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Abstract: Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker 
discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to 
study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated 
bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this 
study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. 
The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, 
differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology 
(GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction 
(PPI) network analysis was conducted using the STRING database and Cytoscape software to identify 
hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver 
operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. 
Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) 
database and the pathology data presented by in the human protein atlas (HPA) database were used to 
verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional 
enrichment analysis showed that these genes were significantly enriched in biological processes related 
to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC 
curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under 
ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate 
between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were 
confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that 
these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.  
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IHC: Immunohistochemistry; MYH11: Myosin-11; IGF1: Insulin-like growth factor 1; CLU: Clusterin; 
FOS: FBJ murine osteosarcoma viral oncogene homolog; MYL9: Myosin regulatory light polypeptide 
9; CXCL12: Chemokine (CXC motif) ligand12; LMOD1: Leiomodin 1; CNN1: Calponin 1; 
HIST1H2BO: Histone cluster 1 H2B family member O; C3: Complement component 3 

1. Introduction  

Colorectal cancer is one of the most common malignancies worldwide [1], and the third common 
cancer worldwide, with more than 1.2 million new cases diagnosed annually [2]. In 2015 in China, 
there were about 376,000 of new CRC patients and 191,000 one of CRC death, accounting for the fifth 
of malignant tumor incidence and mortality [3]. While there has been significant progress in improving 
the diagnosis of CRC, the disease is often diagnosed at an advanced stage. Furthermore, several 
biomarkers including KRAS and BRAF that can be used to detect CRC, but these biomarkers are not 
sufficiently sensitive or specific [4]. Consequently, there is an urgent need to explore efficacious 
biomarkers for an early diagnosis of CRC. 

Transcriptome analysis of high-throughput sequencing such as microarrays and RNA sequencing 
has been considered as a promising tool in cancer research to identify pathways and genes for candidate 
prognostic and diagnostic biomarkers [5–8]. Moreover, these biomarkers may bring a breakthrough in 
improving the prevention and treatment of CRC [9–13]. Recently, bioinformatic analysis of gene 
expression data explored potential gene biomarkers for CRC [8,9,14–16], however sometimes the 
results of bioinformatics are inconsistent in behavior [17,18]. In this context, the integration of machine 
learning techniques with bioinformatic methods can provide consistent results and enhance training 
and validation of CRC biomarkers [17–20]. Moreover, large lists of DEGs have been identified in 
CRC from microarray datasets; however, the involvement of the DEGs in the molecular mechanisms 
and signaling networks related to CRC progression are not fully understood [21]. More recently, 
machine learning tools such as ROC and SVM are recently used to evaluate the diagnostic efficacy of 
newly discovered biomarkers in different types of diseases, including cancers [22]. 

Support vector machine (SVM), a kernel algorithm, is widely applied in bioinformatics due to its 
high accuracy, and has the ability to identify the multivariate statistical properties of data that 
discriminate between two different groups [23]. SVM can draw an optimal hyper-plane in a high 
dimensional feature space that defines a boundary that maximizes the margin between data samples in 
two classes. Recently, several biomarkers were predicted using SVM model that was able to 
distinguish normal samples from those of CRC patients [24–26]. We have been used these tools in our 
study to explore the diagnostic value of biomarkers for CRC. 

Recent studies have highlighted the prognostic value of different DEGs in CRC [27,28]. However, 
these studies have produced varied results, potentially due to the different analysis methods used. In 
addition, evaluation of the prognostic value of the DEGs using machine learning tools in CRC is still 
lacking. Furthermore, the enrichment pathways, Gene Ontology (GO) functions and the interaction 
network of the DEGs remain to be clarified. Therefore, in this study, we used bioinformatics and 
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machine learning methods to analyze key genes for CRC based on publicly available databases and 
verified the diagnostic values of the candidate genes. 

2. Material and methods 

2.1. The GEO dataset and data processing 

The gene expression microarray GSE103512 dataset was downloaded from GEO and analyzed 
as described in Figure 1. The GSE103512 series (GPL13158 platform, [HT_HG-U133_Plus_PM] 
Affymetrix HT HG-U133+ PM Array Plate) included a total of 69 samples (57 colorectal cancers with 
12 normal samples). Probe symbols were converted into gene symbols using the R statistical software 
package (www.r-project.org). When multiple probes corresponded to a single gene, mean expression 
was used. Samples were extracted from tumor (CRC adenocarcinomas) or adjacent normal tissue, and 
then formalin-fixed and paraffin embedded. Total RNA was extracted using High Pure FFPET RNA 
Isolation Kits. Hybridization was performed using GeneTitan Hybridization, Wash and Stain Kit. 
During data processing, the CEL files were normalized and summarized into probe-set values using 
RMA normalization. 

 

Figure 1. Flow chart for bioinformatics analysis of colorectal cancer (CRC) samples. 
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2.2. DEG identification 

Analyses of the dataset (GSE103512) was performed via the R statistical software package [29]. 
The cutoff criteria were |log2 fold change (log2 FC) | > 1.5 and P-value < 0.05. A fold change (FC) of 
gene describes the ratio between the gene expression values for cancer and normal. 

2.3. DEG enrichment analyses 

GO terms (http://www.geneontology.org/) for gene sets were collected using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) web tool [30]. Kyoto Enrichment of 
Genes and Genomes (KEGG) analysis was performed using the KOBAS (Version 3.0) web tool 
(http://kobas.cbi.pku.edu.cn/) [31]. These tools provide a functional interpretation for large gene lists 
derived from genomic studies. A Benjamini P-value < 0.05 was used in the analysis. 

2.4. Protein-protein interaction networks 

To further investigate the molecular mechanism of DEGs in the CRC and the interactive 
associations between DEGs, the genes were used to construct a PPI network with the biological 
online database tool Search Tool for the  Retrieval of Interacting Genes, (STRING, http://stringdb.  
org) [32]. A combined score > 0.4 (high confidence  score) was considered significant, and then 
the PPI network  was visualized via Cytoscape software (Version  3.5.1) [33]. The hub  
genes/proteins, a small number of crucial nodes for the  protein interactions in the PPI network, 
were chosen  with a centrality degree > 5. Degree centrality quantifies the number of neighbours to 
which a node directly connects 

2.5. Clustering analyses 

The expression profiles of DEGs and hub genes in all cases (cancer and normal) were determined 
using heatmaper [34]. 

2.6. Evaluation of diagnostic biomarkers 

SVM is a supervised learning algorithm capable of solving complex classification problems. 
SVM is based on the structural risk minimization principle from statistical learning theory [35]. A set 
of positive (CRC) and negative (normal) examples can be represented by the feature vectors x i (i = 1, 
2, .... N) with corresponding labels y i ∈ {+1,-1}. To classify the data, the SVM trains a classifier by 
mapping the input samples onto a high-dimensional space using a kernel function, followed by seeking 
a separating hyperplane that differentiates the two different classes with maximal margin and minimal 
error [36–38]. In this study, we applied the re-sampling technique to solve the class imbalance problem 
and to enhance classification performance of our model. Generally, re-sampling of the data can be 
performed through adding data to the minority class (over-sampling) and deleting some of the data 
from the majority class (under-sampling), however oversampling was preferred over under-sampling 
to minimize information loss [39]. Therefore, we applied oversampling via the smotefamily package 
in R in this study to make a balance between the number of tumors and normal samples. 

Furthermore, SVM analysis was performed via the e1071 package in R to explore diagnostic 
biomarkers of CRC [40,41]. In brief, the gene expression data is split into two sets: Training set and Test 
set. Training set is used to train the classifier. Test set is used to estimate the performance of the developed 
system. The SVM classifier was subsequently established to predict cancer based on the expression levels. 
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The other dataset (GSE128435) was used to further verify the results of the SVM classifier and the 
predictive value of these biomarkers. Subsequently, ROC curve analysis was applied to evaluate the 
specificity and sensitivity of the SVM prediction model. The AUC values were determined to evaluate the 
performance of the established SVM classifier. Thereafter, we used easyROC: a web-tool for ROC curve 
analysis (Version 1.3.1) to identify the AUC value for each gene and separately determine the diagnostic 
accuracy of each marker [42]. The discrimination power of biomarker panels is assessed by ROC curve 
analysis which combines sensitivity and specificity of a given marker for diagnostic test evaluation which 
ranges from 0.5 (no discriminating power) to 1.0 (complete separation). 

2.7. Validation of biomarkers gene expression 

The expression levels of hub genes in CRC and normal cases were verified via using GEPIA 
(http://gepia.cancer-pku.cn/), a database of data retrieved from the UCSC Xena server, which includes 
9736 tumor samples and 8587 normal samples. P-value  <  0.05 indicated statistically significant 
differences [43]. The human protein atlas (HPA) database (https://www.proteinatlas.org/) was used to 
confirm the protein expression level of biomarkers in CRC tissues using the immunohistochemistry 
(IHC) staining data. Furthermore, the correlation between hub gene expression and CRC clinical stages 
was performed via GEPIA datasets. 

2.8. Survival analysis 

The survival analyses of biomarkers were performed by PROGgeneV2 Prognostic Database with 
different CRC cohorts [44]. 

2.9. Statistical analysis  

Statistical analyses were performed with the statistical software R [29]. Student’s t-test was used 
to compare two groups. A value of P-value < 0.05 was considered statistically significant. 

3. Results 

3.1. Identification of DEGs  

The gene expression microarray provides an opportunity to simultaneously analyze large sets of 
genes and identify differences between molecular pathways of CRC tissue and normal tissue. We 
analyzed the profiles of DEGs in diseased and normal samples following the cutoff criteria fold-change 
|logFC| > 1.5 and P-value < 0.05. After processing the gene expression profile, which contained 2,740 
genes, we identified a total of 105 DEGs with 17 upregulated and 88 downregulated genes (Figure 2). 
A full list of genes and fold changes for DEGs is reported in Supplementary Table S1  
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Figure 2. Identification of differentially expressed genes (DEGs). A: Box plots of the mean 
expression for each case in the dataset. Box plots generated from normalized microarray 
measurements. X-axis: individual samples grouped into tumor (red) and normal (blue); Y-
axis: expression intensity values. B: Expression heatmap for DEGs. Relative gene 
expression values are presented from low relative expression (blue) to high relative 
expression (red) on a color scale (-4.0 to 4.0). Color intensity is proportional to the relative 
expression value of each gene. Rows contain gene expression data, and columns contain 
samples (normal vs. tumor). C: Volcano plot showing the magnitude of differential 
expression between tumor and normal samples. Each dot represents one gene that had 
detectable expression in both tissues. Blue dots represent downregulated genes with 
log2FC < -1.5 and P-value of 0.05. Red dots represent upregulated genes with log2FC > 
1.5 and P-value of 0.05. 
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3.2. Molecular pathways associated with DEGs 

The GO analysis data indicated that the DEGs were markedly enriched in biological processes, 
including complement activation, positive regulation of B cell activation, phagocytosis, B cell receptor 
signaling pathway, immune response, defense response to bacterium, proteolysis, and innate immune 
response (Figure 3A), while, the KEGG analysis exhibited that the DEGs were significantly enriched 
in vascular smooth muscle contraction, systemic lupus erythematosus, arachidonic acid metabolism, 
complement and coagulation cascades, alcoholism, transcriptional misregulation in cancer, oxytocin 
signaling pathway, pertussis, focal adhesion, rheumatoid arthritis, and IL-17 signaling pathways 
(Figure 3B).  

 

Figure 3. Functional enrichment analyses. A: GO terms for differentially expressed genes 
(DEGs) in this study. B: KEGG pathways for DEGs. 

3.3. Construction of the PPI network for DEGs 

The PPI network for 105 DEGs via STRING database exhibited that the PPI network was 
consisted of 82 nodes and 91 interactions. Subsequently, hub genes of PPI network were screened 
via Cytoscape software (Figure 4). A total of 10 candidate genes with high degrees of interaction 
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were selected, including insulin-like growth factor 1 (IGF1), myosin-11 (MYH11), clusterin 
(CLU), FBJ murine osteosarcoma viral oncogene homolog (FOS), low myosin regulatory light 
polypeptide 9 (MYL9), chemokine (CXC motif) ligand 12 (CXCL12), leiomodin 1 (LMOD1), 
calponin 1 (CNN1), complement component 3 (C3), and histone cluster 1 H2B family member O 
(HIST1H2BO) (Figure 4 and Table S2).  

 

Figure 4. Identification of hub genes. A: PPI network analysis of differentially expressed 
genes (DEGs) in tumors from colorectal cancer (CRC) patients. The protein–protein 
interaction (PPI) network was constructed with STRING. This network contained 82 nodes 
and 91 interaction pairs. Yellow-highlighted rectangles show genes with higher 
connectivity (hub genes). Blue indicates genes with lower degrees of interactions. B: 
Expression heatmap for discovered biomarkers. Relative gene expression is reported from 
low relative expression (blue) to high relative expression (red) on a color scale (-2.0 to 2.0). 
Color intensity is proportional to the relative expression value of gene. Rows contain gene 
expression data, and columns contain the samples (normal vs. tumor). 

3.4. Diagnostic value of biomarkers 

To investigate the diagnostic value of the hub genes, we prepared a gene expression heatmap for 
all samples. The heatmap revealed differential expression patterns between the CRC and control 
samples (Figure 4). Subsequently, we developed an SVM model based on gene expression to identify 
the diagnostic value of these 10 hub genes in CRC. where the input of an SVM is a training set S = (x1, 
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y1), ..., (xn, yn) of vector of features xi ∈ X together with their known classes yi ∈ {-1, +1}. The output 
of an SVM is a model f: X → {−1, +1} that predicts the class f(x) of any new object x ∈ X.  

Sensitivity and Specificity were used to judge the performance of the classification system. 
Computing of these measurements is based on true positives (TP), which mean the samples are 
predicted positive, true negatives (TN), which mean the samples are correctly predicted negative, false 
positives (FP), which mean samples are wrongly predicted positive, and false negatives (FN), which 
mean the samples are wrongly predicted negative. Moreover, false positive rate is considered as (1–
Specificity). 
1- Sensitivity (true positive rate) is calculated as follows: 

Sensitivity
TP

TP  FN
 x 100 

2- Specificity (true negative rate) is calculated as follows: 

Specificity 
TN

TN  FP
 x 100 

 

Figure 5. Diagnostic value of the newly developed biomarkers. A: Receiver operating 
characteristic curve (ROC) curves of support vector machine (SVM)-based hub gene risk 
classifier in the training set (a) for differentiating colorectal cancer (CRC) patients from 
the healthy controls and for validation of the results (b). B: ROC curves of 10 genes are 
shown for differentiating CRC patients from healthy controls. ROC curves were generated 
for each biomarker. The dashed reference line represents the ROC curve for a test with no 
discriminatory ability. Area under the ROC curve (AUC) is displayed for each marker in 
the Table S3. 
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We achieved AUC of 0.98 for the training set and AUC of 0.96 for validation set. Furthermore, 
ROC analysis was performed to estimate the diagnostic efficiency of these 10 candidate hub genes in 
CRC patients based on gene expression. The results showed that AUC values for all gene were > 0.92, 
suggesting that the hub gene risk classifier had good discrimination between the CRC and control 
samples with high sensitivity and specificity for CRC diagnosis (Figure 5 and Table S3). These results 
suggested that the 10 differentially expressed hub genes could be used as potential biomarkers for the 
diagnosis of CRC.  

3.5. Biomarker validation 

The GEPIA database was used to verify the mRNA expression of hub genes with P-value < 0.05 
and Log2FC > 1 as the threshold. GEPIA box plots exhibited that the expressions of all hub genes 
except HIST1H2BO and FOS were significantly downregulated CRC patients. (Figure 6A). 
Furthermore, Correlation analysis explored that the mRNA expressions of MYH11, LMOD1, CNN1, 
and MYL9 genes were significantly correlated with CRC clinical stages (Figure 6B). Subsequently, 
immunohistochemical analysis of the Human Protein Atlas (HPA) database revealed that the protein 
expression of HIST1H2BO was significantly upregulated in CRC tissue while the protein expression 
of CXCL12 and CNN1 were significantly downregulated in CRC tissues (Supplementary Figure S1).  

 

Continued on next page 
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Figure 6. Validation of bioinformatic analysis. A: Boxplots are showing the expression of 
hub genes in cancer patients and normal controls via GEPIA datasets. B: The correlation 
analysis between the hub gene expressions and clinical stages via GEPIA datasets. 

We further screened the DEGs profile for TCGA dataset with 275 cancer patients and 41 normal 
tissues, through the cutoff criteria fold-change |log2FC| > 1.5 and P-value < 0.05, to evaluate GEO 
dataset results. The results showed that a total of 61 genes were common between TCGA cohort and 
GEO cohort; however, a total of 7 genes (C3, CLU, CNN1, CXCL12, LMOD1, MYH11 and MYL9) 
of hub genes were persistent with DEGs in TCGA (Figure 7A). Altogether, these results were 
coincided with transcriptomic analysis for GEO dataset of CRC patients. 

3.6. Survival analysis: 

Kaplan-Meier survival analysis revealed that CRC patients are separated into two groups (high-
risk group in red and low-risk group in green) according to the expression profiles of biomarker genes. 
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Meanwhile, these genes provided the best split between patients with high and low risks based on their 
expression. Therefore, these genes could be used in the prognosis of CRC (Figure 7B).  

 

Figure 7. Prognostic value of suggested biomarkers. A: Venn plot is showing the common 
genes between GEO dataset, TCGA cohort, and Hub genes. B) the survival analysis of the 
biomarkers. a) Kaplan-Meier plot is showing that lower expression of nine genes (IGF1, 
MYH11, CLU, MYL9, CXCL12, LMOD1, C3, CNN1, and FOS) as a signature was 
correlated with poor survival in CRC patients for GSE24551 cohort with P-
value:0.0412 and hazard ratio (HR): 0.64(0.41-0.98). b) higher expression of 
HIST1H2BO was correlated with poor survival in CRC patients for GSE12945 with P-
value:0.0432 and HR: 21.84.  

4. Discussion 

CRC is one of the common malignant tumors of the digestive tract in the world. Dietary and 
environmental factors, as well as genetic mutations are the main causes of CRC [16,45]. While there 
have been advances in the diagnosis and treatment of CRC, mortality rate ranks second among all 
types of cancer because lacking of the early detection [16,46]. Therefore, novel diagnostic and 
prognostic biomarkers are critically needed. 

In this study, we performed an integrative bioinformatic analysis of gene expression microarray 
data to identify hub genes as diagnostic biomarkers of CRC. A total of 105 DEGs were identified, 
including 17 upregulated and 88 downregulated DEGs. GO and KEGG pathway enrichment analyses 
suggested that DEGs were significantly enriched in biological processes related to immune responses 
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and cancer progression. Subsequently, 10 hub genes with the highest degrees of interactions were 
explored using the PPI network. The SVM model and ROC curves were used to predict the utility of 
these hub genes as biomarkers in CRC diagnosis.  

Based on functional enrichment analyses, the DEGs were significantly enriched in biological 
functions including immune response, defense response to bacterium, proteolysis, and innate immune 
response, systemic lupus erythematosus, arachidonic acid metabolism, complement and coagulation 
cascades, alcoholism, transcriptional misregulation in cancer, oxytocin signaling pathway, pertussis, 
focal adhesion, rheumatoid arthritis, and IL-17 signaling. A previous study reported immune 
destruction, which induces chronic inflammation, as an important cause of CRC; thus, our 
transcriptomic results are coincided with previous studies that demonstrated that inflammation is a 
major feature of the tumor microenvironment in CRC [47–49].  

Based on the construction of PPI network, IGF1, MYH11, CLU, MYL9, CXCL12, LMOD1, C3, 
CNN1, FOS, and HIST1H2BO with a high degree of connectivity were identified as hub genes. Nine 
of them were significantly downregulated in CRC tissues compared with normal tissues, while the 
HIST1H2BO was significantly upregulated. MYH11 is a smooth muscle myosin, and its functions are 
related to cell migration and adhesion, intracellular transport, and signal transduction [50]. A previous 
study identified that low MYH11 expression contributes in poor prognosis of CRC patients [51], in 
addition to forming an oncogenic fusion with core-binding factor subunit beta (CBFB) [52]. Moreover, 
IGF-1 could be used as biomarker for CRC patients as shown by others [53]. The expression of CLU , 
a multifunctional intra-/extra-cellular molecular chaperone, is downregulated in malignant tumors 
compared to the normal colorectal tissue in some cases [54,55] and may be a promising prognostic 
biomarker for CRC [56]. 

Moreover, FOS is involved in the environmental changes adaptation through formation of 
transcription factor activating protein 1(AP-1) by its interaction with Jun proto-oncogene (JUN, c-
JUN) [57], in addition to it has a crucial role in many diseases including CRC through regulation 
of many genes related to cancer progression pathways such as proliferation and apoptosis [58]. 
Recently, using gene expression analysis, Chen et al. reported that FOS could be a potential 
therapeutic target for CRC [59]. Additionally, MYL9 expression might be associated with cancer 
development and metastasis in some tumors, such as non-small-cell lung cancer [60]. Indeed, 
CXCL12 has been reported as a hub gene in CRC [61,62], which coincides with our findings. 
Aberrant expression of LMOD1 may be associated with cancer development in some types of 
tumors [50]; however, its role in CRC is unknown. 

Additionally, CNN1 is expressed at significantly higher levels in normal tissue compared to 
carcinoma tissues in CRC [63] and plays a tumor-suppressive role in different cancers [64,65]. 
HIST1H2BO belongs to the histone family members that are associated with the development and 
proliferation of multiple cancer types and has been identified as a hub gene in breast cancer [66]. C3 
plays a crucial role in the complement system and contributes to innate immunity [67] ; however, its 
role in CRC is unknown. 

In this study, machine learning methods including SVM model and ROC were conducted to 
predict the potential application of biomarkers in CRC diagnosis. However, the results exhibited that 
the AUC values > 0.92 for all genes, demonstrating that these candidate genes could be used as 
potential biomarkers for CRC diagnosis. Furthermore, GEPIA database exhibited that eight of the hub 
genes (IGF1, MYH11, CLU, MYL9, CXCL12, LMOD1, C3, and CNN1) were differentially expressed 
in CRC patients. Subsequently, immunohistochemical analysis revealed that the protein expression of 
HIST1H2BO was significantly upregulated while the protein expression of CXCL12 and CNN1 were 
significantly downregulated in CRC tissues. More importantly, the low expression of IGF1, MYH11, 
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CLU, MYL9, CXCL12, LMOD1, C3, CNN1, and FOS and high HIST1H2BO expression were 
significantly correlated with poor patient prognosis, therefore, these hub genes exhibit predictive value 
for CRC patient survival. Collectively, a total of 105 DEGs and 10 hub genes were screened; however, 
the hub genes could be used as novel biomarkers for CRC patients. 

In this research, we further assessed the differential expression of hub genes in various CRC 
clinical stages, and the results showed that the expression of four genes of hub genes (MYH11, 
LMOD1, CNN1, and MYL9) was significantly correlated with tumor stages. Therefore, the expression 
of these 4 hub genes may be used to predict the pathological stage of CRC.  

In fact, the whole genome is divided into the protein-coding genes that account for approximately 
1.5% of the genome and noncoding RNAs (ncRNAs), which were falsely regarded as transcriptional 
noise. Based on transcript lengths, ncRNAs can be further divided into small ncRNAs and long 
ncRNAs (lncRNAs) [68–70]. Indeed, ncRNAs including microRNAs, lncRNAs, and Circular RNAs 
play critical roles in many biological processes and play an important role in the development of 
various complex diseases [68–71], therefore the identification of ncRNAs-cancer associations could 
contribute to the diagnosis and treatment of CRC. Recently, computational models were applied to 
identify the non-coding RNA biomarker of human complex diseases including cancer to improve 
cancer prediction, diagnosis and treatment. Therefore, the identification of novel non-coding RNA 
biomarkers via computational models considers as a future direction for improving CRC prediction, 
diagnosis and treatment [68]. 

Furthermore, the necessity of using biomarkers as surrogate outcomes in large trials of major 
diseases, such as cancer has been widely discussed. However, using the biomarkers as surrogate 
endpoints and serve as true replacements for relevant clinical endpoints need constant reevaluation and 
clinical validation. Therefore, we explored a novel CRC biomarker in the present study via 
transcriptome analysis. Then we further verified these hub genes by using bioinformatics and machine 
learning methods, however, these biomarkers need further evaluation by biological and clinical 
investigations to be used as a surrogates in CRC prognosis and prevention [72]. Therefore, those 
differentially regulated genes may be used as promising biomarker after they have been verified and 
passed the rigorous examination by the Food and Drug Administration (FDA).  

5. Conclusions 

We have for the first time identified 10 key genes (IGF1, MYH11, CLU, MYL9, CXCL12, 
LMOD1, C3, CNN1, FOS, and HIST1H2BO) with diagnostic and prognostic values in CRC. We 
identified these genes by using comprehensive bioinformatics and machine learning technology. 
Upon further biological investigation, these genes have the potential to be used in CRC prognosis. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (31971188 and 
31370772).  

Author contributions 

Ahmed Hammad conducted the study, Xiuwen Tang supervised the study, and Mohamed Elshaer 
assisted in data interpretation. Ahmed Hammad and Xiuwen Tang wrote the manuscript. All authors 
read and approved the manuscript.  



9011 
 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8997–9015. 

Availability of data 

The microarray expressions data of raw and processed files are publicly available in NCBI 
Gene Expression Omnibus, accession number GSE103512 and GSE128435 

Conflict of interest 

All the authors have declared no conflict of interests. 

Reference 

1. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin., 63 (2013), 
11–30. 

2. M. R. Sadeghi, F. Jeddi, N. Soozangar, M. H. Somi, N. Samadi, The role of Nrf2-Keap1 axis in 
colorectal cancer, progression, and chemoresistance, Tumor. Biol., 39 (2017), 1010428317705510. 

3. W. Chen, R. Zheng, P. D. Baade, S. Zhang, H. Zeng, F. Bray, et al., Cancer statistics in China, 
2015, CA Cancer J. Clin., 66 (2016), 115–132. 

4. M. R. Sadeghi, F. Jeddi, N. Soozangar, M. H. Somi, N. Samadi, The role of Nrf2-Keap1 axis in 
colorectal cancer, progression, and chemoresistance, Tumour. Biol., 39 (2017), 
1010428317705510. 

5. B. Raphael, R. Hruban, A. Aguirre, R. Moffitt, J. Yeh, C. Stewart, et al., Cancer Genome Atlas 
Research Network Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma, 
Cancer Cell, 32 (2017), 185–203. 

6. I. Kinde, C. Bettegowda, Y. Wang, J. Wu, N. Agrawal, I.-M. Shih, et al., Evaluation of DNA from 
the Papanicolaou test to detect ovarian and endometrial cancers, Sci. Transl. Med., 5 (2013), 
167ra164–167ra164. 

7. M. Elshaer, A. I. ElManawy, A. Hammad, A. Namani, X. J. Wang, X. Tang, Integrated data 
analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations 
in lung adenocarcinomas, Aging (Milano), 12 (2020), 7183–7206. 

8. A. Hammad, Z. H. Zheng, A. Namani, M. Elshaer, X. J. Wang, X. Tang, Transcriptome analysis 
of potential candidate genes and molecular pathways in colitis-associated colorectal cancer of 
Mkp-1-deficient mice, BMC Cancer, 21 (2021), 607. 

9. B. Liang, C. Li, J. Zhao, Identification of key pathways and genes in colorectal cancer using 
bioinformatics analysis, Med. Oncol., 33 (2016), 016–0829. 

10. S. A. Bustin, S. Dorudi, Gene expression profiling for molecular staging and prognosis prediction 
in colorectal cancer, Expert Rev. Mol. Diagn., 4 (2004), 599–607. 

11. V. Kulasingam, E. P. Diamandis, Strategies for discovering novel cancer biomarkers through 
utilization of emerging technologies, Nat. Clin. Pract. Oncol., 5 (2008), 588–599. 

12. M. Nannini, M. A. Pantaleo, A. Maleddu, A. Astolfi, S. Formica, G. Biasco, Gene expression 
profiling in colorectal cancer using microarray technologies: results and perspectives, Cancer 
Treat. Rev., 35 (2009), 201–209. 

13. M. Ernst, T. L. Putoczki, Targeting IL-11 signaling in colon cancer, Oncotarget, 4 (2013), 1860. 
14. C. Isella, A. Terrasi, S. E. Bellomo, C. Petti, G. Galatola, A. Muratore, et al., Stromal contribution 

to the colorectal cancer transcriptome, Nat. Genet., 47 (2015), 312–319. 
15. B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, K. W. Kinzler, Cancer 

genome landscapes, Science, 339 (2013), 1546–1558. 



9012 
 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8997–9015. 

16. A. Hammad, Z. H. Zheng, Y. Gao, A. Namani, H. F. Shi, X. Tang, Identification of novel Nrf2 
target genes as prognostic biomarkers in colitis-associated colorectal cancer in Nrf2-deficient 
mice, Life Sci., 238 (2019), 116968. 

17. K. GÜÇKIRAN, İ. Cantürk, L. ÖZYILMAZ, DNA microarray gene expression data classification 
using SVM, MLP, and RF with feature selection methods relief and LASSO, Süleyman Demirel 
Üniv. Fen Bilimleri Enst. Derg., 23 (2019), 126–132. 

18. N. S. Maurya, S. Kushwaha, A. Chawade, A. Mani, Transcriptome profiling by combined 
machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic 
biomarker for colorectal cancer, Sci. Rep., 11 (2021), 14304. 

19. N. Auslander, A. B. Gussow, E. V. Koonin, Incorporating Machine Learning into Established 
Bioinformatics Frameworks, Int. J. Mol. Sci., 22 (2021), 2903. 

20. W. Lian, H. Jin, J. Cao, X. Zhang, T. Zhu, S. Zhao, et al., Identification of novel biomarkers 
affecting the metastasis of colorectal cancer through bioinformatics analysis and validation 
through qRT-PCR, Cancer Cell Int., 20 (2020), 105. 

21. L. Xu, R. Wang, J. Ziegelbauer, W. W. Wu, R. F. Shen, H. Juhl, et al., Transcriptome analysis of 
human colorectal cancer biopsies reveals extensive expression correlations among genes related 
to cell proliferation, lipid metabolism, immune response and collagen catabolism, Oncotarget, 8 
(2017), 74703–74719. 

22. J. Zhou, L. Li, L. Wang, X. Li, H. Xing, L. Cheng, Establishment of a SVM classifier to predict 
recurrence of ovarian cancer, Mol. Med. Rep., 18 (2018), 3589–3598. 

23. J. Mourao-Miranda, A. A. T. S. Reinders, V. Rocha-Rego, J. Lappin, J. Rondina, C. Morgan, et 
al., Individualized prediction of illness course at the first psychotic episode: a support vector 
machine MRI study, Psychol. Med., 42 (2012), 1037–1047. 

24. X. Chen, Q. F. Wu, G. Y. Yan, RKNNMDA: Ranking-based KNN for MiRNA-Disease 
Association prediction, RNA Biol., 14 (2017), 952–962. 

25. J. Zhi, J. Sun, Z. Wang, W. Ding, Support vector machine classifier for prediction of the metastasis 
of colorectal cancer, Int. J. Mol. Med., 41 (2018), 1419–1426. 

26. M. N. Gabere, M. A. Hussein, M. A. Aziz, Filtered selection coupled with support vector 
machines generate a functionally relevant prediction model for colorectal cancer, Oncol. Targets 
Ther., 9 (2016), 3313–3325. 

27. Y. R. Liu, Y. Hu, Y. Zeng, Z. X. Li, H. B. Zhang, J. L. Deng, et al., Neurexophilin and PC-
esterase domain family member 4 (NXPE4) and prostate androgen-regulated mucin-like 
protein 1 (PARM1) as prognostic biomarkers for colorectal cancer, J. Cell. Biochem., 120 
(2019), 18041–18052. 

28. X. Song, T. Tang, C. Li, X. Liu, L. Zhou, CBX8 and CD96 Are Important Prognostic Biomarkers 
of Colorectal Cancer, Med. Sci. Monit., 24 (2018), 7820–7827. 

29. R. C. Team, The R project for statistical computing Available at: https://www. r-project. org, 
Accessed January, 26 (2018). 

30. W. H. Da, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources, Nat. Protoc., 4 (2009), 44–57. 

31. S. Friedman, P. H. Rubin, C. Bodian, E. Goldstein, N. Harpaz, D. H. Present, Screening and 
surveillance colonoscopy in chronic Crohns colitis, Gastroenterology, 120 (2001), 820–826. 

32. D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, et al., 
STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids 
Res., 43 (2015), D447–D452. 



9013 
 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8997–9015. 

33. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a 
software environment for integrated models of biomolecular interaction networks, Genome Res., 
13 (2003), 2498–2504. 

34. S. Babicki, D. Arndt, A. Marcu, Y. Liang, J. R. Grant, A. Maciejewski, et al., Heatmapper: web-
enabled heat mapping for all, Nucleic Acids Res., 44 (2016), 17. 

35. J. Zhou, L. Li, L. Wang, X. Li, H. Xing, L. Cheng, Establishment of a SVM classifier to predict 
recurrence of ovarian cancer, Mol. Med. Rep., 18 (2018), 3589–3598. 

36. L. J. K. Wee, D. Simarmata, Y. W. Kam, L. F. P. Ng, J. C. Tong, SVM-based prediction of linear 
B-cell epitopes using Bayes Feature Extraction, BMC Genom., 11 (2010), S21. 

37. Y. Hu, T. Hase, H. P. Li, S. Prabhakar, H. Kitano, S. K. Ng, et al., A machine learning approach 
for the identification of key markers involved in brain development from single-cell 
transcriptomic data, BMC Genom., 17 (2016), 1025–1025. 

38. C. D. A. Vanitha, D. Devaraj, M. Venkatesulu, Gene Expression Data Classification Using 
Support Vector Machine and Mutual Information-based Gene Selection, Proc. Comput. Sci., 47 
(2015), 13–21. 

39. N. S. Maurya, S. Kushwaha, A. Chawade, A. Mani, Transcriptome profiling by combined 
machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic 
biomarker for colorectal cancer, Sci. Rep., 11 (2021), 021–92692. 

40. T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, D. Haussler, Support vector 
machine classification and validation of cancer tissue samples using microarray expression data, 
Bioinformatics, 16 (2000), 906–914. 

41. K. Liu, Q. Fu, Y. Liu, C. Wang, An integrative bioinformatics analysis of microarray data for 
identifying hub genes as diagnostic biomarkers of preeclampsia, Biosci. Rep., 39 (2019). 

42. L. K. Boroughs, R. J. DeBerardinis, Metabolic pathways promoting cancer cell survival and 
growth, Nat. Cell Biol., 17 (2015), 351–359. 

43. Z. Tang, C. Li, B. Kang, G. Gao, C. Li, Z. Zhang, GEPIA: a web server for cancer and normal 
gene expression profiling and interactive analyses, Nucleic Acids Res., 45 (2017), W98–W102. 

44. I. M. Copple, The Keap1-Nrf2 cell defense pathway-a promising therapeutic target?, Adv. 
Pharmacol., 63 (2012), 43–79. 

45. K. Tong, O. Pellon-Cardenas, V. R. Sirihorachai, B. N. Warder, O. A. Kothari, A. O. Perekatt, et 
al., Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer, 
Cell Rep., 21 (2017), 3833–3845. 

46. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 
countries, CA Cancer J. Clin., 68 (2018), 394–424. 

47. R. B. Sartor, Mechanisms of Disease: pathogenesis of Crohns disease and ulcerative colitis, Nat. 
Clin. Pract. Gastroenterol. Hepatol., 3 (2006), 390–407. 

48. A. J. Schottelius, H. Dinter, Cytokines, NF-κB, Microenvironment, Intestinal Inflammation and 
Cancer, Cancer Treat. Res., 130 (2006), 67–87. 

49. C. Rubie, V. O. Frick, S. Pfeil, M. Wagner, O. Kollmar, B. Kopp, et al., Correlation of IL-8 with 
induction, progression and metastatic potential of colorectal cancer, World J. Gastroenterol., 13 
(2007), 4996–5002. 

50. B. Zhao, Z. Baloch, Y. Ma, Z. Wan, Y. Huo, F. Li, et al., Identification of Potential Key Genes 
and Pathways in Early-Onset Colorectal Cancer Through Bioinformatics Analysis, Cancer 
Control, 26 (2019), 1073274819831260. 



9014 
 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8997–9015. 

51. R. J. Wang, P. Wu, G. X. Cai, Z. M. Wang, Y. Xu, J. J. Peng, et al., Down-regulated MYH11 
expression correlates with poor prognosis in stage II and III colorectal cancer, Asian Pac. J. 
Cancer Prev., 15 (2014), 7223–7228. 

52. N. Yamamoto, T. Oshima, K. Yoshihara, T. Aoyama, T. Hayashi, T. Yamada, et al., 
Clinicopathological significance and impact on outcomes of the gene expression levels of IGF-1, 
IGF-2 and IGF-1R, IGFBP-3 in patients with colorectal cancer: Overexpression of the IGFBP-3 
gene is an effective predictor of outcomes in patients with colorectal cancer, Oncol .Lett., 13 
(2017), 3958–3966. 

53. S. Wu, F. Wu, Z. Jiang, Identification of hub genes, key miRNAs and potential molecular 
mechanisms of colorectal cancer, Oncol. Rep., 38 (2017), 2043–2050. 

54. T. Chen, J. Turner, S. McCarthy, M. Scaltriti, S. Bettuzzi, T. J. Yeatman, Clusterin-mediated 
apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent, 
Cancer Res., 64 (2004), 7412–7419. 

55. W. Gomaa, M. Al-Ahwal, H. Al-Maghrabi, A. Buhmeida, M. Al-Qahtani, B. Al-Maghrabi, et al., 
Expression of clusterin in colorectal carcinoma in relation to clinicopathological criteria, Malays. 
J. Pathol., 39 (2017), 243–250. 

56. P. I. Artemaki, A. D. Sklirou, C. K. Kontos, A. A. Liosi, D. D. Gianniou, I. N. Papadopoulos, et 
al., High clusterin (CLU) mRNA expression levels in tumors of colorectal cancer patients predict 
a poor prognostic outcome, Clin. Biochem., 75 (2020), 62–69. 

57. S. Mahner, C. Baasch, J. Schwarz, S. Hein, L. Wölber, F. Jänicke, et al., C-Fos expression is a 
molecular predictor of progression and survival in epithelial ovarian carcinoma, Br. J. Cancer, 99 
(2008), 1269–1275. 

58. R. Ashida, K. Tominaga, E. Sasaki, T. Watanabe, Y. Fujiwara, N. Oshitani, et al., AP-1 and 
colorectal cancer, Inflammopharmacology $V 13, (2006), 113–125. 

59. G. Chen, N. Han, G. Li, X. Li, Z. Li, Q. Li, Time course analysis based on gene expression profile 
and identification of target molecules for colorectal cancer, Cancer Cell Int., 16 (2016), 016–0296. 

60. X. Tan, M. Chen, MYLK and MYL9 expression in non-small cell lung cancer identified by 
bioinformatics analysis of public expression data, Tumor. Biol., 35 (2014), 12189–12200. 

61. B. Liang, C. Li, J. Zhao, Identification of key pathways and genes in colorectal cancer using 
bioinformatics analysis, Med. Oncol., 33 (2016), 111. 

62. G. Sun, Y. Li, Y. Peng, D. Lu, F. Zhang, X. Cui, et al., Identification of differentially expressed 
genes and biological characteristics of colorectal cancer by integrated bioinformatics analysis, J. 
Cell. Physiol., 234 (2019), 15215–15224. 

63. J. E. Drew, A. J. Farquharson, C. D. Mayer, H. F. Vase, P. J. Coates, R. J. Steele, et al., Predictive 
gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma, 
PLoS One, 9 (2014). 

64. T. Yamane, K. Asanoma, H. Kobayashi, G. Liu, H. Yagi, T. Ohgami, et al., Identification of the 
Critical Site of Calponin 1 for Suppression of Ovarian Cancer Properties, Anticancer Res., 35 
(2015), 5993–5999. 

65. Z. Y. Lin, W. L. Chuang, Genes responsible for the characteristics of primary cultured invasive 
phenotype hepatocellular carcinoma cells, Biomed. Pharmacother., 66 (2012), 454–458. 

66. W. Xie, J. Zhang, P. Zhong, S. Qin, H. Zhang, X. Fan, et al., Expression and potential prognostic 
value of histone family gene signature in breast cancer, Exp. Ther. Med., 18 (2019), 4893–4903. 

67. V. Afshar-Kharghan, The role of the complement system in cancer, J. Clin. Invest., 127 (2017), 
780–789. 



9015 
 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8997–9015. 

68. X. Chen, C. C. Yan, X. Zhang, Z. H. You, Long non-coding RNAs and complex diseases: from 
experimental results to computational models, Briefings Bioinf., 18 (2017), 558–576. 

69. X. Chen, D. Xie, Q. Zhao, Z. H. You, MicroRNAs and complex diseases: from experimental 
results to computational models, Briefings Bioinf., 20 (2019), 515–539. 

70. X. Chen, L. Wang, J. Qu, N. N. Guan, J. Q. Li, Predicting miRNA-disease association based on 
inductive matrix completion, Bioinformatics, 34 (2018), 4256–4265. 

71. C. C. Wang, C. D. Han, Q. Zhao, X. Chen, Circular RNAs and complex diseases: from 
experimental results to computational models, Briefings Bioinfo., 2021. 

72. K. Strimbu, J. A. Tavel, What are biomarkers?, Curr. Opin. HIV AIDS, 5 (2010), 463–466. 

©2021 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0)  


