement the proposed method by ourselves.

Here we calculate the structure entropy by using degree structure entropy, betweenness structure
entropy, structure entropy based on Tsallis nonextensive statistical mechanics and the proposed struc-
ture entropy respectively. The results are shown in Table 3. From the table, we can find some rules that
the value of the same structure entropy increases with the increase of the number of the nodes. That
is to say, our method is consistent with other methods. In addition, in the same small world network,
the degree entropy is greater than the betweenness entropy, the betweenness entropy is greater than the
entropy based on Tsallis nonextensive statistical mechanics, and the entropy based on Tsallis nonex-
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(a) (b)
Figure 3. Graph (a) and graph (b) are small world networks constructed by us. It can be
clearly seen from the graph that their number of nodes is 50 and 100 respectively. Here we
do not mark their weighted degree. The abscissa and ordinate only represent the position of
the node in the diagram.

Table 4. The structure entropy of the real networks.

Networks(Nodes) Edges Hdeg Hbet Hzqs Hnew

Graph (72) 118 3.9066 3.1337 2.3488 1.7791
Centrality literature (129) 613 4.3731 3.3335 2.7342 2.2395
US Aire lines (332) 2126 5.0250 3.4217 3.0046 2.5550
Yeast (2361) 7182 7.1641 6.1907 6.3025 5.4028

tensive statistical mechanics is greater than our entropy. For example, in a scale-free network with 50
nodes Hdeg > Hbet > Hzqs > Hnew, which is consistent in five networks.

We use the visualization method to process the above data. Figure 3 mainly shows the connection
relationship between nodes. The abscissa and ordinate represent the position relationship of nodes in
the figure. For example, on the abscissa, 0 represents the middle position of the graph, a negative
number represents the left position of the graph, and a positive number represents the right position
of the graph. From Figure 3, with the increase of the number of nodes, the fractal properties of the
network become more and more obvious, which reflected in the new structural entropy is that the value
is getting larger and larger.

In order to further verify the rationality of the proposed structure entropy, the existing structure en-
tropy and the proposed structure entropy are used to calculate the structure entropy of the real network,
Here we select Graph and digraph glossary network, Central literature network, US aire lines network
and Yeast network. The results are shown in Table 4. These network data come from the website
http://vlado.fmf.uni-lj.si/pub/networks/data/, they represent the connection between actual individuals.
From the first column of the Table 4, we can see that the number of nodes in the each network increases
from top to bottom. From the second column of the table, we can see that the number of edges in eacgh
network also increases from top to bottom, they are very representative in real networks, therefore we
choose these networks for experimental verification.

From Table 4, the structure entropy of four real networks contains some rules. For every real
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Table 5. The size of the complexity in those real networks.

Hdeg Yeast > US Aire lines > Centrality literature > Graph
Hbet Yeast > US Aire lines > Centrality literature > Graph
Hzqs Yeast > US Aire lines > Centrality literature > Graph
Hnew Yeast > US Aire lines > Centrality literature > Graph

network, the degree entropy is greater than the betweenness entropy, the betweenness entropy is greater
than entropy based on Tsallis nonextensive statistical mechanics, and the entropy based on Tsallis
nonextensive statistical mechanics is greater than our entropy. This shows that the proposed structural
entropy based on Coulomb’s law combines the influence of degree entropy and betweenness entropy,
what is more, it considers the different influence of neighbor nodes on themselves.

In a word, we get the same conclusion on the real network and the constructed network, which shows
that our proposed structural entropy is reasonable, because the new entropy synthesizes the advantages
of the existing methods to a certain extent. Experiments show that it can be used to describe the
complexity of complex networks. It also provides a new way to describe network complexity.

It can be seen from the Table 5 that the ranking order of the proposed structure entropy is the same as
that of the other three structure entropy, which indicates that the new structural entropy can effectively
describe the structural properties of complex networks, especially the complexity of complex networks.

5. Conclusions

The quantification of network complexity has always been an important problem. The existing
structural entropy mostly describes complex networks from one aspect, so it has some limitations.
Inspired by Coulomb’s law, this paper puts forward the concept of weighted degree, which combines
with betweenness in nonextended statistical mechanics so as to obtain a new structural entropy. The
new entropy has better discrimination for irregular networks, which is not the characteristic of the
existing methods. Our conclusion is verified by experiments on constructed and actual networks. At
the same time, it is also found that the recognition degree of the new entropy and the existing structural
entropy on the regular network is consistent, but they all have bad discrimination on these networks,
which is also the difficulty and direction of future research.
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