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Abstract: In this manuscript, a novel predator-prey system combining prey refuge with fuzzy
parameters is formulated. Sufficient conditions for the existence and stability of biological equilibria
are derived. The existence of bionomic equilibria is discussed under fuzzy biological parameters. The
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1. Introduction

Predator-prey system is one of the most important systems in ecology to study the relationship
between prey and predator. For the sake of avoiding predation and increasing the survival rate, prey
takes different strategies, for example, changing colour, releasing smell, injecting poison, seeking
refuges and so on. Since Gause et al. [1] and Smith [2] introduced a quantity involving prey refuge,
the study of prey refuge changing the dynamics of predator-prey system has been widely concerned
by researchers, see [3–6] in details. Olivares and Jiliberto [7] put forward that the quantity on prey
refuge can be expressed as a constant number or depending on the density of prey. Kar [8], Huang et
al. [9] and Tripathi [10] separately studied the impact of refuge on dynamical behavior of
predator-prey systems with Holling type II, Holling type III and Beddington-DeAngelis type function
responses. Han et al. [11] studied the dynamical behavior of a spatiotemporal predator-prey model
with refuge and diffusion including boundedness, permanence, coexisting equilibrium and Turing
instability parameter space. Qi and Meng [12] investigated the threshold behavior of a stochastic
predator-prey system with refuge and fear effect, and obtained the thresholds determining the
extinction and persistence in the mean of prey and predator and the existence of a unique ergodic
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stationary distribution.

Natural resources are the material basis for human survival and development, among which
biological resources are the resources with the most unique development mechanism. They can be
continuously renewed via their own reproduction, which is the material embodiment of earth’s
biological diversity. However, biological resources are also a kind of exhaustible natural resources,
and the environmental deterioration or human unreasonable use or excessive development will not
only make its quantity and quality decline, but may even lead to the extinction of species. With the
demand for food and energy for the development of human beings being rapidly increasing, biological
resources are being exploited more and more. Scientific management of the use of marketable
biological resources such as fishery, forestry and wildlife is necessary to protect ecosystems. The
exploitation of renewable resources used to base on maximum sustainable yield (MSY), but it is
impractical to completely ignore the cost operation of resource exploitation. In the face of the
insufficiency of MSY, people tried to replace MSY with the optimal sustainable yield (OSY). Lately
the research on optimal management of renewable resources has aroused the interest of many
scientists and researchers [13–17] and the references therein. Clark [18, 19] laid the foundation in the
area of work. Kar and Chaudhuri [20] researched a harvesting model on two competing preys and a
predator. He and Zhou [21] studied optimal harvesting for a nonlinear hierarchical age-structured
population model.

In the study of biological mathematical models, many works focus on the deterministic model,
which is mainly based on the law of large numbers and the assumption that the number of biological
individuals is sufficiently large, the behaviors of the system will present a relatively stable statistical
regularity, so as to be approximately regarded as a deterministic model. However, any species in
nature will inevitably be affected by the complexity of the ecosystem itself and the limitations of
human cognition, for example, the uncertainty caused by nature environment or human society such
as forest fire, flood disaster, debris flow, volcanic eruption, earthquake, climate warming and so on,
the uncertainty caused by simplified hypothesis, the uncertainty caused by replacing infinite samples
with limited experimental samples in statistical analysis, the uncertainty caused by test results
restricted by objective experimental conditions, even the uncertainty caused by some unknown
factors. To tackle these uncertainty factors, many researchers used to adopt interval approach [22–26]
and stochastic approach [27–31]. In the interval approach the uncertain parameters are characterized
by interval-valued functions. In the stochastic approach the uncertain parameters are replaced as
stochastic variables with known probability distribution functions. Nevertheless, the interval approach
is too simple to do not achieve ideal effect on complex problems when characterizing imprecise
parameters. Also a question arising for stochastic approach is that for imprecise parameters,
appropriate probability distribution functions will make the model more complex. To overcome these
difficulties, we apply fuzzy set theory to depict imprecise parameters. Fuzzy set theory was first come
up with by professor Zadeh [32] and he also considered the appliance of fuzzy differential equations
is an inherent way to model dynamic systems under possibilistic uncertainty [33]. And Chang and
Zadeh [34] first initiated the concept of the fuzzy derivative. And then Kaleva [35] first put forward
the concept of differential equations in a fuzzy environment. All derivatives are considered as
Hukuhara derivative or generalized derivative in FDE (fuzzy differential equation). Bede et al. [36]
studied first order linear fuzzy differential equations under generalized differentiability, and Khastan
and Nieto [37] analysed a boundary value problem for second order fuzzy differential equations.
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Stefanini and Bede [38] proposed generalization of the Hukuhara difference for compact convex sets,
to introduce and study a generalization of the Hukuhara differentiability to the case of interval-valued
functions. Puri and Ralescu [39] generalized the concept of Hukuhara differentiability (H-derivative)
for set-valued mappings to fuzzy mappings classes. Kaleva [35] developed the theory for FDE by
using the H-derivative. Of course, different ways to solve FDE have a huge number of works in this
field. Bede and Gal [40] studied the solutions of fuzzy differential equations based on generalized
differentiability. Hullermeier [41] proposed an approach to modelling and simulation of uncertain
dynamical systems, and showed that all (reasonable) fuzzy functions can be approximated to any
degree of accuracy in this way. Allahviranloo and Ahmadi [42] applied Laplace transform method to
solve linear FDE. Also the existence and uniqueness of solution for fuzzy initial value problems are
investigated by Villamizar-Roa et al. [43]. Different forms of FDEs are come up with in dynamics and
good results have been achieved [23, 44–47]. Bassanezi et al. [48] is the cornerstone of studying the
stability of dynamical system by employing fuzzy differential equations. Mizukoshi et al. [49] studied
the stability of fuzzy dynamical systems considering initial conditions under fuzziness. Guo et al. [50]
established fuzzy impulsive functional differential equations and applied them in logistic model and
Gompertz model. The existence and uniqueness of solution for fuzzy functional differential equations
were obtained by Lupulescu [51]. Recently, Sadhukhan et al. [52] considered optimal harvesting of a
food chain model in fuzzy environment, it is worth mentioning that based on the fuzzy instantaneous
annual rate of discount, the optimal harvesting policy is discussed. Pal and Mahapatra [23] drew
interval number and fuzzy number into prey and predator interaction’s model. The existence and
stability of biological and bionomic equilibria are investigated under interval parameters, and the
optimal harvesting policy considering instantaneous annual rate of discount in fuzzy environment is
studied. Besides, Pal et al. [44] discussed the stability of a fuzzy predator-prey harvesting model with
toxicity. And Pal et al. [53] also put forward a predator-prey model with fuzzy optimal harvesting in
the environment of toxicity. The former is a major consideration on fuzzy number applied in the
parameters of model, the latter mainly considers the inflation and discount rates as fuzzy number, and
obtains the fuzzy optimal harvesting. However, for all we know, no one tried to consider both fuzzy
biological parameters and fuzzy optimal harvesting in a model. This paper first establishes a
predator-prey model with refuge, simultaneously considers both fuzzy biological parameters and
fuzzy optimal harvesting into model. The dynamical behaviors covering the existence and stability of
biological equilibria are performed. Moreover, there exist bionomic equilibria under fuzzy biological
parameters. The optimal harvesting policy is obtained under imprecise inflation and discount in fuzzy
environment.

The remaining part of this article is emerged as follows. Firstly, the concepts on fuzzy set and
weighted sum method are put forward in Section 2. Section 3 presents the suitable model under fuzzy
biological parameters in imprecise environment. The positivity and boundedness of system, as well as
the existence and stability of equilibria are investigated in Sections 4 and 5, respectively. In Section 6,
we discuss all kinds of bionomic equilibria. The fuzzy optimal harvesting is presented in Section 7.
Some numerical examples verifying the theoretical results are displayed in Section 8. The last section
gives a brief summary of the work of this paper.
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2. Preliminaries

This section provides definitions, lemmas and methods that will be used in latter sections.

2.1. Concept of fuzzy set

Definition 2.1. [32] Fuzzy set: A fuzzy set Ã in a universe of discourse X is defined as the following
set of pairs Ã = {(x, µÃ(x)) : x ∈ X}. The mapping µÃ : X → [0, 1] is called the membership function
of the fuzzy set Ã and µÃ is called the membership value or degree of membership of x ∈ X in the fuzzy
set Ã.

Definition 2.2. [54] α-cut of fuzzy set: The α-cut of a fuzzy set Ã is a crisp set and it is defined by Aα =

{x : µÃ(x) ≥ α}, α ∈ (0, 1]. For α = 0 the support of Ã is defined as A0 = S upp(Ã) = {x ∈ R, µÃ(x) > 0}.

Definition 2.3. [32] Convex fuzzy set: A convex fuzzy set Ã is a fuzzy set on a continuous universe
such that for all α, Aα is a convex classical set.

Definition 2.4. [55] Fuzzy number: A fuzzy number is a convex fuzzy set with X = R.

Definition 2.5. [56] Triangular fuzzy number: A triangular fuzzy number (TFN) Ã ≡ (a1, a2, a3) is
fuzzy set of the real line R characterized by the membership function µÃ : R→ [0, 1] as follows

µÃ =


x − a1

a2 − a1
if a1 ≤ x ≤ a2,

a3 − x
a3 − a2

if a2 ≤ x ≤ a3,

0 otherwise.

Therefore, the α-cut of triangular fuzzy number is a bounded and closed internal [AL(α), AR(α)],
where AL(α) = inf{x : µÃ(x) ≥ α} = a1 + α(a2 − a1) and AR(α) = sup{x : µÃ(x) ≥ α} = a3 − α(a3 − a2).

The arithmetic operations on fuzzy numbers are provided by the following lemmas. Firstly, let us
define E as the set of all upper semi-continuous normal convex fuzzy numbers with Ã ∈ E, then the
α-level set Aα is a bounded closed interval which can be expressed as Aα = [Aα

L, A
α
R], where Aα

L =

inf{x : µÃ(x) ≥ α} and Aα
R = sup{x : µÃ(x) ≥ α}.

Lemma 2.1. [57] If Ã, B̃ ∈ E, then for α ∈ (0, 1],
(1) [Ã + B̃]α = [Aα

L + Bα
L, A

α
R + Bα

R],
(2) [Ã · B̃]α = [min{Aα

LBα
L, A

α
LBα

R, A
α
RBα

L, A
α
RBα

R},max{Aα
LBα

L, A
α
LBα

R, A
α
RBα

L, A
α
RBα

R}],
(3) [Ã − B̃]α = [Aα

L − Bα
R, A

α
R − Bα

L].

Lemma 2.2. [58] [Aα
L, A

α
R], 0 < α ≤ 1 is a family of nonempty intervals. If

(1) [Aα
L, A

α
R] ⊃ [Aβ

L, A
β
R] for 0 < α ≤ β and

(2) [limk→∞ Aαk
L , limk→∞ Aαk

R ] = [Aα
L, A

α
R],

whenever non-decreasing sequence αk converges to α ∈ (0, 1]; then, the family [Aα
L, A

α
R], 0 < α ≤ 1,

represents the α-level sets of a fuzzy number Ã in E. Conversely, if [Aα
L, A

α
R], 0 < α ≤ 1 are the α-level

sets of a fuzzy number Ã ∈ E, then the conditions (1) and (2) hold true.
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2.2. Weighted sum method

In weighted sum method [59], a simple utility function is in the form of wigi for ith objective, where
wi stands for the weight of ith objective. And the total utility function U is expressed as follows

U =

l∑
i

wigi, i = 1, 2, · · · , l, (2.1)

where wi > 0 and
∑l

i wi = 1 are satisfied.

3. Model foundation

Motivated by the predator-prey system (3) in Wang et al. [5] as follows
dx
dt

= rx
(
1 −

x
K

)
− c(1 − m)xy − q1E1x,

dy
dt

= −dy − sy2 + e(1 − m)xy − q2E2y,
(3.1)

where r,K, c,m, d, s and e are positive constants. x(t) and y(t) depict the scale of prey and predator at
t with initial densities x1(0) > 0 and x2(0) > 0. r is the growth rate of prey, K stands for the carrying
capacity of prey, c is the predation rate for prey, m shows the proportion of quantity of prey using
refuges, d expresses as the death rate of predator and s is the intraspecies competition rate of predator,
c is the predation rate, e represents the product of predation rate and conversion rate, q1, q2 and E1, E2

respectively say the catchability coefficients and the harvesting efforts of prey and predator.
On account of the concept of fuzzy set, we regard the imprecise parameters r̃, c̃, d̃, s̃ and ẽ as

triangular fuzzy numbers. Throughout Hukuhara’s concept of derivative [39], we present fuzzy
differential equations to describe predator-prey interaction with harvesting items as follows

d̃x
dt

= r̃x
(
1 −

x
K

)
− c̃(1 − m)xy − q1E1x,

d̃y
dt

= −d̃y − s̃y2 + ẽ(1 − m)xy − q2E2y.
(3.2)

Here, prey increases in the absence of predator with fuzzy growth rate r̃ while predator decreases
with fuzzy mortality d̃ for lack of prey. s̃ expresses as fuzzy decrease rate of predator attributed to
intraspecific competition. The fuzzy quantity of the prey predated per one predator under unit time
yields to c̃(1 − m)x, and ẽ represents the fuzzy growth rate of predator attacking on prey.

Applying α-level to cut triangular fuzzy numbers r̃, c̃, d̃, s̃ and ẽ, system (3.2) can be expressed as
follows 

(dx
dt

)α
L

= (rL)αx − (rR)α
x2

K
− (cR)α(1 − m)xy − q1E1x,(dx

dt

)α
R

= (rR)αx − (rL)α
x2

K
− (cL)α(1 − m)xy − q1E1x,(dy

dt

)α
L

= −(dR)αy − (sR)αy2 + (eL)α(1 − m)xy − q2E2y,(dy
dt

)α
R

= −(dL)αy − (sL)αy2 + (eR)α(1 − m)xy − q2E2y.

(3.3)
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By the method of weighted sum, the above system translates into
dx
dt

= w1

(dx
dt

)α
L

+ w2

(dx
dt

)α
R
,

dy
dt

= w1

(dy
dt

)α
L

+ w2

(dy
dt

)α
R
,

(3.4)

where w1 and w2 express as weight satisfying w1 + w2 = 1, and w1,w2 ≥ 0. The simplified form of
system (3.4) is given by 

dx
dt

= A1x − A2
x2

K
− A3(1 − m)xy − q1E1x,

dy
dt

= −B1y − B2y2 + B3(1 − m)xy − q2E2y,
(3.5)

where
A1 = w1(rL)α + w2(rR)α, A2 = w1(rR)α + w2(rL)α, A3 = w1(cR)α + w2(cL)α,
B1 = w1(dR)α + w2(dL)α, B2 = w1(sR)α + w2(sL)α, B3 = w1(eL)α + w2(eR)α.

(3.6)

Of course if we consider imprecise biological parameters with interval parameters rather than fuzzy
parameters, then system (3.5) can be translated into system (5) in Wang [5]. Moreover, if we neglect the
intraspecific competition rates of prey and predator, as well as refuges, system (3.5) can be simplified
to Eqs (7) and (8) in Pal et al. [22].

4. Positivity and boundedness of system

Throughout the following theorem, in this section, we make sure the positivity and boundedness of
system (3.5).

Theorem 4.1. Any solution of system (3.5) is positive and bounded satisfying initial conditions x(0) > 0
and y(0) > 0 for all t > 0.

Proof. The right hand of system (3.5) satisfies completely continuous and locally Lipschitzian on C,
which guarantees that there exists a unique solution (x(t), y(t)) of system (3.5) under initial conditions
x(0) > 0 and y(0) > 0 on [0, ξ), where 0 < ξ < +∞. It follows from system (3.5) with x(0) > 0 and
y(0) > 0 that

x(t) = x(0) exp
[∫ t

0

(
A1 −

A2x(s)
K

− A3(1 − m)y(s) − q1E1

)
ds

]
> 0,

y(t) = y(0) exp
[∫ t

0

(
−B1 − B2y(s) + B3(1 − m)x(s) − q2E2

)
ds

]
> 0,

(4.1)

which ensures the solution of system (3.5) is positive.
On the other side, the first differential equation of system (3.5) provides

dx
dt
≤ A1x

(
1 −

x
A1K
A2

)
, (4.2)

which implies lim supt→∞ x(t) ≤ A1K
A2
≡ k1. From the second differential equation of system (3.5), one

has
dy
dt
≤ k1B3(1 − m)y − B2y2,
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which can be written as
dy
dt
≤ k1B3(1 − m)y

(
1 −

y
k1B3(1−m)

B2

)
. (4.3)

It is easy to see lim supt→∞ y(t) ≤ k1B3(1−m)
B2

. Therefore, the solution of system (3.5) is bounded.

5. Existence and stability of equilibria

We firstly put forward the existence of equilibria of system (3.5). Besides the local stability and
global stability of the above equilibria are investigated by the method of Jacobian matrix and Lyapunov
function, respectively.

By a simple calculation, the equilibria of system (3.5) are given by
(1) Trivial equilibrium: S 0 = (0, 0).
(2) Axial equilibrium: S 1 = ( K(A1−q1E1)

A2
, 0) exists if A1 > q1E1.

(3) Axial equilibrium: S 2 = (0,−q2E2+B1
B2

) does not exist since −q2E2+B1
B2

< 0.
(4) Interior equilibrium: S ∗ = (x∗, y∗), where

x∗ =
KA1B2 + KA3B1(1 − m) + KA3(1 − m)q2E2 − q1E1B2K

A2B2 + KA3B3(1 − m)2 ,

y∗ =
B3(1 − m)x∗ − (B1 + q2E2)

B2

(5.1)

exists if B3(1 − m)x∗ > B1 + q2E2 and A1B2 + A3(1 − m)(B1 + q2E2) > B2q1E1 are satisfied.

5.1. Local stability

On account of the following theorem, the local stability of equilibria S 0, S 1, S ∗ for system (3.5) is
discussed.

Theorem 5.1. The following conclusions hold:
(1) Trivial equilibrium S 0 becomes stable node when A1 < q1E1 or saddle point when A1 > q1E1.
(2) Axial equilibrium S 1 becomes stable node when

A1 > q1E1 and A2(B1 + q2E2) > KB3(1 − m)(A1 − q1E1), (5.2)

or saddle point when

A1 > q1E1 and A2(B1 + q2E2) < KB3(1 − m)(A1 − q1E1). (5.3)

(3) Interior equilibrium S ∗ is stable node or focus when

B3(1 − m)x∗ > B1 + q2E2 and A1B2 + A3(1 − m)(B1 + q2E2) > B2q1E1. (5.4)

Proof. The following Jacobian matrix of system (3.5) is expressed as

M =

(
A1 − q1E1 − 2A2

x
K − A3(1 − m)y −A3(1 − m)x

B3(1 − m)y −(B1 + q2E2) − 2B2y + B3(1 − m)x

)
. (5.5)
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(1) The Jacobian matrix M0 at S 0 is represented as

M0 =

(
A1 − q1E1 0

0 −B1 − q2E2

)
.

According to the characteristic equation about the above matrix

(λ − A1 + q1E1)(λ + B1 + q2E2) = 0,

one has λ1 = A1 − q1E1, λ2 = −B1 − q2E2, hence A0 is stable node when A1 < q1E1 or saddle point
when A1 > q1E1.

(2) The Jacobian matrix M1 at S 1 is depicted as

M1 =

−(A1 − q1E1) −
KA3(1−m)(A1−q1E1)

A2

0 −(B1 + q2E2) +
KB3(1−m)(A1−q1E1)

A2

 .
In accordance with the characteristic equation of the above matrix

(λ + A1 − q1E1)
(
λ + B1 + q2E2 −

KB3(1 − m)(A1 − q1E1)
A2

)
= 0,

we have λ1 = −(A1 − q1E1) and λ2 = −(B1 + q2E2) +
KB3(1−m)(A1−q1E1)

A2
. Obviously, S 1 exists if A1 > q1E1

holds, hence S 1 is a stable node when A1 > q1E1 and A2(B1 + q2E2) > KB3(1−m)(A1−q1E1) or saddle
point when A1 > q1E1 and A2(B1 + q2E2) < KB3(1 − m)(A1 − q1E1).

(3) The Jacobian matrix M∗ at S ∗ is written as

M∗ =

(
−A2

x∗
K −A3(1 − m)x∗

B3(1 − m)y∗ −B2y∗

)
.

The characteristic equation is expressed as∣∣∣∣∣∣ λ + A2
x∗
K A3(1 − m)x∗

−B3(1 − m)y∗ λ + B2y∗

∣∣∣∣∣∣ = λ2 +
(
B2y∗ +

A2x∗

K

)
λ + A3B3(1 − m)2x∗y∗ = 0. (5.6)

It is easy to see the sum of the roots of Eq (5.6) is negative, i.e., λ1 + λ2 = −
(
B2y∗ + A2 x∗

K

)
< 0

and the product of the roots of Eq (5.6) is positive, i.e., λ1λ2 = A3B3(1 − m)2x∗y∗ > 0. Thus the
roots of quadratic Eq (5.6) are negative real number or complex conjugates with negative real parts.
Therefore, (x∗, y∗) is stable node or focus when the existence conditions B3(1 − m)x∗ > B1 + q2E2 and
A1B2 + A3(1 − m)(B1 + q2E2) > B2q1E1 are satisfied.

5.2. Global stability

We next discuss the global stability of interior equilibrium S ∗.

Theorem 5.2. If interior equilibrium S ∗ exists, then it is globally asymptotically stable.
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Proof. The Lyapunov function is established as follows

V(x, y) = x − x∗ − x∗ ln
( x

x∗
)

+ l
[
y − y∗ − y∗ ln

( y
y∗

)]
, (5.7)

where l > 0 is a constant. Differentiating both sides of the above equation in regard to time t, one has

dV
dt

=
x − x∗

x
dx
dt

+ l
y − y∗

y
dy
dt

= (x − x∗)
[
A1 − A2

x
K
− A3(1 − m)y − q1E1

]
+l(y − y∗)[−B1 − B2y + B3(1 − m)x − q2E2]

= −
A2

K
(x − x∗)2 − A3(1 − m)(x − x∗)(y − y∗) − lB2(y − y∗)2

+lB3(1 − m)(x − x∗)(y − y∗).

Choose l = A3
B3

, it yields to

dV
dt

= −
A2

K
(x − x∗)2 −

A3B2

B3
(y − y∗)2 < 0.

Since dV
dt in some neighborhood of (x∗, y∗) is negative semidefinite, the equilibrium (x∗, y∗) is globally

asymptotically stable.

6. Bionomic equilibria

As we have discussed in Section 5, the biological equilibrium yields to dx
dt ≡ 0 and dy

dt ≡ 0. And
economic equilibrium is expressed by the total revenue equaling the total cost. Then bionomic
equilibrium is a combination of biological equilibrium and economic equilibrium. In this section, we
analyse the existence of all bionomic equilibria.

Firstly, c1, c2 denote unit capture cost for prey x and predator y, respectively. And p1, p2 show unit
biomass price for prey x and predator y, respectively. Define the profit function as follows

N = (p1q1x − c1)E1 + (p2q2y − c2)E2 = N1 + N2, (6.1)

where N1 = (p1q1x − c1)E1,N2 = (p2q2y − c2)E2. N1 and N2 separately represent the profit function of
prey x and predator y. And the bionomic equilibrium (x∞, y∞, E1∞, E2∞) is governed by

A1x − A2
x2

K
− A3(1 − m)xy − q1E1x = 0,

−B1y − B2y2 + B3(1 − m)xy − q2E2y = 0,
(p1q1x − c1)E1 + (p2q2y − c2)E2 = 0.

(6.2)

The following we consider four cases to excavate the bionomic equilibria of system (3.5).
Case I Boundary bionomic equilibria with no catching species x: E1∞ = 0. One has

p2q2y∞ − c2 = 0,

A1x∞ − A2
x2
∞

K
− A3(1 − m)x∞y∞ = 0,

−B1 − B2y∞ + B3(1 − m)x∞ − q2E2∞ = 0.

(6.3)
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Clearly, (x∞, y∞, E1∞, E2∞) = (0, c2
p2q2

, 0,− p2q2B1+B2c2

p2q2
2

) satisfies Eq (6.3), we have to omit the bionomic
equilibrium owing to E2∞ < 0.

Then solving the second equation for a nonzero x∞ yields

x∞ =
A1K p2q2 − A3(1 − m)c2K

A2 p2q2
, (6.4)

which exists if satisfying A1 p2q2 > A3(1 − m)c2. Substituting Eq (6.4) into the third equation of Eq
(6.3) gives

E2∞ =
A1B3K p2q2(1 − m) − A3B3c2K(1 − m)2 − A2B1 p2q2 − A2B2c2

A2 p2q2
2

, (6.5)

which is positive provided that

A1B3K p2q2(1 − m) > A3B3c2K(1 − m)2 + A2B1 p2q2 + A2B2c2 (6.6)

holds. Therefore, there exists a boundary bionomic equilibrium (x∞, y∞, 0, E2∞).
Case II Boundary bionomic equilibria with no catching species y: E2∞ = 0. It follows from

p1q1x∞ − c1 = 0,
A1 − A2

x∞
K
− A3(1 − m)y∞ − q1E1∞ = 0,

−B1y∞ − B2y2
∞ + B3(1 − m)x∞y∞ = 0,

(6.7)

that (x∞, y∞, E1∞, E2∞) = ( c1
p1q1

, 0, A1 p1q1K−A2c1

p1q2
1K , 0) and we get a nonegative semi-trivial bionomic

equilibrium (x∞, 0, E1∞, 0) with condition A1 p1q1K > A2c1.
Then solving the third equation for a nonzero y∞ yields

y∞ =
B3c1(1 − m) − B1 p1q1

B2 p1q1
> 0 (6.8)

satisfying B3c1(1 − m) > B1 p1q1. Substituting Eq (6.8) into the second equation of Eq (6.7) gives

E1∞ =
KA1B2 p1q1 + KA3B1(1 − m)p1q1 − A2B2c1 − KA3B3c1(1 − m)2

KB2 p1q2
1

, (6.9)

which is positive provided that

KA1B2 p1q1 + KA3B1(1 − m)p1q1 > A2B2c1 + KA3B3c1(1 − m)2 (6.10)

holds. Thus, there exists a boundary bionomic equilibrium (x∞, y∞, E1∞, 0).
Case III Boundary bionomic equilibria with no catching species x and y: E1∞ = 0 and E2∞ = 0.
In this case, the cost exceeds revenue for both species x and y, we have to stop harvesting both of them.
The bionomic equilibrium is equal to the biological equilibrium with E1∞ = E2∞ = 0.
Case IV Positive bionomic equilibrium with effort fishing on both species x and y: E1∞ > 0 and
E2∞ > 0.
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Solving the third equation of Eq (6.2), we obtain x∞ = c1
p1q1

, y∞ = c2
p2q2

. Then, it follows from the second
and third equations of Eq (6.2) that

E1∞ =
KA1 p1 p2q1q2 − A2c1 p2q2 − KA3c2(1 − m)p1q1

K p1 p2q2
1q2

,

E2∞ =
B3c1(1 − m)p2q2 − B1 p1 p2q1q2 − B2c2 p1q1

p1 p2q1q2
2

,
(6.11)

which exist if satisfying the following conditions{
KA1 p1 p2q1q2 > A2c1 p2q2 + KA3c2(1 − m)p1q1,

B3c1(1 − m)p2q2 > B1 p1 p2q1q2 + B2c2 p1q1.
(6.12)

Therefore, there exists the positive bionomic equilibrium (x∞, y∞, E1∞, E2∞).
Summarizing the above, we put forward the theorem as follows.

Theorem 6.1. The following conclusions hold:
(1) The boundary bionomic equilibrium (x∞, y∞, 0, E2∞) exists if A1 p2q2 > A3(1−m)c2 and Eq (6.6)

are satisfied, where y∞ = c2
p2q2

and x∞ and E2∞ are defined in Eqs (6.4) and (6.5), respectively.
(2) The boundary bionomic equilibrium (x∞, 0, E1∞, 0) exists if A1 p1q1K > A2c1 holds, where x∞ =

c1
p1q1

and E1∞ =
A1 p1q1K−A2c1

p1q2
1K .

(3) The boundary bionomic equilibrium (x∞, y∞, E1∞, 0) exists if B3c1(1 − m) > B1 p1q1 and Eq
(6.10) are satisfied, where x∞ = c1

p1q1
and y∞ and E1∞ are defined in Eqs (6.8) and (6.9), respectively.

(4) The boundary bionomic equilibrium (x∞, y∞, 0, 0) is equal to the biological equilibrium with
E1∞ = E2∞ = 0 described in Section 5.

(5) The positive bionomic equilibrium (x∞, y∞, E1∞, E2∞) exists if Eq (6.12) holds, where x∞ = c1
p1q1

,
y∞ = c2

p2q2
and E1∞ and E2∞ are defined in Eq (6.11).

7. Fuzzy optimal harvesting

This section studies the optimal harvesting strategy with fuzzy net discount rate of inflation.
Previously, denote k̃ and r̃ the inflation and discount rates and they are considered as fuzzy number
essentially. The net discount rate of inflation δ̃ is the difference of the above two fuzzy numbers, that
is δ̃ = r̃ − k̃, and it can be regarded as triangular fuzzy number, that is δ̃ = (δ1, δ2, δ3). Our target is to
maximize the value J̃ as follows

J̃(E1, E2) =

∫ ∞

0
e−δ̃t[(p1q1x − c1)E1(t) + (p2q2y − c2)E2(t)]dt. (7.1)

Using Pontryagin’s maximal principle [60] to solve the above fuzzy optimization problem, the
harvesting strategies not only guarantee profit maximization, but also maintain an optimal level for
species. The control variable Ei(t) subject to 0 ≤ Ei(t) ≤ Emax

i , i = 1, 2. According to Maity and
Maiti [61], Sadhukhan et al. [52] and Pal and Mahapatra [23], using α′ to cut triangular fuzzy number
δ̃ = (δ1, δ2, δ3), that is it regarded as an interval number [δL, δR], the optimization problem Maximize
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J̃(E1, E2) is equal to Maximize [JL(E1, E2), JR(E1, E2)], where

JL(E1, E2) =

∫ ∞

0
e−δRt[(p1q1x − c1)E1(t) + (p2q2y − c2)E2(t)]dt,

JR(E1, E2) =

∫ ∞

0
e−δLt[(p1q1x − c1)E1(t) + (p2q2y − c2)E2(t)]dt,

δL = δ1 + α′(δ2 − δ1), δR = δ3 − α
′(δ3 − δ2).

(7.2)

Again, by the method of weighted sum, it yields to

MaxJ̃ = Max[JL, JR] = Max(w′1JL + w′2JR), (7.3)

where w′1,w
′
2 ≥ 0 are two weights such that w′1 + w′2 = 1. The Hamiltonian can be written as

H = (w′1e−δRt + w′2e−δLt)[(p1q1x − c1)E1 + (p2q2y − c2)E2]

+λ1

[
A1x − A2

x2

K
− A3(1 − m)xy − q1E1x

]
+λ2[−B1y − B2y2 + B3(1 − m)xy − q2E2y],

(7.4)

where λi = λi(t)(i = 1, 2) are the adjoint variables. Applying Pontryagin’s maximum principle [60],
we get the adjoint equations

dλ1

dt
= −

∂H
∂x

,
dλ2

dt
= −

∂H
∂y
. (7.5)

It follows from Eqs (7.4) and (7.5) that

dλ1

dt
= −

{
p1q1(w′1e−δRt + w′2e−δLt)E1 + λ2B3(1 − m)y

+λ1

[
A1 −

2A2

K
x − A3(1 − m)y − q1E1

]}
,

dλ2

dt
= −

{
p2q2(w′1e−δRt + w′2e−δLt)E2 − λ1A3(1 − m)x

+λ2[−B1 − 2B2y + B3(1 − m)x − q2E2]
}
.

(7.6)

Substituting the interior equilibrium into Eq (7.6) yields

dλ1

dt
=
λ1A2

K
x − λ2B3(1 − m)y − p1q1(w′1e−δRt + w′2e−δLt)E1,

dλ2

dt
= λ1A3(1 − m)x + λ2B2y − p2q2(w′1e−δRt + w′2e−δLt)E2.

(7.7)

Now, we neglect λ1 in Eq (7.7) to get a reduced differential equation for λ2

a0
d2λ2

dt2 + a1
dλ2

dt
+ a2λ2 = M2Le−δRt + M2Re−δLt, (7.8)

where
a0 = 1, a1 = −

(A2

K
x + B2y

)
, a2 =

[
A3B3(1 − m)2 +

A2B2

K

]
xy,

M2L = −A3(1 − m)p1q1xw′1E1 +
A2

K
p2q2xw′1E2 + p2q2w′1δRE2,

M2R = −A3(1 − m)p1q1xw′2E1 +
A2

K
p2q2xw′2E2 + p2q2w′2δLE2.
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The solution of Eq (7.8) as follows

λ2 = C1em1t + C2em2t +
M2L

NL
e−δRt +

M2R

NR
e−δLt, (7.9)

where Ci(i = 1, 2) are arbitrary constants and mi(i = 1, 2) are the roots of the auxiliary equations
a0m2 + a1m + a2 = 0 and

NL = a0δ
2
R − a1δR + a2 , 0, NR = a0δ

2
L − a1δL + a2 , 0.

From Eq (7.9), λ2 is bounded if and only if mi < 0(i = 1, 2) or Ci = 0. Since it is difficult to check
whether mi < 0, we consider Ci = 0. Eq (7.9) is simplified as

λ2 =
M2L

NL
e−δRt +

M2R

NR
e−δLt. (7.10)

Similarly, we get

λ1 =
M1L

NL
e−δRt +

M1R

NR
e−δLt, (7.11)

where
M1L = B3(1 − m)yp2q2w′1E2 + p1q1w′1δRE1 + B2yp1q1w′1E1,

M1R = B3(1 − m)yp2q2w′2E2 + p1q1w′2δLE1 + B2yp1q1w′2E1.
(7.12)

It is easy to see the shadow prices λieδLt(i = 1, 2) of the two species satisfy the transversality condition
at ∞ [18], i.e., they are bounded as t → ∞. The Hamiltonian in Eq (7.4) must be maximized for
Ei ∈ [0, Emax

i ]. Suppose that the optimal equilibrium does not appear at either Ei = 0 or Ei = Emax
i , we

therefore consider the singular controls

∂H
∂E1

= (w′1e−δRt + w′2e−δLt)(p1q1x − c1) − λ1q1x = 0,

∂H
∂E2

= (w′1e−δRt + w′2e−δLt)(p2q2y − c2) − λ2q2y = 0,
(7.13)

that is,
(w′1e−δRt + w′2e−δLt)(p1q1x − c1) = λ1q1x,
(w′1e−δRt + w′2e−δLt)(p2q2y − c2) = λ2q2y.

(7.14)

We substitute λ1 and λ2 in Eq (7.11) and Eq (7.10) into Eq (7.14) and obtain

PLe−δRt + PRe−δLt = (w′1e−δRt + w′2e−δLt)c1,

QLe−δRt + QRe−δLt = (w′1e−δRt + w′2e−δLt)c2,
(7.15)

where
PL =

(
p1w′1 −

M1L

NL

)
q1x, PR =

(
p1w′2 −

M1R

NR

)
q1x,

QL =
(
p2w′1 −

M2L

NL

)
q2y, QR =

(
p2w′2 −

M2R

NR

)
q2y.

(7.16)

Equation (7.15) is equivalent to the following equations

(PL − c1w′1)e−(δR−δL)t = −(PR − c1w′2),
(QL − c2w′1)e−(δR−δL)t = −(QR − c2w′2).

(7.17)
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To eliminate e−(δR−δL)t in Eq (7.17), we consider the following two cases:
Case I If PL , c1w′1 and QL , c2w′1, then Eq (7.17) is equal to

(PL − c1w′1)(QR − c2w′2) = (QL − c2w′1)(PR − c1w′2). (7.18)

Case II If PL = c1w′1 or QL = c2w′1, we have

PL − c1w′1 = PR − c1w′2 = 0, or QL − c2w′1 = QR − c2w′2 = 0. (7.18)′

Motivated by the method in [25], firstly transforming Eq (7.14) into the following form

λ1 = (w′1e−δRt + w′2e−δLt)
(
p1 −

c1

q1x

)
,

λ2 = (w′1e−δRt + w′2e−δLt)
(
p2 −

c2

q2y

)
.

(7.19)

Differentiating λi(i = 1, 2) in Eq (7.19) with respect to t, it derives that

dλ1

dt
= (−δRw′1e−δRt − δLw′2e−δLt)

(
p1 −

c1

q1x

)
+

c1

q1x
(w′1e−δRt + w′2e−δLt)

[
A1 −

A2

K
x − A3(1 − m)y − q1E1

]
,

dλ2

dt
= (−δRw′1e−δRt − δLw′2e−δLt)

(
p2 −

c2

q2y

)
+

c2

q2y
(w′1e−δRt + w′2e−δLt)

[
−B1 − B2y + B3(1 − m)x − q2E2

]
.

(7.20)

Substituting λi(i = 1, 2) in Eq (7.19) into Eq (7.6) yields

dλ1

dt
= −p1q1E1(w′1e−δRt + w′2e−δLt) − B3(1 − m)y

(
p2 −

c2

q2y

)
(w′1e−δRt + w′2e−δLt)

−
(
p1 −

c1

q1x

)[
A1 −

2A2

K
x − A3(1 − m)y − q1E1

]
(w′1e−δRt + w′2e−δLt),

dλ2

dt
= −p2q2E2(w′1e−δRt + w′2e−δLt) + A3(1 − m)x

(
p1 −

c1

q1x

)
(w′1e−δRt + w′2e−δLt)

−
(
p2 −

c2

q2y

)[
−B1 − 2B2y + B3(1 − m)x − q2E2

]
(w′1e−δRt + w′2e−δLt).

(7.21)

Combined Eqs (7.20) and (7.21) with E1 and E2 omitted, one has(
p1 −

c1

q1x

)
(δRw′1e−δRt + δLw′2e−δLt) = B3(1 − m)y

(
p2 −

c2

q2y

)
(w′1e−δRt + w′2e−δLt)

+p1

[
A1 −

2A2

K
x − A3(1 − m)y

]
(w′1e−δRt + w′2e−δLt)

+
c1A2

q1K
(w′1e−δRt + w′2e−δLt),(

p2 −
c2

q2y

)
(δRw′1e−δRt + δLw′2e−δLt) = −A3(1 − m)x

(
p1 −

c1

q1x

)
(w′1e−δRt + w′2e−δLt)

+p2

[
−B1 − 2B2y + B3(1 − m)x

]
(w′1e−δRt + w′2e−δLt)

+
c2B2

q2
(w′1e−δRt + w′2e−δLt).

(7.22)
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Consider N1 = (p1q1x − c1)E1 > 0 and N2 = (p2q2y − c2)E2 > 0, we divide both sides of the first
equation by that of the second equation of Eq (7.22)

p1 −
c1

q1 x

p2 −
c2

q2y

=
B3(1 − m)y

(
p2 −

c2
q2y

)
+ p1

[
A1 −

2A2
K x − A3(1 − m)y

]
+ c1A2

q1K

−A3(1 − m)x
(
p1 −

c1
q1 x

)
+ p2

[
−B1 − 2B2y + B3(1 − m)x

]
+ c2B2

q2

. (7.23)

Besides, the values of E1 and E2 at the interior equilibrium turn to

E1 =
A1

q1
−

A2

q1K
x −

A3(1 − m)
q1

y,

E2 = −
B1

q2
−

B2

q2
y +

B3(1 − m)
q2

x.
(7.24)

Solving Eqs (7.18) (or (7.18)′), (7.23) and (7.24) to get the optimal equilibrium solution x = xδ̃, y = yδ̃
and the optimal harvesting efforts E1 = E1δ̃, E2 = E2δ̃.

8. Numerical simulations

In this section, some hypothetical data are taken to illustrate analytical results of the previous
sections by mainly using the software MATLAB. Due to the features characterized by simulations
should be analysed from qualitative perspective rather than quantitative one, then the parameters in
system are not in view of real observed values. We consider three numerical examples to account for
the stability of equilibria, the existence of bionomic equilibria as well as fuzzy optimal harvesting.
Example 1 Consider the parameter values as follows: r̃ = (2.00, 2.20, 2.40), c̃ = (1.20, 1.35, 1.50),
d̃ = (0.30, 0.40, 0.50), s̃ = (0.06, 0.07, 0.08), ẽ = (0.60, 0.70, 0.80), K = 5 and m = 0.1.

We discuss equilibria S 0, S 1 and S ∗ of the predator-prey model under different values of α,w1 and
w2, which are showed from Table 1 to Table 3.

Table 1. The trivial equilibrium S 0 for q1 = 0.2, q2 = 0.2, E1 = 15 and E2 = 10.

w1 w2 S 0 at α = 0 S 0 at α = 0.3 S 0 at α = 0.6 S 0 at α = 0.9
0 1 (0,0) (0,0) (0,0) (0,0)
0.2 0.8 (0,0) (0,0) (0,0) (0,0)
0.4 0.6 (0,0) (0,0) (0,0) (0,0)
0.6 0.4 (0,0) (0,0) (0,0) (0,0)
0.8 0.2 (0,0) (0,0) (0,0) (0,0)
1 0 (0,0) (0,0) (0,0) (0,0)

Tables 1–3 demonstrate the trivial equilibrium is always fixed at (0, 0) with different combinations
of w1, w2 and α, the values of prey x and predator y stay at zero; for the axial equilibrium, the value of
prey x decreases under the same α with increasing w1, predator y is invariant in zero; for the interior
equilibrium, the value of prey x increases under the same αwith increasing w1, and predator y decreases
under the same α with increasing w1.
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Table 2. The axial equilibrium S 1 for q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 15.

w1 w2 S 1 at α = 0 S 1 at α = 0.3 S 1 at α = 0.6 S 1 at α = 0.9

0 1 (3.5000,0) (3.2524,0) (3.0189,0) (2.7982,0)
0.2 0.8 (3.1731,0) (3.0340,0) (2.8996,0) (2.7697,0)
0.4 0.6 (2.8704,0) (2.8269,0) (2.7839,0) (2.7413,0)
0.6 0.4 (2.5893,0) (2.6302,0) (2.6715,0) (2.7132,0)
0.8 0.2 (2.3276,0) (2.4431,0) (2.5623,0) (2.6854,0)
1 0 (2.0833,0) (2.2650,0) (2.4561,0) (2.6577,0)

Table 3. The interior equilibrium S ∗ for q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 2.

w1 w2 S ∗ at α = 0 S ∗ at α = 0.3 S ∗ at α = 0.6 S ∗ at α = 0.9

0 1 (1.0479,0.9082) (1.1245,0.7824) (1.2067,0.6618) (1.2952,0.5454)
0.2 0.8 (1.1513,0.7417) (1.2011,0.6697) (1.2531,0.5992) (1.3075,0.5301)
0.4 0.6 (1.2650,0.5838) (1.2830,0.5607) (1.3013,0.5378) (1.3199,0.5150)
0.6 0.4 (1.3907,0.4323) (1.3710,0.4547) (1.3516,0.4772) (1.3325,0.4998)
0.8 0.2 (1.5307,0.2853) (1.4658,0.3510) (1.4041,0.4175) (1.3452,0.4847)
1 0 (1.6875,0.1407) (1.5682,0.2490) (1.4588,0.3584) (1.3580,0.4697)
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Figure 1. (a)–(f) Time series diagram of prey x and predator y with initial values (2, 6) for
q1 = 0.2, q2 = 0.2, E1 = 15, E2 = 10 and different w1,w2 and α, respectively, t ∈ [0, 100].
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Figure 2. (a)–(f) Time series diagram of prey x and predator y with initial values (2, 6) for q1 =

0.2, q2 = 0.2, E1 = 5, E2 = 15 and different w1,w2 and α, respectively, t ∈ [0, 100].
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Figure 3. (a)–(f) Time series diagram of prey x and predator y with initial values (2, 6) for
q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2 and different w1,w2 and α, respectively, t ∈ [0, 100].

Figures 1–3 are time series of prey x and predator y with initial values (2, 6) for different w1, w2

and α, which show the same results as what Tables 1–3 reflect. The initial fluctuate for both species
gradually saturate to a steady state level over time.

The phase portrait of prey x and predator y corresponding to stabilities of different equilibria for
all kinds of combinations of w1, w2 and α are shown in Figures 4–6, respectively. Meanwhile, the
equilibria are stable under different initial conditions.
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Figure 4. (a)–(f) Phase portrait of prey x and predator y with initial values (2.5, 6), (3, 3) and (3, 5) for
q1 = 0.2, q2 = 0.2, E1 = 15, E2 = 10 and different w1, w2 and α, respectively, t ∈ [0, 100].
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Figure 5. (a)–(f) Phase portrait of prey x and predator y with initial values (2.5, 6), (3, 3) and (3, 5) for
q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 15 and different w1, w2 and α, respectively, t ∈ [0, 100].
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Figure 6. (a)–(f) Phase portrait of prey x and predator y with initial values (2.5, 6), (2.5, 3) and (2.5, 5)
for q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2 and different w1, w2 and α, respectively, t ∈ [0, 100].
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Figure 7. (a)–(f) Dynamical behavior of prey x and predator y with respect to α for initial condition
(x(0), y(0)) = (2.5, 6), and q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2.
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Figure 8. (a)–(d) Dynamical behavior of prey x and predator y with respect to w1 and w2 under initial
condition (x(0), y(0)) = (2.5, 6) for α = 0, 0.3, 0.6 and α = 0.9 respectively, and q1 = 0.2, q2 = 0.2,
E1 = 5, E2 = 2.

Dynamical behavior of prey x and predator y under interior steady state level with respect to α for
initial condition (x(0), y(0)) = (2.5, 6), and q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2 are presented in Figure 7.

The figures in Figure 7 reflect the interior equilibrium changes for different αwhich is in accordance
with the results in Table 3. As α increases, prey x increases and predator y decreases for w1 = 0,w2 = 1
and w1 = 0.2,w2 = 0.8 and w1 = 0.4,w2 = 0.6. However, in the cases w1 = 0.6,w2 = 0.4 and
w1 = 0.8,w2 = 0.2 and w1 = 1,w2 = 0, as α increases, prey x decreases and predator y increases.
Therefore, the parameter α plays an major part in the stability of interior equilibrium.

In the mean time, the dynamical behavior of prey x and predator y about w1 and w2 under initial
condition (x(0), y(0)) = (2.5, 6) for α = 0, 0.3, 0.6 and α = 0.9, and q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2
are presented in Figure 8. These figures depict the same results as that in Table 3, i.e., for the interior
equilibrium, the value of prey x increases under fixed α with increasing w1, and predator y decreases
under fixed α with increasing w1.

Example 2 Consider the parameter values as follows: r̃ = (1.50, 1.55, 1.60), c̃ = (0.250, 0.275, 0.300),
d̃ = (0.450, 0.475, 0.500), s̃ = (0.150, 0.175, 0.200), ẽ = (1.300, 1.325, 1.350), K = 10,m = 0.1, q1 =

0.92, q2 = 0.95, p1 = 20, p2 = 25, c1 = 30 and c2 = 15.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9094–9120.
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Table 4. Positive bionomic equilibrium for different w1,w2 and α.

w1 w2 α = 0 α = 0.3 α = 0.6 α = 0.9

(x∞, y∞) (E1∞, E2∞) (x∞, y∞) (E1∞, E2∞) (x∞, y∞) (E1∞, E2∞) (x∞, y∞) (E1∞, E2∞)

0 1 (1.6304,0.6316) (1.3188,1.5118) (1.6304,0.6316) (1.2952,1.4874) (1.6304,0.6316) (1.2716,1.4629) (1.6304,0.6316) (1.2480,1.4384)
0.2 0.8 (1.6304,0.6316) (1.2874,1.4792) (1.6304,0.6316) (1.2732,1.4645) (1.6304,0.6316) (1.2591,1.4499) (1.6304,0.6316) (1.2449,1.4352)
0.4 0.6 (1.6304,0.6316) (1.2559,1.4466) (1.6304,0.6316) (1.2512,1.4417) (1.6304,0.6316) (1.2465,1.4368) (1.6304,0.6316) (1.2418,1.4319)
0.6 0.4 (1.6304,0.6316) (1.2245,1.4140) (1.6304,0.6316) (1.2292,1.4189) (1.6304,0.6316) (1.2339,1.4238) (1.6304,0.6316) (1.2386,1.4287)
0.8 0.2 (1.6304,0.6316) (1.1930,1.3814) (1.6304,0.6316) (1.2071,1.3960) (1.6304,0.6316) (1.2213,1.4107) (1.6304,0.6316) (1.2355,1.4254)
1 0 (1.6304,0.6316) (1.1615,1.3487) (1.6304,0.6316) (1.1851,1.3732) (1.6304,0.6316) (1.2087,1.3977) (1.6304,0.6316) (1.2323,1.4221)

The bionomic equilibria for different combinations of w1, w2 and α are emerged in Table 4. It is
observed that x∞ and y∞ are invariable with respect to w1, w2 and α, and E1∞ and E2∞ are decreasing
with fixed α and increasing w1. As well as, together with the value of α increasing, E1∞ and E2∞

decreases for w1 = 0,w2 = 1 and w1 = 0.2,w2 = 0.8 and w1 = 0.4,w2 = 0.6. Nevertheless, in the cases
w1 = 0.6,w2 = 0.4 and w1 = 0.8,w2 = 0.2 and w1 = 1,w2 = 0, as the value of α increases, E1∞ and
E2∞ are increasing.

Example 3 Consider the parameter values as follows: r̃ = (2.80, 2.83, 2.85), c̃ = (2.45, 2.55, 2.65), d̃ =

(0.012, 0.013, 0.015), s̃ = (0.008, 0.009, 0.010), ẽ = (0.20, 0.21, 0.22),K = 10,m = 0.1, q1 = 0.45, q2 =

0.55, p1 = 30, p2 = 25, c1 = 25, c2 = 12 and δ̃ = (0.8, 0.9, 1.0).

Table 5. Optimal equilibrium and optimal harvesting effort for w1 = 0,w2 = 1, α = 0.

w′1 w′2 α′ = 0 α′ = 0.3 α′ = 0.6 α′ = 0.9

(xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃)

0.2 0.8 (1.8964,1.0333) (0.0902,0.6461) (1.8966,1.0332) (0.0906,0.6460) (1.8966,1.0331) (0.0908,0.6460) (1.8967,1.0331) (0.0909,0.6460)
0.4 0.6 (1.8964,1.0333) (0.0900,0.6463) (1.8965,1.0332) (0.0904,0.6461) (1.8966,1.0331) (0.0907,0.6460) (1.8967,1.0331) (0.0909,0.6460)
0.5 0.5 (1.8964,1.0333) (0.0900,0.6463) (1.8965,1.0332) (0.0904,0.6461) (1.8967,1.0331) (0.0908,0.6460) (1.8967,1.0331) (0.0908,0.6460)
0.6 0.4 (1.8964,1.0333) (0.0900,0.6463) (1.8965,1.0332) (0.0904,0.6461) (1.8966,1.0331) (0.0907,0.6460) (1.8967,1.0331) (0.0908,0.6460)
0.8 0.2 (1.8964,1.0333) (0.0902,0.6461) (1.8966,1.0332) (0.0906,0.6460) (1.8966,1.0331) (0.0908,0.6460) (1.8967,1.0331) (0.0909,0.6460)

Table 6. Optimal equilibrium and optimal harvesting effort for w1 = 0,w2 = 1, α = 0.5.

w′1 w′2 α′ = 0 α′ = 0.3 α′ = 0.6 α′ = 0.9

(xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃)

0.2 0.8 (1.9230,0.9964) (0.1262,0.6384) (1.9232,0.9963) (0.1264,0.6385) (1.9234,0.9963) (0.1265,0.6386) (1.9235,0.9963) (0.1266,0.6386)
0.4 0.6 (1.9230,0.9964) (0.1262,0.6384) (1.9232,0.9963) (0.1264,0.6385) (1.9234,0.9963) (0.1265,0.6386) (1.9235,0.9963) (0.1266,0.6386)
0.5 0.5 (1.9230,0.9964) (0.1262,0.6384) (1.9232,0.9963) (0.1264,0.6385) (1.9234,0.9963) (0.1265,0.6386) (1.9235,0.9963) (0.1266,0.6386)
0.6 0.4 (1.9230,0.9964) (0.1262,0.6384) (1.9232,0.9963) (0.1264,0.6385) (1.9234,0.9963) (0.1265,0.6386) (1.9235,0.9963) (0.1266,0.6386)
0.8 0.2 (1.9230,0.9964) (0.1262,0.6384) (1.9232,0.9963) (0.1264,0.6385) (1.9234,0.9963) (0.1265,0.6386) (1.9235,0.9963) (0.1266,0.6386)

The optimal equilibrium and harvesting effort for different combinations w1,w2, α and w′1,w
′
2, α

′ are
appeared in Tables 5–9, respectively. For different combinations w1,w2, α and w′1,w

′
2, α

′, we see the
existence of optimal equilibrium.

In Table 5, when α′ = 0 it is observed that prey xδ̃ and predator yδ̃ are invariant, optimal harvesting
effort of the prey E1δ̃ decreases and then increases, but the optimal harvesting effort of the predator
E2δ̃ increases and then decreases with increasing w′1; when α′ = 0.3, xδ̃ decreases and then increases,
yδ̃ is invariant, E1δ̃ decreases and then increases, and E2δ̃ increases and then decreases with increasing

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9094–9120.
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Table 7. Optimal equilibrium and optimal harvesting effort for w1 = 0,w2 = 1, α = 0.9.
w′1 w′2 α′ = 0 α′ = 0.3 α′ = 0.6 α′ = 0.9

(xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃)

0.2 0.8 (1.9361,0.9744) (0.1272,0.6293) (1.9366,0.9744) (0.1270,0.6294) (1.9369,0.9744) (0.1268,0.6295) (1.9370,0.9744) (0.1267,0.6296)
0.4 0.6 (1.9361,0.9744) (0.1272,0.6293) (1.9366,0.9744) (0.1270,0.6294) (1.9369,0.9744) (0.1268,0.6295) (1.9370,0.9744) (0.1267,0.6296)
0.5 0.5 (1.9361,0.9744) (0.1272,0.6293) (1.9366,0.9744) (0.1270,0.6294) (1.9369,0.9744) (0.1268,0.6295) (1.9370,0.9744) (0.1267,0.6296)
0.6 0.4 (1.9361,0.9744) (0.1272,0.6293) (1.9366,0.9744) (0.1270,0.6294) (1.9369,0.9744) (0.1268,0.6295) (1.9370,0.9744) (0.1267,0.6296)
0.8 0.2 (1.9361,0.9744) (0.1272,0.6293) (1.9366,0.9744) (0.1270,0.6294) (1.9369,0.9744) (0.1268,0.6295) (1.9370,0.9744) (0.1267,0.6296)

Table 8. Optimal equilibrium and optimal harvesting effort for w1 = 0.5,w2 = 0.5, α = 0.9.
w′1 w′2 α′ = 0 α′ = 0.3 α′ = 0.6 α′ = 0.9

(xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃)

0.2 0.8 (1.9406,0.9694) (0.1236,0.6273) (1.9417,0.9695) (0.1224,0.6277) (1.9429,0.9696) (0.1212,0.6280) (1.9440,0.9697) (0.1198,0.6284)
0.4 0.6 (1.9406,0.9694) (0.1236,0.6273) (1.9417,0.9695) (0.1224,0.6277) (1.9429,0.9696) (0.1212,0.6280) (1.9440,0.9697) (0.1198,0.6284)
0.5 0.5 (1.9406,0.9694) (0.1236,0.6273) (1.9417,0.9695) (0.1224, 0.6277) (1.9429,0.9696) (0.1212,0.6280) (1.9440,0.9697) (0.1198,0.6284)
0.6 0.4 (1.9406,0.9694) (0.1236,0.6273) (1.9417,0.9695) (0.1224,0.6277) (1.9429,0.9696) (0.1212,0.6280) (1.9440,0.9697) (0.1198,0.6284)
0.8 0.2 (1.9406,0.9694) (0.1236,0.6273) (1.9417,0.9695) (0.1224,0.6277) (1.9429,0.9696) (0.1212,0.6280) (1.9440,0.9697) (0.1198,0.6284)

w′1; when α′ = 0.6, xδ̃ increases and then decreases, yδ̃ is invariant, E1δ̃ fluctuates between 0.0907 and
0.0908, and E2δ̃ is invariant with increasing w′1; when α′ = 0.9, xδ̃ and yδ̃ are invariant, E1δ̃ decreases
and then increases, and E2δ̃ is invariant with increasing w′1. Besides, when fixed w′1 and w′2, xδ̃ increases,
yδ̃ decreases, E1δ̃ increases, and E2δ̃ decreases with the increase of α′.

In Table 6, when fixed α′, xδ̃, yδ̃, E1δ̃ and E2δ̃ are invariant with the increase of w′1; when fixed w′1
and w′2, xδ̃ increases, yδ̃ decreases, E1δ̃ increases, and E2δ̃ increases with the increase of α′.

In Table 7, when fixed α′, xδ̃, yδ̃, E1δ̃ and E2δ̃ are invariant with the increase of w′1; when fixed w′1
and w′2, xδ̃ increases, yδ̃ is invariant, E1δ̃ decreases, and E2δ̃ increases with the increase of α′.

In Table 8, when fixed α′, xδ̃, yδ̃, E1δ̃ and E2δ̃ are invariant with the increase of w′1; when fixed w′1
and w′2, xδ̃ increases, yδ̃ increases, E1δ̃ decreases, and E2δ̃ increases with the increase of α′.

In Table 9, when α′ = 0, xδ̃ increases and then decreases and yδ̃ is invariant, E1δ̃ increases and then
decreases, but E2δ̃ decreases and then increases with increasing w′1; when α′ = 0.3 or α′ = 0.6, we
can see that xδ̃ increases and then decreases, yδ̃, E1δ̃ and E2δ̃ are invariant with increasing w′1; when
α′ = 0.9, xδ̃, yδ̃ and E1δ̃ are invariant, E2δ̃ decreases and then increases with increasing w′1. When fixed
w′1 and w′2, xδ̃ decreases, yδ̃ is invariant, E1δ̃ is almost invariant, and E2δ̃ increases with the increase of
α′.

From Tables 5–7, it is easy to see that when fixed w1,w2 and w′1,w
′
2, α

′, the prey increases, the
predator decreases, the optimal harvesting effort of the prey increases and the optimal harvesting effort
of the predator decreases with increasing α.

Table 9. Optimal equilibrium and optimal harvesting effort for w1 = 1,w2 = 0, α = 0.9.

w′1 w′2 α′ = 0 α′ = 0.3 α′ = 0.6 α′ = 0.9

(xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃) (xδ̃, yδ̃) (E1δ̃, E2δ̃)

0.2 0.8 (1.9435,0.9648) (0.1196,0.6246) (1.9434,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6247)
0.4 0.6 (1.9436,0.9648) (0.1197,0.6245) (1.9434,0.9648) (0.1197,0.6246) (1.9434,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6246)
0.5 0.5 (1.9436,0.9648) (0.1197,0.6245) (1.9435,0.9648) (0.1197,0.6246) (1.9434,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6246)
0.6 0.4 (1.9436,0.9648) (0.1197,0.6245) (1.9434,0.9648) (0.1197,0.6246) (1.9434,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6247)
0.8 0.2 (1.9435,0.9648) (0.1196,0.6246) (1.9434,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6246) (1.9433,0.9648) (0.1197,0.6247)
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Based on Tables 7–9, we observed that when fixed α and w′1,w
′
2, α

′, the prey increases, the predator
decreases, the optimal harvesting effort of the prey decreases and the optimal harvesting effort of the
predator decreases with increasing w1.

9. Conclusions

In the field of biomathematics most harvesting models are on account of the assumption with
precise parameters, but any species in nature will inevitably be affected by the complexity of the
ecosystem itself and the limitations of people’s cognition leading to the uncertainty of the biological
parameters. These uncertainties can be roughly classified into three categories: fuzziness,
randomness, and unascertainty. In view of this point, we have modified a fuzzy parameters
predator-prey model with refuge. Here, the fuzzy parameters are introduced into biotic potential of
the prey (r), predator mortality (d), intraspecific competition rate of the predator (s), predation rate (c)
and the product of predation rate and conversion rate (e).

We have discussed the positivity and boundedness of system (Theorem 4.1) and investigated the
existence and stability of equilibria (Theorems 5.1 and 5.2). The tables and graphs for different
equilibria are showed from Table 1 to Table 3 and from Figure 1 to Figure 3, respectively. Figures 4–6
reflect phase portrait of prey and predator about different w1,w2 and α. Dynamical behaviors of prey
and predator about α or w1 and w2, separately, are presented in Figures 7 and 8. We have also
analysed the existence of bionomic equilibria (Theorem 6.1) and the mathematical results for positive
bionomic equilibrium are displayed in Table 4.

The highlight of this article is to solve the optimal control problem with fuzzy inflation and discount,
that is maximize the fuzzy objective functional J̃. The optimal steady state solution is displayed in
Tables 5–9. We obtain optimal equilibrium and optimal harvesting effort as respect to w′1,w

′
2 and α′

under five cases including w1 = 0, w2 = 1, α = 0 and w1 = 0, w2 = 1, α = 0.5 and w1 = 0, w2 = 1,
α = 0.9 and w1 = 0.5, w2 = 0.5, α = 0.9 and w1 = 1, w2 = 0, α = 0.9.

In this paper, we consider the fuzzification of biological parameters in model. However, the
fuzzification of unit capture cost or unit biomass price for both species seems to be also feasible.
Future work will focus on the imprecision of economic parameters to enhance our model. Finally, this
paper uses α-cut of triangular fuzzy number to describe imprecise parameters in model, however
other common forms of fuzzy number such as normal fuzzy number and trapezoidal fuzzy number are
important in fuzzy set theory, and then we are going to apply other forms of fuzzy number depicting
imprecise parameters in model.
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