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Abstract: Intracellular transport by microtubule-based molecular motors is marked by qualitatively
different behaviors. It is a long-standing and still-open challenge to accurately quantify the various
individual-cargo behaviors and how they are affected by the presence or absence of particular motor
families. In this work we introduce a protocol for analyzing change points in cargo trajectories that
can be faithfully projected along the length of a (mostly) straight microtubule. Our protocol consists
of automated identification of velocity change points, estimation of velocities during the behavior
segments, and extrapolation to motor-specific velocity distributions. Using simulated data we show
that our method compares favorably with existing methods. We then apply the technique to data sets in
which quantum dots are transported by Kinesin-1, by Dynein-Dynactin-BicD2 (DDB), and by Kinesin-
1/DDB pairs. In the end, we identify pausing behavior that is consistent with some tug-of-war model
predictions, but also demonstrate that the simultaneous presence of antagonistic motors can lead to
long processive runs that could contribute favorably to population-wide transport.
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1. Introduction

Intracellular transport of vesicles, organelles and other biomolecular cargo is commonly carried
about by two families of motor proteins (kinesin and dynein) that tether cargoes to microtubules in the
cell and move along these microtubules in a directed fashion. Microtubules have a structural polariza-
tion, termed the plus-end and a minus-end. Motors in the kinesin family generally move in the plus-end
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(anterograde) direction, while cytoplasmic dynein moves in the minus-end (retrograde) direction. Typ-
ically, more than one motor will be attached to a cargo at a time, and it has been a long-term theoretical
challenge to understand how multiple motors cooperate [1, 2, 3, 4] and/or compete [5, 6, 7, 8] in the
course of cargo transport. See Figure 1 for a schematic depiction. Indeed, particle tracking experiments
for live cells have consistently revealed cargo trajectories that are bidirectional, marked by periods of
both anterograde and retrograde motion, while featuring periods when transport appears to be “paused”
[9, 10]. The causes of the pauses [11, 12] and the manner in which the motors exchange dominance to
give rise to bidirectionality remain the focus of extensive investigation [10, 13, 14].

Minus end Plus end

Figure 1. Anterograde moving motors, such as kinesin, transport cargo towards the cell
periphery (plus end) by stepping along the microtubule, while retrograde moving motors,
such as dynein, carry the cargo towards the cell nucleus (negative end). Figure copied with
permission from [10].

Initially, in vitro experiments of motor-driven cargo transport by motors were in one of two cate-
gories: (1) transport by a single motor, achieved by holding the motor concentration very low compared
to cargo concentration thereby assuring at most one motor is attached; or (2) multi-motor transport
with an uncertain number of motors being involved in the transport [15, 16, 17]. More recently, DNA
origami techniques have been developed in order to observe transport by exactly two motors, which
may or may not be of the same type [18, 19, 20, 21]. The effort to make comparisons between single-
and multi-motor transport has raised a number of methodological challenges. Two such challenges
that we seek to address here are: (1) how to identify when a motor-cargo complex switches from one
biophysical state to another; and (2) how to characterize and quantify the distribution of velocities
exhibited by transport mediated by various motors and motor-motor combinations. A typical path of
interest is displayed in Figure 2. The cargo is initially being transported by the motor and then comes
to a stop. It pauses temporarily (with some continued progress) and then it begins stepping again until
the end of the observed time.

A variety of methods to address questions like this exist in the literature. Some have been developed
specifically for particle tracking data, while others (change point detection algorithms in particular)
have been developed with other applications in mind. In Section 1.1 we survey some relevant methods
and in this work we develop a particle-tracking specific algorithm that is informed by some of these
“best practices” that have been explored in the statistics literature. One collection of work that was par-
ticularly influential for us is that generated by the KymoAnalyzer software developed by the Encalada
lab [22]. This tool for quantifying behavior observed in kymograph data allows a user to partition indi-
vidual paths into segments, and then estimate the velocity of each segment. The collection of observed
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Figure 2. Left: The tracked cargo tethered to a two-motor complex trajectory (black curve)
in the (x,y) plane, where 7, denotes the starting position and 7y denotes the ending position
with respect to time. The purple line denotes the estimated position of the microtubule. Cen-
ter: The trajectory (black curve) in the time, longitudinal distances coordinate system, where
the red circles correspond to missing observations that have been estimated. Right: The in-
crement process of the trajectory, where the red circles indicate the increments calculated
from the missing observations that were estimated.

velocities can then be binned in a histogram or displayed as a cumulative distribution function, either
of which can be sufficiently detailed to capture qualitative differences in behavior observed in various
experiments. The two major drawbacks to using KymoAnalyzer (or any similar tool) stem from the
“use of the human hand” in the analysis. Because the segments must be marked individually, user-
time is a limiting factor, preventing analysis of massive data sets. Moreover, different users can have
different habits in determining when segments occur, leading to biases that are difficult to quantify.

In the work that follows, we take a step toward developing a protocol for finding change points and
reporting velocity distributions that is fully automated, once some initial settings are put in place. In
Section 1.2 we summarize the method that we have implemented, which is Bayesian in the overall
framework, but relies on a number of approximations to be computationally feasible. Subsequently, in
Sections 3 and 4 we provide a detailed development of our approach to modeling both the data and the
underlying biophysical process for the purposes of quantifying the data and simulating artificial data,
respectively. We then describe our procedure for validating the statistical methods we employ. In Sec-
tion 5 we report how various change point methods perform on the simulated data and then ultimately
we apply our method to data sets featuring quantum dots being transported by a single kinesin-1 (kinl)
motor, a single dynein-dynactin-BicD2 (DDB) motor, and a kin1-DDB pair. We are able to quantify
differences in velocity distributions and run lengths and reveal a pattern of behavior that, at least from
this preliminary perspective, is neither completely consistent with tug-of-war hypothesis predictions,
nor with the in vivo observations of co-dependence among antogonistic motors.
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1.1. Existing methods in change point detection

The change point detection problem is well-studied, dating back at least to the work of Page in
the 1950s. After laying down a framework for detecting a change in parameter using cumulative sum
schemes for general distributions [23, 24], Page specifically addressed a problem much like what we
study here in 1957, looking at the change in mean of independent normally distributed observations
[25]. In 1964, Chernoff and Zacks [26] derived a Bayesian estimator for segment means under the
assumption that there is at most one change. The problem becomes considerably more difficult when
the number and location of the change points is not known. The literature on this topic is extensive,
but we would like to highlight a few prominent methods that we include in our numerical analysis.

Essentially all change point detection schemes rely on proposing a number of changes, and the
locations of those changes, and then using a probability model to evaluate a likelihood score. Since a
model with more change points can always be made to fit the data better, there is a risk of overfitting a
trajectory. There must be some penalty in the score for how many change points are proposed. These
two components are very explicit in algorithms that construct a piecewise-linear approximation of the
data and compute the score based on the sum of squares of the residuals (RSS). One such algorithm,
proposed by Bai and Perron [27, 28], employs a dynamic programming algorithm to minimize RSS.
This has been implemented in the R package strucchange, in which the function breakpoints uses
the Bayesian Information Criterion (BIC) to penalize larger numbers of change points.

Bayesian methods take a random sampling approach to finding good parameter sets. In these al-
gorithms, a sequence of location vectors and associated means are proposed. At each step a likeli-
hood score is evaluated and the proposed parameter set is accepted or rejected in accordance with the
Metropolis-Hastings algorithm. Here the penalty is encoded in prior information about the anticipated
probability that any given observation might be the location of a change point. Once a mathematical
model is specified, innovations come about through proposing more efficient methods of exploring the
parameter space. To our knowledge, the first Bayesian method for detecting multiple change points
with unknown number was proposed by Barry and Hartigan [29]. They called their mathematical
model the Product Partition Model (PPM), which encompasses all models that satisfy a product con-
dition on partitions (the change points) and an independence condition for the observations given the
partition. Barry and Hartigan construct a PPM in [30] that performs well in detecting sharp short-lived
changes in the means of independently normally distributed observations. The PPM specified in [30]
has been implemented as an R package bcp by Erdman et al. [31].

Within the particle tracking community, in 2018 Yin et al. [32] proposed using a likelihood ratio test
(LRT) to classify a time as a change point. To identify all the change points in a single trajectory, the
authors utilized a recursive binary segmentation algorithm. Such a method is feasible for the case of a
sequence of Normal random variables with change in mean parameter and common variance because
the log likelihood ratio is a well studied object and estimates of the critical value exist, see [33]. We
refer to this method as LRT in our analysis.

1.2. Comparison of our method to existing Bayesian methods

In this work, we construct a PPM that differs from [30] in the modeling of the segment means and
segment durations. Barry and Hartigan employ a hierarchical model for the segment means. Each
segment mean is assumed to be drawn from a Normal distribution that has common mean, p,, and
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variance 0'(2) /|| that is inversely proportional to the segment length, |I|. One of the objectives of this
work is to infer the parameters yy and 0. Such a model does well for sequences with one typical
behavior and short departures from this behavior. This model structure may not be well-suited for many
motor-cargo trajectories, which commonly involve a switch between two prolonged states. Moreover,
the model prescribes the shape for the segment mean distribution that does not allow for important
qualitative features that might exists in motor data, in particular multimodality. The method we propose
takes advantage of Bayesian sampling techniques but does impose a model on the velocities. For this
reason, we remove the hierarchical structure on the segment means and treat each segment velocity as
a distinct parameter with a uniform prior with bounds determined by existing knowledge about motor
speeds. Additionally, we modify the geometric distribution prior on the segment lengths used in [30]
to guard against short unrealistic segments that commonly arise from tracker errors.

In theory, one could implement a fully Bayesian non-parametric method to infer the change points,
velocities, and velocity distribution structure all at once. However, this approach is computationally
intractable for most desktop settings. In fact, despite efforts to minimize computational cost, the proto-
col we propose is itself computationally intensive. With these computational barriers in mind, we split
our inference method into multiple stages. In the first stage, we introduce a likelihood approximation,
utilizing the intuition underlying Bayes Factors, that reduces the dimension of the parameter space and
allows us to estimate the most likely number of change points. Then given a number of change points,
in the second stage, we use MCMC methods to sample from the posterior distribution of the position
of the change points and the segment velocities. We then construct an estimated velocity distribution
using samples from the stage 2 posterior distributions that are weighted by segment length. We refer
to the method as Number of Change points - Conditional Inference (NC-CI).

2. Experimental methods

2.1. Collection of in-vitro data

Kinesin-1 motors were bacterially expressed and purified by Ni column chromatography, as de-
scribed previously [20]. Dynein-dynactin-BicD2 (DDB) complexes were purified by adding bacteri-
ally expressed BicD2 to bovine brain lysate and purifying DDB complexes by column chromatography,
as described previously [21]. Both motors contained a C-terminal Green Fluorescent Protein (GFP).
Isolated kinesin-1 and DDB were visualized by attaching streptavidin-coated Quantum dots (Qdots) to
the motors through a biotinylated anti-GFP nanobody (GFP Binding Protein, or GBP). Kinesin-DDB
complexes were formed by attaching single-stranded DNA-functionalized GBP to each motor and con-
necting them through a complementary single-stranded oligonucleotide labeled with a Qdot. All of the
methods for forming complexes are described in Feng et al. [21]. The Qdot label has a diameter of
approximately 0.03um and estimated diffusivity of 10um? /s (based on Stokes-Einstein equation). Mo-
tors were tracked by visualizing the Qdots with Total Internal Reflection Fluorescence Microscopy on
a Nikon TE-2000 microscope, as previously described [21].

Transport by Kinesin-1 has been well studied since the 1990s. Kinesin-1 has been shown to be an
extremely processive motor taking approximately 100 steps, each of size ~ 0.008um, before detaching
from the microtubule. The unloaded velocity is roughly 100 steps/s, or 0.8 um/s [34, 35, 36], and the
motor is able to sustain loads of roughly 6 pN [15, 37, 38].

Due to this consistent processive behavior, we treated kinesin data as a control group, in which
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we did not expect to detect many change points. There were 34 paths within the Kinesin-1 data set,
in which observations were taken at 20 frames per second (fps) (A = 0.05s). By contrast, activated
dynein in a DDB complex has been shown to display diverse motitily behavior in vitro, including
processive runs, pauses, and diffusive behavior [19, 21, 39]. There were 42 tracked paths in this group
with observations taken 22 fps (A = 0.043s). In our analysis, we considered a subset of 41 DDB
motor-cargo paths with approximately linear microtubules.

2.1.1. Data for cargo simultaneously bound to one Kinsein-1 and one DDB motor

Less is known about how a single cargo is transported by a multimotor complex comprised of an-
tagonistic motors such as Kinesin-1 and DDB [10]. The last data set we studied consists of individual
Qdots being transported by both a Kinesin-1 and a DDB motor, referred to as Kin1-DDB. These com-
plexes have been assembled previously using DNA origami and shown to display tug-of-war behavior.
There were 101 tracked particles and observations are taken 9fps (A = 0.11s). Because our technique
is restricted to paths that are approximately linear, the excluded set of paths was larger for this data set
than the others. We included 92 out of 101 paths. It is not immediately clear why there are more “bent”
paths, but one likely explanation is that Kin1-DDB complexes may be more likely to switch between
different microtubules before detaching.

3. Statistical methods and algorithms

In this section, we present the mathematical model and algorithm used in this work. In Section 3.1
we present two models for the motor-cargo system, the first is a biophysical model based on Langevin
dynamics, and the second is an approximation to the biophysical model that yields explicit solutions
that can be used for statistical inference. In Section 3.2, we construct a Bayesian approach to estimating
the number of change points that exist within a path. This is the first step in our two-step method.
Then in Section 3.3, we provide the sampling algorithm to infer change point locations and segment
velocities for a given number of change points, which constitutes the second step of our method. We
give definitions of quantities of interest estimated from the outputs of the two proposed sampling
algorithms in Section 3.4 . Lastly, in Section 3.5 we describe the statistical methods used to clean and
pre-process the molecular motor data described in Section 2.

3.1. Mathematical models for motor cargo-system
3.1.1. Biophysical model

The motor-cargo process is intrinsically stochastic due to motor-stepping and the fluctuations of
the associated cargo. We assume that the various motor configuration states (for example, a single
kinesin motor transporting the cargo, or a single DDB motor, or a kinesin-DDB pair) can be modeled
effectively through assigning a mean stepping rate for each state. To this end, suppose there are k
changes in motor interactions at times T = (74, ..., T;) with the additional notational convention that
7o = 0. Within the jth time segment, 7;_; < ¢t < 7;, the motor configuration is characterized by a
distinct stepping rate, p;, which can be either a deterministic value, or drawn from some probability
distribution. We then model the motor step times within a segment as a Poisson arrival process with
rate parameter p;. Assuming that each motor step is of size J, it follows that the position of the motor
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configuration center, Z(t), is a scaled Poisson process,
(Z(t) — Z(5))/6 ~ Poisson((t - s)p;) fort; | <s<t<7; 3.1)

forj=1,...k.

As for the position of the cargo at time ¢, denoted X(¢), we consider a Langevin Stochastic Differ-
ential Equation (SDE) framework in the overdamped (zero mass) limit. To be specific, the position of
the cargo is governed by an Ornstein-Uhlenbeck process centered at Z(t):

dX(1) = —%(X(t) - Z(t)) dt + V2DaAw(),  X(0) = xo, (3.2)

where « is the spring constant of the tether, y is the viscous drag coefficient of the cargo, D = kgT'/y is
the diffusivity of the cargo in the absence of the tether (with kg7 being Boltzmann’s constant times the
fluid temperature), and W(¢) is a standard Brownian motion.

3.1.2. Statistical Model: Brownian motion with drift

In experimental settings, the position of the motor Z(#) is usually unknown. It is possible to estimate
motor positions from cargo observation, but since the motor model is phenomenological to begin with,
and since the quantities of interest are the various velocity states of the motor-cargo complex, we
introduce a simplification that is used primarily for statistical inference purposes. The statistical model
is expressed in terms of two non-physical parameters: the state velocity v;, and the state diffusivity
1/n. In this statistical model, the (observed) position of the cargo X(¢) with k changes in velocities is
described by Brownian motion with changes in drift parameter:

dX(1) = v;dr+ \1/ndW(@) fort, <t<7;,  X(O) = x. (3.3)

The drift parameter v; (j € {1,2,...,k + 1}) is the velocity of the cargo during the jth state (roughly
p;jo). The common diffusion parameter 1/7 is treated as a nuisance parameter (its exact value is not of
primary concern in this work) since it is an amalgamation of multiple sources of noise in the system:
fluctuations in motor-stepping, fluctuations of the cargo about the motor positions, and observation
error. This statistical model has the same form as a standard diffusion approximation for a Poisson
process [40] (which would have the form 1/57 = v;) but assuming this strict form would not take into
account other contributions to the noise.

Because single particle tracking data is collected at discrete times, we further assume that observa-
tions are made on a uniform grid of size A =t, —t,_; forn = 1,... N and that A is small enough so the
Jjth change point can be approximated by an observation time,

7j=ty, where M;:=[7;/A]>0 (3.4)

forall j =1,...,k, with the convention that 7y = 0 and 74,; = NA. Here M denotes the index of the jth
change whereas 7; denotes the time of the jth change. Under these assumptions for times ¢ € [ty;, fu;,, ),
the position of the observed cargo conditioned on the position of the jth change, Xj;, = X(AM)), is
given by

X, = X, + Vi (0 = yr) + N1/, (3.5)
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From Equation 3.5, the increment process of X, that is {8, = X, — }A(n}nNzl, has the following
distribution

E,~NvAy'A) ifri <t <71 (3.6)

forl1 < j<k+1,n=1,...N. Denoting a realization of the increment process by & = (¢4, ...,&y), our

statistical model assuming k change points has an approximate likelihood function

7 N/2 _n ktl M,

. — — . — . 2

Lu(£:6) = (—zﬂ A) exp (2 OIS ) (3.7)
Jj=l i=M;_1+1

where 0, = (71,...T, V1, ... Vks1,1) denotes the model parameters with k change points. We treat the

vector of change point times, T4, as model parameters rather than the vector of change point indices,
M, = (M,,...M,), since the latter is computable from 7, and A. We refer to the jth segment as
the increments between M;_; + 1 and M;. In the special case when all the change points occur at
observation times, Equation 3.7 is exact.

Under this approximation our change point problem for molecular motors can be written as a se-
quence of independent normal random variables with changes in mean parameter. From this point
forward, our inference technique assumes the statistical model with k changes,

My : & ~ Normal(v;A, ' A), for My <n < M, je(l,...k+1}, (3.8)

where M, = 0 and M;,; = N. The unknown parameters of interest are k, T, v, and 7.

3.2. Posterior approximation for selecting number of change points

In this section, we provide our approach to approximating the marginal posterior probability distri-
bution of the number of change points. We constructed a Metropolis-Hastings (MH) sampling algo-
rithm that utilizes a switch point process to infer the number of change points, k. In Lavielle et al. [41],
the switch point process was defined as an (N —1)-dimensional vector of independent Bernoulli random
variables, denoted r = (ry,...,ry_1), where r, = 1 indicates a change point occurred at time observa-
tion n with some probability that is known a priori. By contrast, we take A, the rate of changes among
states, to be unknown. So, the parameters to be inferred in our model are the segment mean velocities,
v, the common precision, 7, the switch point process, r|,, and the rate of switches, 1. Assuming inde-
pendence among the parameters 7, v, and r|,, our model results in a joint posterior distribution of the
form

C
pr,,v,n|&) = Lyk, (€ r,v,n)p(r,A,v,n)

el (3.9)
= Lux & rovon( [ | p0p)popptr1 0p(
j=1

where < denotes equality up to a constant, K, is the number of of change points in switch point process
r, Ly (§; r,v,n) is given in Equation 3.7, and p(e) denotes the prior distribution of unknown model
parameters. Estimating all of these parameters simultaneously is computationally prohibitive. As such
we have taken the approach to integrate over all possible segment velocities, weighted by their prior
distribution, and then we infer the remaining parameters r, A, and n. This marginalization of the
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velocities is similar to the prior-weighted averaging that takes place in computing Bayes factors for
model selection [48]. Under this model reduction strategy, the target distribution becomes

p(r,ﬂ,nlf)g( f f L (&1 v, PO - pOric v - dvic ot | paDpGl DPCY.  (3.10)
R R

We provide explicit forms of Equation 3.10 with our choices of prior distributions at the end of this
subsection.

Our target distribution includes the locations of the changepoints, the switch rate, and the common
precision. This is different from existing Bayesian methods. For the bcp algorithm of Barry & Hartigan
[30] and Erdman & Emerson [31], the posterior distribution is the joint distribution of the change
points (partitions) and the segment means, while the switch rate, 4 and the common variance (1/17)
are assumed to be known. In the work by Lavielle & Lebarbier [43], two posterior distributions are
considered; the switch point process and the joint distribution of the switch point process and segment
means. The former is obtained by integrating out the segment means. Both posterior distributions are
feasible because the switch rate and the common variance 1/n are estimated from the data and then
fixed.

3.2.1. Prior and hyper-prior selection

The following discussion concerns both model parameters to be inferred and hyperparameters that
define the associated prior distributions. To distinguish between them, the hyperparameters are under-
lined.

Our prior for the switch point process is motivated by interpreting the switch point process, r(¢), as a
continuous-time counting process where change points occur with rate A, r(f) ~ Poisson(Ar). However,
the times between events in a Poisson process can be arbitrarily small and this is inconsistent with
the idea that biophysical states must persist for some period of time to be meaningful. We therefore
introduced a minimum length for allowable segment durations, which is at least d, observations. This
means that the posterior distribution of switch point processes is restricted to the set of all switch point
processes that have all change points separated by at least d, steps. We denote this set Ty, . We refer
to d, as the minimum segment duration and we select it according to the following reasoning. Suppose
a molecular motor needs to step at least ten times in order for the segment to have significance and
the motor is assumed to step on average once every 0.01 seconds. Then d_would be chosen to be
d, =[(10*0.01)/A], where A is the time between observations.

Under this modeling assumption, the prior distribution on the switch point process is

(1 — e ™)Kr(e ™) ifre Ty,

pr;A,d,) = ) (3.11)
otherwise
where
N-1
K, = Tn
n=1
Kl (3.12)
A, = max{0, M; — (M;_y + 1) = 2(d, — D},

=1

M,.={n:r,=1}U{0,N},

~.
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and we adopt the convention that M, can be written as the ordered set M, = (My, M, ..., Mg.,1). Note
that when d, = 1, then A, = (N — 1) — K, which agrees with the prior when the switch point process is
a discrete approximation of a Poisson process.
We capture uncertainty in the switch point rate, A, by placing a prior distribution on A. Specifically,
we assume that
A ~ Gamma(a,, b,) (3.13)

where a, and b, are hyper-parameters chosen to express prior belief about the rate at which change
points occur. In the inference below, we set a, = (3/10) = 50 and b, = 50, so on average three changes
occur within ten seconds.
We place an informative, compact prior on the segment speeds, v; for j = 1,...k + 1. Specifically,
we set
vj ~ Uniform([-v_ ,v 1) forj=1,...k+1 (3.14)

—max’ —max

where the hyper-parameter v, is the maximum speed a motor is believed to be able to travel within
one time unit. Below we set this hyperparameter to be v = 2um/s. One advantage of such a
prior is that we can obtain an explicit analytical expression for the marginal posterior distribution of
(r,A,n). There is also a conjugate prior for v;, the Normal distribution, and it also yields an explicit
analytical expression for p(r, 4,n|€&). However, when we used the non-compact prior for inference
on experimental data, the result was an unrealistic number of inferred change points. This result is
discussed in Section 5.1.

Because the common precision parameter 1 is phenomenological and there is little biophysical
guidance to set a reasonable prior, we used an empirical prior. To this end, we constructed a Gamma
prior from the uniformly minimum variance unbiased (UMVU) estimator of 7 assuming no change
points,

n ~ Gamma(fymy, * 0.15,0.1), (3.15)
where
. A
numvu - Var(f) £l
and the values 0.15 and 0.1 were chosen so that expected common precision was slightly larger (1.5x)

than the estimated value assuming no change points.
We provide a list of all the hyper-parameters for the sampling algorithm in Table 1.

(3.16)

3.2.2. Target distribution for unknown number of change points

Before giving the explicit form of the posterior distribution for the given choices of priors, we
introduce the following notation. The marginal likelihood of observing a vector & assuming uniform
priors on the segment velocities is

1S (27A\ VP 270\ F 7
uern=(g ) () () ool -zison)

Pl ) ol s ) of o ),
j=1 AMj—M;) (MAM; — M;_,))~'/? (MAM; — M_1))~1/2 ’ .
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where K, and M, are defined in Equation 3.12,

M; K, M
- 1 -
é‘:(1‘/11'*1’1"1/'] = W Z Ens Sn(M,) = Z Z (fn - {':(Mj—lan])z’ (3.18)
J I =My 41 J=1 n=M;_+1

and ®(z) is the cumulative distribution function of a standard normal random variable. The derivation
of Equation 3.17 is provided in Appendix 7.1.
When r € Ty, , the model decisions above lead to the following posterior distribution

p(r,A,n1§) ( fR fR Ly, (& r,V,ﬂ)p(w)---p(VK,+1)dV1--.dVK,+1) pmp(r{)p(d)

< f - - - - — —
= Ly, (& r,m) x 01 5hma=l o005 (] gm A0 K (pmA8)Ar 5 g1 pmbu

(3.19)

where K, and A, are given in Equation 3.12. When r ¢ Ty, then p(r,4,n7[§) = 0.

3.2.3. Initialization of inferred model parameters

In our analysis, both A and  were randomly generated from their respective prior distributions. Due
to the complex parameter landscape, we took more care in initializing the switch point process. To do
this, we first sampled the number of change points, &y, from a Poisson distribution with parameter
%Tﬁnal, where Ty, 1s the duration of the tracked particle. Then assuming there are ky, change points,
we initialized the change points to those estimates obtained by the existing change point detection
method of constructing a piecewise-linear approximation to the data and minimizing the RSS.

3.2.4. Sampling the unknown model parameters

For the Metropolis-Hastings (MH) sampling algorithm, we used different strategies for the different
parameters. In this section we denote the proposed parameter value and the current parameter value by
a superscript ‘prop’ and ‘cur’, respectively.

For the change point rate, A, we employed an independence sampler, i.e., a proposal function that
does not depend on the current value:

Ga(APPIAT) = g (APP) ~ Gamma(a,, . lzpmp), (3.20)
where a___,b__ are hyper-parameters.

=prop’ Zprop
For the precision parameter, we used a Normal random walk proposal function:

Noo) (3.21)

4y (1" In™") ~ Normal (™"
where gf] is a tuning parameter. Note that a negative proposal will be rejected with probability one
because it is outside the support of the prior on 7.

For the switch point process, we adopted the proposal function created by Green [44] and used in
[41, 43]. The proposal function takes its values on the set {0, 1}¥=%~!, where N is number of observa-
tions. At each step, one of three types of proposals might be made: (1) an independent switch point
process; (2) a process generated by the creation or extinction of one of the change points; or (3) a loca-
tion shift of a single change point. These proposal types occur with probability, u,, u,, and 1 —u, — u,,
respectively. Details can be found in the SI Section 1. We provide a pseudo-code for our algorithm in
SI Algorithm 1.
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Table 1. Step 1 algorithm hyperparameters. In the following inference the hyperparameters
ared, = 5,u, =0.25,u, = 0.25, a, = (3/10) * 50, é/l =50, = 2.5,,§prop = 10 and max

—prop
velocity, v = 2um/s.

Model ) Prior Proposal Kernel
Prior Proposal kernel

Parameter Hyperparameters Parameters

V; Uniform  v: maximum allowed velocity - -
a = 0.15 = ﬁumvu’
n Gamma g B =01 Normal random walk  var = (flumya/4)?
=1

r Eq. 3.11 d,: minimum segment duration See [43] u, u,
A Gamma @, B, Independent Gamma @rop> Porop

3.2.5. Output of the algorithm for unknown number of change points

Our proposed MH sampler results in posterior samples of the switch point process, the switch point
rate, and the common precision. We use the posterior samples to approximate the posterior distribution
of the total number of change points. Suppose there are M posterior samples and let the number of

change points in the mth switch point configuration be given by K™ = YV - ™ then by ergodic
theorem

n=

M
%Z 1K™ = k) 35 P(K, = k| &) (3.22)
m=1

as M goes to infinity. Our posterior estimate for the number of change points is taken as the number
with the highest posterior probability, denoted kyp.

3.3. Bayesian inference for model parameters given a number of change points

In this section, we describe the MCMC sampling algorithm used to infer the change point times,
the segment velocities, and the common precision when the number of change points, k, is known.
Our model, Equation 3.6, naturally lends itself to the methodology proposed in [45, 46] to infer 6, =
(Tx, Vir1,17). Namely, our assumption that the change points occurs at an observation time, or can
be approximated by an observation time, yields conditionally independent segments and Normal data
allows us to exploit the form of the full conditional posterior distributions through a Gibbs sampler for
the following target distribution:

P Ve s ) E Ly k(& T Vist, 1P (T Ves1, 1) (3.23)

where p(ty, Vi41, 1) is the joint prior distribution of the model parameters and = indicates equality up
to a constant. Because we assume a model with k£ changes, we drop the subscript £ and k + 1 on 7 and
Vi+1, respectively in the following section.

3.3.1. Prior selection

Forv;for j =1,...k+ 1, we employ the same priors as described in Section 3.2.1, Equation 3.14.
We still model our prior belief in the common precision as a Gamma random variable as in Step 1, but
update the hyper-parameters to reflect the information learned in Step 1. Let jy,», denote the maximum
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a posterior (MAP) estimator of 17 obtained from the posterior samples of Step 1, then the prior for 77 is
given by
n-~ Gamma(0.1 = ﬁMARla 0.1). (3.24)

These choices in hyper-parameters result in Gamma prior with large spread and mean at the MAP
estimator from Step 1.
Recall, in Step 1 we impose that each segment must have at least d observations, so that the change
point times satisfy
C_iA <t < (M2 +é— l)A
Moy +d)A <tj < (Mjp +d - 1A (3.25)
(M1 + A <t < (N —d + DA

where M; = |1;/A] is the change point index. To keep consistent between steps, we use a uniform
prior constrained by the inequalities given in Equation 3.25 for the change point times. By choosing
d = 1, we retrieve the uniform (non-informative) prior used in [46].

3.3.2. Sampling the unknown model parameters

To obtain posterior samples for v we perform component-wise sampling of v; [{£,n, M;_;, M} for
Jj=1,...k+ 1. For the jth segment velocity, we use a normal random walk to propose a new value of
Vi,

g7 P VS ~ Normal (v}, €2) (3.26)
where € is a tuning parameter. In the below inference, we used the value of €, = 1/2.

For the precision parameter, our use of a conjugate prior enables direct sampling from the condi-

tional posterior distribution,

k

. N 1
1 ligvan ~ Gamma(O.l # fyaps + =, 0.1 + 0 Z

M;
- > G- vjA)Z). (3.27)
=M; +1

j=1i

We obtain a sample of T by component-wise sampling, 7;[{v;_1,v;,n,7j-1,7Tj1} for j = 1,...k
using the following proposal function for 7;, g(e|75"™),

g ™) ~ Uniform(rs"™ — e, 75" +¢)) forj=1,...k, (3.28)

where €_is a tuning parameter. In the inference below, we set € = (1 + k)= x N1 * A, where N is the
path length. We note that our proposed values of the change point indices are continuous rather than
discrete as to allow for better estimation of 7.

We assessed the convergence of this sampling algorithm to the target distribution using the potential
scale reduction, R, as given in [47] and the effective number of independent samples, 7i.¢, as defined in
[42]. One concludes that there is evidence for convergence if all inferred model parameters satisfy the
two constraints

R<1.1 and fig > 5 x (# chains). (3.29)

All the above hyper-parameters and tuning parameters can be found in Table 2 and a pseudo code for
the above sampling algorithm is described in Algorithm SI-2. For brevity in Algorithm SI-2, we denote
the posterior shape and rate of 7 given in Equations 3.27 by a(€, v, M), and (&, v, M), respectively.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8962—-8996.



8975

Table 2. Step 2 algorithm hyperparameters. In the following inference the hyperparameters
aresettod = 5andy,_ = 2um/s are considered. The parameters of the proposal distribution
aresettoe, = 1/2um/sand e_= [(1 +k)~2%N7*A, where k is the assumed number of change
points and N is the path length.

Model . Prior Proposal Kernel
Prior Proposal kernel
parameter Hyperparameters Parameters
Vj Uniform v: maximum allowed velocity =~ Normal random walk gi
T; Eq. 3.25  d: minimum state duration ~ Uniform random walk €,
a, = 0.1 % fyap, : .
n Gamma - B = OZMAP’I Gibbs sampling -

—V

3.4. Posterior estimates for quantities of interest

As defined in [10], we use the term run length to denote “distance a molecular motor moves before
detaching from the filament and diffusing away.” The run time is the time the molecular motor remains
on the filament before detaching and diffusing away. When the cargo displays multiple physical states,
we define the jth segment as the time between the 7;_; and 7; change point. We define a segment
duration to be the time the motor stays in the jth state 7; — 7;_;, and segment speed to be the average
speed of the motor during the segment.

3.4.1. Posterior point estimates

We used a maximum a posteriori (MAP) estimator for our point estimates of the number of change
points, the change points, the segment velocities, and common precision. To estimate the number of
change points, we calculated an empirical marginal distribution from posterior distribution samples as
described in Equation 3.22. The posterior samples were obtained by merging four independent runs of
Step 1 samplers, each for 200,000 iterations with the first half discarded as burn-in and then thinned
to every 100th sample. Then the posterior point estimate for the number of change points was set
to the number of change points with the highest posterior probability, denoted k. For the segment
velocities, change points, and common precision, we set the posterior point estimates to the respective
component of the MAP estimate over the full posterior distribution, Equation 3.23. Posterior quantities
of the full distributions were obtained using the posterior samples of four independent runs of the Step
2 samplers, each of 40,000 iterations with the first half discarded and thinned to every 50th sample.

3.4.2. Velocity distributions accounting for segment duration

To examine the heterogeneity of velocities within families of molecular motors and across families
of molecular motors, we construct and compare posterior velocity distributions that account for the
amount of time the motor spends in a given segment. For a given data set the velocity distribution is
constructed as follows. For each tracked path, we set the duration of each segment using the posterior
point estimate described in Section 3.4.1 for the change point times. Then, we draw posterior samples
of the segment velocities, where the number of samples drawn equals the number of observations
within each segment, i.e. if a path remains in the jth segment for ten observations, we draw ten samples
from the posterior distribution of the jth velocity. Finally, to obtain the velocity distribution for the
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given data set, we pool together the posterior velocity samples from the previous step over all paths in
the data set. Because we do not the polarity of the microtubules in practice, we take the absolute value
of the velocity samples and construct speed distributions.

3.4.3. Quantifying transitions between biological states

In order to quantify switches among biophysical states, we defined three categories: Initial, Paused,
and Reversed, then assigned each segment to one of these categories. Then, using these assignments,
we estimated the 1-step transition probabilities. We defined the three biological states in terms of the
estimated segment velocity and the distance traveled in the segment, referred to as segment distance.
Without the inclusion of the segment distance, a segment that has a slow but processive motor-cargo
complex can be misclassified as paused. Because we did not have information concerning the direction
of the plus- and minus- ends of the MT, we considered the initial direction as given by sign(¥,), where
Vo 1s the MAP estimate of the first segment velocity that is considered processive, and the reverse
direction as the opposing sign. The three state definitions are for segment j are:

e Initial: movement in the initial direction (sign(f/j) = sign(¥y) and |f/j| > 0.1) or (sign(f/j) =

sign(Vy) and |f/{,~| < 0.1 and segment distance > 0.4um),

e Paused: no directed movement, ( % j| < 0.1 and segment distance < O.4,um),

e Reversed: movement in the direction opposite of the initial segment, (sign(v}) # sign(vp) and

Vil > 0.1) or (sign(ﬁj) # sign(v)) and|f/j| < 0.1 and segment distance > 0.4;1111).

The threshold values 0.1um/s and 0.4um were chosen based on an informal analysis of segment du-
rations and velocities. A scatter plot for each of the data sets is shown in Figure SI-1. We found that
for the single motor data sets, there were no segments with a velocity of less than 0.1um/s that never-
theless had an overall displacement of at least 0.4um. However, in the two-motor data set, there were
multiple such segments, and to the eye, these appeared to show consistent slow movement over a long
period of time. Because the behavior is not a statistical artifact, we included this type as an “active”
segment. We conducted our analysis using 0.2um/s and 0.5um and all reported qualitative conclusions
held for that choice as well.

3.5. Pre-processing of the molecular motor data

Before applying the described statistical methods, we pre-processed the data as follows.

3.5.1. Change of coordinates to longitudinal position

The model we proposed for the position of the cargo in Section 3.1.2 and used in our Bayesian
inference method is one dimensional, whereas the experimental cargo data is two dimensional, carte-
sian coordinates. Because we are interested in the position of cargo along (parallel to) the MT, we
transformed the x, y-position data into longitudinal (motion parallel to the MT) position as follows.
We assume the variation in the x- and y-directions are independent and identically distributed, and
used orthogonal least squares regression to approximate the position of the MT. Then we consider the
dynamics of the cargo in terms of its projection along the length of the MT.
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To be specific, for orthogonal regression, the sum of square residuals is minimized to obtain the
coefficients for the line of best fit, ,30 and ﬁ 1, and the predicted x-position, X,:

2 2
Syy = Syx + \/(syy — S)F + 4sxy

Bo = Z5m

Bi=y-pix

. B A h ~

X=x w —Bo—Pr1x,) forn=1,...N,

nt o
2
pr+1

where ¥, s, is the sample mean and sample standard deviation of x, respectively, ¥, s,, is the sample
mean and sample standard deviation of y, respectively, and s,, is the sample covariance of x and y. The
predicted y-positions are ¥, = Bo + ﬁlfcn forn=1,...N. Then, forn = 1,... N, we rotate the predicted
positions (%,, y,) onto the x-axis and set the longitudinal position to the rotated x-position

X! = cos(B)(&, — 1) — sinB) P — $1)

where —f is the angle between the x-axis and the vector from the origin to (%, — %;,9, — 91). For
those tracked paths that appear to be stepping on a non-linear microtubule we remove the path from
the following analysis.

This process is depicted in the the left and center frame of Figure 2. In the left frame the observed
trajectory of a cargo tethered to a Kinesin1-DDB motor complex is shown in black and the estimated
position of the microtubule is shown in purple. The black curve in the center frame represents the
longitudinal position of the trajectory when projected onto the microtubule.

3.5.2. Handling missing data points

An assumption in our inference method that is often violated in practice is observation at uniform
time increments. One such cause is that the tagged cargo becomes too dim to track for a couple of
frames due to a change in the z-position. We opt to fill in the missing data points using the longitudinal
position for a maximum of twenty consecutive missed points, although the maximum number of con-
secutive missed points for the data presented above in Section 2 was eight. If more than the maximum
allowed number of consecutive points are missing, we keep the trajectory up until the period of max
missed number of observations.

In the case of r sequential missing positions we estimate the missing observations by the uniformly
spaced positions between the previous and last observed position with some noise. For instance, if the
longitudinal position at the (n + 1)th time observation, 7,.;, to the (n + r)th time observation, ¢, , are
missing, we estimate Xllm. fori=1,...rby

. i
X=X+ m(XLm ~-xh+ez (3.30)
where Z ~ Normal(0, 1) and € is chosen so qualitatively the missing points looks similar to the rest of
the path. In the below analysis, we set €2 = var(X ”) /10, which in some cases is an underestimation of

the true variance. This can potentially lead to a bias in the over-estimation of the length of states.
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We display an example of this procedure in the center frame of Figure 2. The black line is an
observed longitudinal trajectory of a tracked cargo tethered by a Kinesin1-DDB motor complex and
the three red circles correspond to estimated missing observations as given by Equation 3.30. In the
right frame of Figure 2, we display the increment process of the longitudinal trajectory in black and
mark the increments that have been calculated with estimated missing observations with red circles.

4. Numerical methods for validation of the protocol

In this section, we provide an experimental design for validating inference methods for the number
of change points in molecular motor data. This entails constructing simulated data sets of the observed
cargo data in which the number of change points is known. First in Section 4.1, we describe the
simulation technique for generating 1D molecular motor and cargo processes from the biophysical
model, Equations 3.1 and 3.2. Section 4.2 gives a model for the experimental cargo data that arises
from the data collection method. Lastly, Section 4.3 outlines and describes the construction of four
simulated data sets that vary in complexity.

4.1. Simulating from the bio-physical model

We simulated motor-cargo processed from the biophysical model as follows. First, we obtained
the motor paths using the Gillespie algorithm where the rate of the motor stepping changes at times
T = (71,72, ...). The simulation time grid for the motor positions, denoted {s,},-1, 1s set to the ordered
union of the uniform time mesh of size Ay, and the change times 7. Defining the time grid in this
manner ensures that Z(¢) only jumps at the right endpoint of {s,},-;. After sampling the motor positions,
the position of the cargo is determined for time s, using the exact conditional solution to Equation 3.2

K

L _ _
=e ,y(sn Sn—l)Xn_l + (1 —e ,y(sn Sn—l))Zn_l

X(sn) Z(su1)X(su1)

+ V2D e_;(s"_s"’l)dW(u)

Sn—1

where the stochastic term is a normal random variable and using Ito’s Isometry

K[y

The output of the algorithm is the trajectory of the motor position and the cargo position with respect
to the simulation time grid {s,},-;. Pseudo code for simulating the motor-cargo trajectory is given in
Algorithm SI-3.

In Figure 3(a),(b), we display a simulated motor (black) and cargo (green) process in which the
stepping rate of the motor-cargo complex changes rate twice on a short time scale and long time scale,
respectively. To generate the simulation in Figure 3, the simulation time grid was taken to be every
Agim = 1075, and the model parameters were set to

S —Ks—s_l D —Es—s_l
5D oy )dW(u) ~ Normal(O,T(l _ o 2yl ))) 4.1

Sn—1

Motor Parameters: p = (100, 30, 100)s7, Ostep = 0.008um,

5 4.2)
Cargo Parameters: «/y = 1000, D = 0.012um"/s.

Alternatively, the average speed of the motor,|v| can be specified rather than the stepping rate, in which
the stepping rate is computed as p =[v| /Ogep.
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Simulation from biophysical model
(a) First 0.20 seconds (b) Full simulated motor and cargo (c) Full observed cargo

0.100-
— Motor

— Simulated cargo
— Observed cargo
— Change point

0.075-

0.050 -

Position (um)
Position (um)
Position (um)

0.025-

0.000-
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Time (seconds) Time (seconds) Time (seconds)

Figure 3. Simulated cargo-motor system from the biophysical model. (a): Simulated motor
and cargo process governed by the biophysical model presented in Section 3.1.1, on a short
time scale of 0.2 seconds. The motor and simulated cargo position are colored in black,
and green, respectively. (b): The same simulated paths as in (a) but over the whole simu-
lation time window of 10 second. The motors change stepping rate twice, marked by the
dashed blue lines. (c): The trajectory of the observable cargo over the whole simulation time
window. Observations are assumed to occur once per every 0.05s.

4.2. Model for the observational error

We introduce a model for the experimental cargo data that arises from the data collection method.
Position data of a tagged particle is collected at discrete time increments depend on the frame rate of the
camera. Let A denote the time between observations, and {tn}fquo be the collection of N + 1 observation
times. For simplicity, we assume that observations are made on a uniform time grid, ¢, = nA.

Due to limited spatial precision, the collected time-series data captures the position of the cargo
plus some observational noise. Under the assumption that the observational error is independent at
each measurement and normally distributed, our model for the observed process is given by

X, = X(t,) + o€, (4.3)

where X(z,) is the true position of the cargo, o is the standard deviation of the observational error, and
€,forn =0,...N are i.i.d standard normal random variables.

The observed cargo process is obtained from the simulated cargo position, described in Section
4.1, by subsampling the simulated cargo position at times {z,}"_, and adding Normal noise to each
observation as given in Equation 4.3. For the simulated motor-cargo process in Figure 3(b) we depict
the observed cargo process in Figure 3(c), where observations at taken uniformly every 0.05 seconds

(A =0.05) and o = 0.003um.

4.3. Numerical experiment scenarios

To construct a simulated data set that emulates transport by multimotor complex Kinl-DDB, we
work under the assumption that each simulated path is from the biophysical model, Equation 3.2, but
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the observed data is from Equation 4.3. We assume that a change in motor interaction does not result
in a switch of direction, but rather the motor’s average velocity changes between a slow velocity, Vgow,
distribution and fast velocity, v, distribution. Equivalently, using the relation: A =[v| /dgep, the motor
changes between a distribution of low and high stepping rate, respectively. We further assume the
number of changes follows a Poisson distribution.

In each simulation study, the strength of the change by altering the length of each segment or
the relative difference in the segment velocities. For the former, the change points are either uniformly
spaced in time so all segment durations are equal, or ordered uniformly distributed random variables so
each segment duration is random. As for the latter, the amount of overlap, negligible or non-negligible,
between the fast and slow distribution. The resulting four scenarios are:

e Case 1: change points are uniformly spaced and the distributions for the slow and fast velocities
overlap on sets of negligible probability,

e Case 2: change points are uniformly spaced and the distributions for the slow and fast velocities
are overlapping,

e Case 3: change points are uniformly distributed and the distributions for the slow and fast veloc-
ities overlap on sets of negligible probability,

e Case 4: change points are uniformly distributed and the distributions for the slow and fast veloc-
ities are overlapping.

Case 1 produces paths with the strongest change signal since each segment length is controlled
and large velocity changes are probable, whereas Case 4 contains paths with the weakest signal since
segments can be shorter than the frame rate and small velocity changes are more probable. Both Case
2 and 3 muddle change point detection, but ultimately the short segment durations (Case 3) makes
changes more difficult to detect. We note there was no restriction that segments must be longer than
the minimum segment cutoff d, that appears in our NC-CI method. In Section 5.2, we report on the
performance of the four methods in two ways. First, we looked at the accuracy of all methods directly
on the simulated paths regardless of segment lengths. We do not expect that any of the methods
should perform well in identifying extremely short segments. So, in the next analysis, we restricted
our study to paths whose segments are all “meaningfully long” in the sense that they are longer than d,.
observations.

4.3.1. Selecting biological parameters for numerical experiments
For each case, we simulated 200 paths from Equation 4.3 with experimental parameters
A =0.05s, Thua = 10's, and o = 0.003um,
and physical parameters,
Sstep = 0.008 um, D = 0.01 um?/s, and «/y = 1000.

The remaining parameters: number of change points, time of change points and segment stepping rates
varied from path to path.

For a single path, we first sampled the number of change points from Poisson(4 = 3). Then for
Case 1 and 2 change points were uniformly spaced, while for Case 3 and 4 the change points were
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set to an ordered sample from Uniform((0, T,a)). Lastly, we obtained the stepping rate for each
segment through sampling the segment velocities and using the relation A = v/dcp. For each segment
velocity, we alternated drawing the velocity from two folded normal distributions with Case 1 and Case
3 parameters:

Vaow ~ folded Normal(0.1,0.05%)  vgy ~ folded Normal(0.6,0.1%) “4.4)
and Case 2 and Case 4 parameters:

Vsiow ~ folded Normal(0.1,0.1%)  vg ~ folded Normal(0.6, 0.2%), (4.5)
as displayed in Figure SI-3.

4.3.2. Selecting algorithm parameter for numerical experiments

We considered our proposed algorithm, NC-CI, along with the three other algorithms introduced
in Section 1.1: (1) the PPM specified in [30] that has been implemented in R, referred to as BCP, (2)
Bai and Perron’s dynamic programming algorithm minimizing the RSS, referred to as RSS, and (3) the
likelihood ratio test method proposed by [32], referred to as LRT. For all four simulation studies, the
hyperparameters for each considered method were kept the same.

For our proposed sampling scheme, the hyper-parameters were set to those given in the caption
of Table 1. For each path we ran two independent Step 1 samplers with different initial values, each
for 200,000 iterations, discarding the first 100,000 samples as the burn-in period, and keeping every
100th sample. The remaining posterior samples from each sampler were merged together and used for
inference.

For BCP, there are two model parameters that need to be selected, the maximum probability of
change occurring at an observation, and the maximum signal to noise ratio. While the default value
for both parameters is 0.2, which has been shown to work well in general settings, [30, 49], we chose
problem-specific values that increased the method’s accuracy. For the probability of a changepoint
parameter, we used the form that emerges from modeling the switches as a Poisson process. We set the
assumed the rate of changes to 4/10, which yields a hyper-parameter value of 1 — e=*/192 Ag for the
maximum signal to noise ratio, we set the variance of the means in the PPM model to (1/2)?, which is
consistent with when the Normal priors were tried in the NC-CI. We approximated the measurement
variance by the assessing the residual error when fitting a spline to the time-longitudinal data. Note
the latter results in an empirical prior rather than a true Bayesian prior. Such hyper-parameters are
not necessarily optimal, but express our knowledge of the system and perform better then the default
value. The default priors resulted in accuracy of 21.0, 18.5, 5.5, and 3.5% in the Case 1, 2, 3, and 4
respectively. We ran the sampler for a total of 30,000, the first 10,000 as the burn-in period and the
latter 20,000 as posterior samples.

As for the RSS method, we modeled the increment process as an intercept-only linear model with
multiple structural changes and set the minimum segment length to 5, which is consistent with the
hyper-parameter for the NC-CI method. For the LRT method, we approximated the critical value using
[, see [33, 32] value for @ = 0.05 .
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5. Results

In this section, we report our findings on change point detection on both simulated and experimen-
tal molecular motor data. In Section 5.1 we present the results on change point detection when the
conjugate prior is placed on segment velocities that led us to use the compact uniform priors in NC-CI.
Section 5.2 compares the accuracy of four change point detection methods on the simulated case stud-
ies presented in Section 4.3. The results of our prososed NC-CI on the experimental data discussed in
Section 2 is given in Section 5.3. To run our proposed method on both the simulated and real data, the
High Performance Computing system at Tulane University was used.

5.1. Compact prior for segment velocities is necessary for successful model selection

A natural alternative prior for each segment velocity is a Normal distribution because it is a conju-
gate prior for our choice in likelihood. We encode prior knowledge about motor proteins into this prior
by setting the prior mean to 0 and standard deviation to 1/2 so that a motor speed less or equal 1 um/s
occurs with 95% probability. When placing such unbounded prior on each of the segment velocities,
and enforcing each segment had a minimum of d,_ = 5 observations, we found most paths had a MAP
estimate for the number change points near or at the upper bound on the number of change points. For
example, within the DDB data set, there was a tracked cargo path with 283 observations. Visually, it
has two apparent change points, but the method with normal (and hence, unbounded) prior estimated it
to have 47 change points, shown in Figure SI-4. Such an estimate corresponds to each segment either
be 6 observations (0.258 seconds) or 7 observations long (0.301 seconds). By contrast, the same DDB
path was estimated to have 2 change points with the compact uniform prior, Figure SI-5.

In Figure 4, top row, for all three data sets we display the empirical distribution of the MAP esti-
mator for the number of change points with a normal prior on the segment velocities. For comparison
when a uniform prior on segment velocities is assumed see the first column in Figure 6. In the mid-
dle row of Figure 4 (left to right), we display the path length versus MAP estimate for the number of
change point for each path in Kinesin-1, DDB, and Kinesin1-DDB data set, respectively. Within all
data sets, a linear trend emerges between the number of change point estimate and the path length. The
linear trend has a slope of roughly 6.3 for the Kin1 data set, 5.8 for the DDB data set, and 5.1 for the
Kinl-DDB set, indicating each segment is closer to the minimum number of observations required by
our choice in hyper-parameter, d, = 5. These trends do not appear when a compact uniform prior is
placed on the segment velocities. See the bottom row of Figure 4 for number of observations versus
number of change points for each three data sets.

A possible explanation is that a large likelihood value arising from overfitting the data with many
change points compensates for the low prior probability the Normal prior assigns to unrealistic segment
speeds. This does not occur when using the uniform prior because it has finite support. We also
conducted some preliminary analysis on simulated data assuming a Normal prior with mean zero and
standard deviation 1/2 that we do not report here, which also resulted significant over-estimation.

5.2. Comparison of methods

We validated the first stage of our proposed method by comparing its accuracy with that obtained
from using the three existing methods BCP, RSS, and LRT. First, we considered the accuracy of the
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Bayesian estimate when normal prior on segment velocities
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Figure 4. Unbounded (Normal) prior on segment velocities result in overestimation of num-
ber of change point. Top row: For Normal prior, the frequency of the MAP estimator for the
number of change points within the Kinesinl, DDB, and Kinesin1-DDB data set from left to
right, respectively. Middle, bottom row: For each tracked path, the number of observations
versus the estimate for the number of change points (MAP) within the Kinesinl, DDB, and
Kinesin1-DDB data set (left to right) when a Normal prior (middle row) and uniform prior
(bottom row) is assumed. The black dashed line denotes the maximum number of allowed
change points, which is equal to the number of observations/5).

four methods on the simulated molecular motor datasets described in Section 4.3. Then, we compared
the estimates for the number of change points using the NC-CI and the BCP method on the three
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molecular motor data sets described in Section 2. The hyper-parameters of the alternative methods are
given in Section 4.3.1.

5.2.1. Results on simulated data sets

We estimated the accuracy of a method, with respect to the number of change points, as the fraction
of paths with estimator for the number of change points equal to the true number of change points. For
the Bayesian methods, NC-CI and BCP, the estimator is taken to be the MAP. Confidence intervals for
the accuracy estimates are constructed assuming a normal approximation to the binomial distribution.
We note that the analysis of the simulated data sets for the three existing methods can be run on a
laptop, whereas the analysis by our proposed method is more computationally intensive and was run
on a Tulane University’s high power computing system.

For all four simulation studies, the NC-CI method had the highest accuracy, followed by the LRT
method. Within increasing complexity of the the simulation study, less can be concluded about the
significance of the improved accuracy when using the NC-CI method because the confidence intervals
for all methods overlap. In Table 3, we give the accuracy and the 95% confidence intervals for the
point estimate for each case and all four methods. A graphical display of the accuracy of each method
is shown in Figure 5. Each frame displays the distribution of the residual for the number of change
points, k- kywe With the residual value on the x-axis, the relative frequency on the y-axis, and the color
denoting the method.

Table 3. For each method and each case study consisting of 200 simulated paths, we give
the accuracy of identifying the true number of change points along with 95% confidence
interval. The accuracy fraction is estimated by the fraction of simulated paths with number
of change points correctly estimated and confidence interval are obtained assuming a normal
approximation to the binomial distribution.

9 k = kyye for all simulated paths

Case 1
NC-CI 0.90, [0.85, 0.94]
BCP 0.80, [0.74, 0.86]

LRT (Copos = 1) 0.80, [0.74 ,0.86]
RSS 0.77,10.71, 0.83]

Case 2
0.75,[0.68, 0.81]
0.70, [0.63, 0.76]
0.70, [0.63 ,0.76]
0.61, [0.54, 0.68]

Case 3
0.61, [0.54, 0.67]
0.52, [0.45, 0.59]
0.54, [0.46 ,0.61]
0.53, [0.45, 0.60]

Case 4
0.57, [0.50, 0.64]
0.48, [0.40, 0.55]
0.55,[0.48, 0.62]
0.49, [0.42, 0.56]

As the change point signal becomes harder to detect, going from Case 1 to Case 4, the accuracy of
estimating the number of change points k decreases for all methods but the LRT, which has a similar
accuracy for the hardest two cases, Case 3 and 4. For all methods, the frequency of under-estimation
systematically increasing as to be expected due to weaker change point signals. This can be seen
qualitatively in Figure 5, where the left tail of the residual distribution of the number of change points
for all methods, grows as the case number increases.

Furthermore, for our choices in overlap between the fast and slow velocity distributions having
uniformly distributed segment durations has a more negative impact on change point detection. This
can be seen by comparing the residual distributions of each method across columns in Figure 5, as
compared to those across the rows in Figure 5. There is a larger decrease in accuracy going from
Case 1 to Case 3 as compared to Case 1 to Case 2, and going from Case 2 to Case 4 as compared
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Distribution of residual for number of change points
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Figure 5. The distribution of the residual for the number of change points for the four sim-
ulation scenarios. Within a frame, the residual value is on the x-axis, the relative frequency
of the residual is on the y-axis, and the method denoted by the color. The top (bottom) row
consists of the cases with uniformly spaced (distributed) change points. The left (right) col-
umn consist of the cases with fast and slow velocity distributions that overlap with negligible
(significant) probability.

to Case 3 to Case 4. Note the cases in the top row of Figure 5 have uniformly spaced change points
whereas the bottom row has uniformly distributed change points, and the cases in the left column
have negligibly overlapping velocity distributions, as opposed to the cases in the right column have
overlapping velocity distributions.
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5.2.2. Analysis restricted to subset of simulated paths with ‘meaningful’ changes

The success of the NC-CI method is particularly strong when we consider only those paths whose
segments are biophysically meaningful, in the sense that each true segment duration lasts at least 5
observations and true sequential velocity changes are at least 0.1um/s in magnitude,|v; — v;;1| > 0.1 for
alli =1,...k. This is to be expected since, at this point, we are only considering those paths that have
a segment duration greater than or equal to selected hyperparameter value for the minimum segment
duration, d, = 5. The increase in accuracy is larger for Case 3 and Case 4 as the former condition is
violated more when the change points are uniformly distributed as opposed to uniformly spaced as in
Case 1 and Case 2. Specifically, for Case 1 and Case 2 none of the paths violate the condition on the
segment length, whereas 34/200 and 32/200 paths violate the condition on the segment length for Case
3 and Case 4 respectively. As for the condition on the magnitude of the velocity change, none of the
paths in Case 3 violate the condition whereas 1/200, 14/200, and 19/200 paths violate the condition for
Case 1, Case 2, and Case 4, respectively. The accuracy for the subset of meaningful paths are given in
Table 4.

Table 4. The accuracy of the estimate for the number of change points for the subset of
paths with each segment duration lasting at least 5 observations and had subsequent velocity
changes at least +0.1um/s,|v; — v;41| > 0.1 foralli = 1,.. .k.

9 k = kyye for the subset with “meaningful” changes
Casel Case2 Case3 Case4d

NC-CI 0.90 0.79 0.80 0.76
BCP 0.80 0.74 0.67 0.64

LRT (Cpos =) 0.80 0.73 0.68 0.72
RSS 0.77 0.63 0.68 0.62

5.2.3. Comparing estimates for the number of change points using NC-CI and BCP method

For the Kin-1 and DDB data sets, the estimate for number of change points using the NC-CI and
BCP method were in good agreement, whereas the Kin1-DDB data set had more discrepancies between
the two methods. In Table 5, we report the fraction of paths whose NC-CI estimate for the number of
change points was equal, less than, and greater than that when using the BCP method.

Table 5. The fraction of Kinl, DDB, and Kin1-DDB, paths whose NC-CI estimate number
of change points, knc.cr, was equal, less than, and greater than that when using the BCP
method, ]%BCP-

Kinl DDB Kinl-DDB
kNC-CI = kBCP 085 095 068
knccr < kgep 0.00  0.02 0.21
knc.cr > kgep 0.15  0.02 0.11

For the data sets with a single motor, when there was a discrepancy between the two estimates,
typically the NC-CI was higher than the BCP estimate. In about half the cases NC-CI detected a single
change either towards the beginning or end of the path, whereas BCP detected no changes.
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We found the converse results for the multi-motor data set: when the two estimates disagreed, the
BCP estimate was typically larger that the NC-CI estimate. We attribute this to the Kin1-DDB data
set having more paths with large spikes in the increment process only lasting for a few observations,
either the stochasticity of the motor stepping, or tracker error. The BCP marked such short lived spikes
as change points whereas the NC-CI did not due to the assumption of the minimum state duration of at
least five observations.

5.3. Characterization of motor velocities within a family of motor proteins

We found that Kinesin-1 had more stereotypical velocities, whereas there was heterogeneity of
velocity for the DDB and Kinesin1-DDB complexes.

5.3.1. Kinesin-1 as a processive motor

We found that 79.41% (27/34) of the tracked cargo had a MAP estimator for the number of change
points as zero, top left frame of Figure 6. At first glance having 17.64% (6/34) of paths with ky,, > 0
seems contradictory to Kinesin-1 being known as a processive motor [37, 15, 38]. Through path-by-
path analysis of the paths with k., = 1, we found four out of the six had a change point estimated
towards the end of the trajectory in which the motor protein became less processive. A possible expla-
nation is that the motor reached the end of the MT and remained there before detaching. Moreover for
the single path with k., = 2 visually appears to transition from a processive state to a paused state and
back to a processive state, resulting in two change points.

While there was some variation in the posterior samples of the speed over all Kinesin-1 trajectories,
the samples were concentrated ~ 0.57 um/s, top center frame of Figure 6. The MAP estimator for each
speed segment is denoted by the black circle on the x-axis. There appears to be a slight a correlation
between duration of each state and the speed of the cargo during the given state, top right frame in
Figure 6. For states only lasting a short duration (bottom left points), there appears to be a decrease in
the MAP estimator for the speed.

5.3.2. Heterogeneity within DDB velocities

Overall, we found that a majority of the paths were estimated as having zero change points, 78.05%
(32/41) of the paths. This finding agrees with the experimental results presented in [39], in which
trajectories of cargo transported by DDB appeared as diagonal lines. However, there was a significant
percentage, 21.95%, of paths with least one change point was detected, middle row left frame of Figure
6.

We found more variation in the posterior samples of the segment speed for those tracked cargo teth-
ered to DDB, middle row center frame of Figure 6, as opposed to those tethered to Kinesin-1. The em-
pirical posterior distribution appeared to be possibly be tri-modal with peaks around 0.4,0.6,0.1 um/s
from largest to smallest. More data is required to make a claim the multi-modality is statistically sig-
nificant. Moreover, the empirical posterior distribution was supported on speeds larger than 1 um/s, a
region within the support of our uniform prior but a less biologically plausible region, and 7 of the 54
MAP estimates of the segment velocities were larger that 1 um/s. In examining these paths, the seg-
ment with velocity larger than 1um/s in magnitude had a low number observations per state, ranging
between 5 and 30, (see SI-DDB particle 1, 8, 18, 20, 24, and 39).
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Figure 6. Top, middle, bottom row: Reported inference on the Kinesin-1, DDB, and Kinl-
DDB data sets. Left column: The empirical distribution of the MAP estimator for the num-
ber of change points, ky,p. Center: The empirical posterior density of speed of all the tracked
cargo weighted by the duration of each state described in Section 3.4.2. Points on the line
y = 0 denote the posterior point estimate for each segment speed. Right: The MAP estimate
for the jth speed versus that of the duration of the jth state, where the MAP is over the joint
posterior distribution, Equation 3.23. The symbol corresponds to the number of changes
points, kyas, for the given path. Note that x-axis scales vary between rows for right column.
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5.3.3. Heterogeneity within Kinesin1-DDB velocities

The Kinl-DDB data had more challenging paths to analyze. We removed 9 out of 101 tracked
particles because the trajectory was poorly captured by a single straight line. Either the microtubule
was curved or bent, or the motor-cargo complex changed microtubule during the observation window,
complicating tracking. There were fifteen tracked cargos with a low posterior probability of k, but
after visual inspection, there were only two trajectories for which the number of change points and
locations were unclear. These fifteen tracked paths are included in the below analysis. Furthermore,
there were nine paths in which not all inferred parameters in Stage 2 had posterior samples satisfying
the convergence criterion (SI-Kin1-DDB particle 8, 11,13, 26, 36, 41, 44, 74, 77). After visual inspec-
tion, we opted to include them in analysis below. Four of the nine paths had a large estimate for the
number of change points (at least five). Whereas the remaining five had estimated number of changes
between two and four, in which it is unclear if the number of changes is mis-estimated resulting in the
convergence criterion not being satisfied.

We found 67.39% (62/92) of the paths were estimated as having at least one change, lAcMAP > 0, as
depicted in the empirical distribution of ky,,, bottom left frame of Figure 6. Qualitatively, the empirical
posterior density of speed of the tracked Qdot-Kin1-DDB complexes weighted by the duration of each
segment appeared to be tri-modal, with peaks around 0.05,0.3,0.5um/s (largest to smallest) bottom
center frame of Figure 6. A possible explanation for the largest peak being ~ 0.05um/ s is the segments
with longer duration had such a speed, bottom right frame of Figure 6. While there is a slight increase
in run length and time tracked as IAcMAp increases, there does not appear to be a correlation between run
length nor time tracked and the MAP estimator for the segment speeds, bottom center and bottom right
frame of Figure 6.

5.4. Comparison of motor velocities between motor families

Preliminary analysis qualitative showed that two motor complexes, Kinesin1-DDB complexes have
longer run lengths and run time compared to the single motor complexes. Although there is an im-
balance in the number of tracked particles for each type of motor, the median run length and amount
of tracked time is largest for the Kin1-DDB data set. This suggests that cargo tethered to Kin1-DDB
remain bound to the microtubule longer than when the cargo is only tethered to a single motor.

Table 6. The median run length and time tracked of the tracked cargo from the Kinesin-1,
DDB, and Kin1-DDB data sets.

Kinesin-1 DDB Kinl-DDB
Median run length (um) 1.163 1.26 245
Median time tracked (s) 1.90 1.72 9.24

For all tracked cargo, we display the run length versus time tracked on a log 10 scale for each
cargo in the left panel of Figure 7, where a dot corresponds to a tracked cargo and the color and shape
denotes the motor protein complex. Taking the corresponding MAP estimators obtained in Step 2 of
our algorithm, we found on average the Kin1-DDB tracked particles had slower velocities but longer
segment durations. We display the segment speed versus segment duration on a log 10 scale for each
cargo in the right panel of Figure 7, where a dot corresponds to a tracked cargo and the color and shape
denotes the motor protein complex.
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Figure 7. Left: Run length versus time tracked on a log 10 scale where the color and style
of the point corresponds to the type of motor protein. Right: Segment speed versus segment
duration on a log 10 scale where the color and style of the point corresponds to the type of
motor protein.

5.5. Transitions among biophysical states: reversals often involve paused states

There remain important biophysical questions concerning what motor-cargo configurations cause
pauses in cargo trajectories [12] and whether reversal in direction is instantaneous or requires a paused
tug-of-war intermediate state. As mentioned above, this data set is not sufficiently robust to fully
answer these questions, but we do see evidence that paused states are more common when motor
antagonism is present and paused states do occur between reverses in trajectories.

In agreement with our prior expectation that Kinesin-1 is a unidirectional and steadily-processive
motor, we only observed 8 transitions among the 34 tracked paths (0.24 transitions per path, 0.09
transitions per second). Of these segments, none involved a reversal of direction. Similarly, for the
DDB dataset there were 15 detected transitions among the 41 tracked paths (0.42 transitions per path,
0.16 transitions per second). Only one of these led to a reversed-direction state. However, individual
inspection of the associated path indicates that this reversal might be an artifact of the first segment
having a small number of data points, leading to a noisy estimation. See SI-DDB particle 16 for the
path details. In contrast to the single motor data, state transitions were more commonly observed in for
the antagonistic motor complex, Kin1-DDB. This was, in part, due the fact that that we could observe
the paths for so much longer durations. Indeed, there were 128 detected transitions for the 92 tracked
paths (1.39 transitions per path), but the transition rate was only slightly higher than that of Kinesin-1
(0.10 transitions per second).

The methods we have described do allow for some insight into the transition properties of Kinl-
DDB, but there are limitations in the experimental methods that prevent a full analysis. In particular,
since we do not know the polarity of the microtubules in these experiments, we cannot know which
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Figure 8. From left to right, the inferred transition diagram for the Kinesin-1, DDB, and
Kin1-DDB data set. The nodes represent the three velocity states of motor-cargo complex’s
velocity: movement in the initial direction (Initial), approximately no movement (Paused),
and movement in the opposite direction (Reversed). The weights of each edge correspond to
the observed transition probabilities. The transition probabilities of a state may not add to
one due to rounding.

motor is driving a particular state. Nevertheless, we can make some general observations about the
role of the paused state. Most importantly, we see that direct reversals of direction are rare — usually
there is an intermediate paused state, as is commonly predicted by tug-of-war models [10]. Using the
method described in Section 3.4.3, we estimated the 1-step transition probabilities for each motor type,
visually displayed in Figure 8. The node denotes a different state and the transition probability is given
along the corresponding arrow where the thickness of the arrow corresponds to the magnitude of the
transition probability. When a transition is marked from Initial to Initial, this means that there was
a substantial change in velocity, where “substantial” is defined in Section 3.4.3. In the single motor
experiments, the most common transition for both Kinesin-1 and DDB is Initial to Initial. While this
is also the case for the for the Kinesin-1/DDB complex the transition from an Initial to a Paused state
was slightly more probable than the single motor complexes (estimated probability 0.49). Due to the
small sample size, the only statistically significant ordering we can make is the Reversed state is the
least likely transition state from Initial. We caution the reader from taking too much from some of
the transition probabilities. For example, there were only two transitions out of the reversed state for
Kin1-DDB, both of which were to different Reverse-direction state.

6. Discussion

Identifying changes of means in time series of independent Normal random variables has a rich
history. There are numerous techniques for this type on analysis, but few have been tailored for the
specific application of intracellular transport by molecular motor data. The biological questions of
interest here include 1) what biophysical states the cargo is in, i) how long it remains in each state, and
111) quantifying the characteristic parameters of each state. One important observation is that the dis-
tribution of velocities associated with active states are expected to be different for different molecular
motor families. With this in mind, we have proposed a Bayesian change point method for detecting

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8962-8996.



8992

velocity changes in cargo trajectories that can faithfully be studied in a one-dimensional projection.
We validated the method on simulated data in comparison to three other prominent techniques. Our
method compared favorably in a set of simulated test cases meant to present realistic challenges pre-
sented by motor-transport. Moreover, we applied the method to three different experimental data sets:
quantum dots being transported in vitro by a single Kinesin-1 motor, by a single DDB motor, and by
a Kinesin-1/DDB pair. We saw substantial differences among the motor experiments that align with
what might be expected in a molecular motor “folklore.” That is to say, Kinesin-1 steps processively
with a stereotyped behavior while DDB shows more variation in its motility. When both motors are
present, the velocity is typically smaller but the cargo stays attached for longer periods of time.

Our approach can be broken down into three basic steps. First, we identify the most likely number
of switches; then conditioned on the number of switches we learn the segment velocities and change
points; and lastly, we construct an estimated velocity distribution for the given set of trajectories. In
each of these stages we sought to find a balance between statistical rigor and computational feasibility.
For example, our approach to stage one is effective for one dimensional data but preliminary work
indicates that our choice in likelihood might not be optimal for two dimensional data. Whether there
exists an effective alternative to standard change point algorithms (bcp in particular) for 2D remains
an open question. Moreover, it is not clear whether there is an optimal method for estimation of the
velocity distribution for the purpose of characterizing motor-cargo interactions. Ultimately, the method
we introduce here is sensitive enough to detect biophysically important differences in the behavior of
different motor-cargo configurations.

With regard to biological implications, we see differences among the motor types, but more data
and refined experimental techniques will be necessary to draw firm conclusions. For example, in this
experimental framework it is not possible to know whether a motor run ended because it detached in
the middle of a microtubule or at its end. Also, when Kinesin-1 and DDB are both present, we see
bi-directional movement but we do not know the microtubule polarity, so we cannot yet attribute a
particular state to a given motor or pair of motors. Our methods are readily adaptable to experimental
data with higher resolution, and higher information content such as microtubule polarity, as well as to
more complex complexes such as numerous kinesins and dyneins working against each other.
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7. Appendix

7.1. Derivation of marginal likelihood in Section 3.2

For a fixed n and r the marginal likelihood of observing the data assuming uniform priors on the

velocities is given by

f‘“fLN,K,(‘f; r,v,mp(vy)...p(vk,+)dvy ... dvg, =
R Jr

n % 77 Kr+1 M_]' )
— exp(—— & —ViA ) 7.1
fR L(%A) 2A ; n:MZj:IH( )
1 1
X El{[—&ﬂ}(vl) . El{[_X’X]}(VKr‘H)dVI cen dVK,+l

Observing the integrand is integrable, employing Fubini’s theorem yields

M,

n g | \Krt Kl oy 7
o) () ] Lol

Jj=

(& - Av ,)z)dv,-. (7.2)

I’l:MJ'_] +1

For the jth integral, the argument of the exponential can be expressed as

M; M,

(fn - AVj)2 = ((é:n - E(Mj—lijJ) + (E(Mj—l,MjJA B Vf))2

n:Mj,1+1 n:Mj,1+l
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M
- 2 B )
= (‘fn - é‘:(Mi*l,Mj]) + (Mj — Mj_l)(é:(M_,-,.,Mj] - AVj) . (7.3)
n=Mj_1+1
Hence, jth integral can be written as
v M; )
- n
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v

Viewing the integrand as the density function of a normal random variable with mean E(MH, m;1/A and

-1
variance ([(M i-M j—1)A]77) , the j integral becomes

. M; _ 2 2n "
eXp( - 3A Z (fn - f(Mj—l,M.i]) )( [(M; - Mj_1)A]77)

n=M;j_1+1
y ((I)( V- E(Mjfl,M,-] ) 3 CD( -v- E(M,»fl,Mj] )) (75)

(nA(M; — Mj—l))_l/z (nAM; - Mj—l))_1/2

®(z) is the cumulative distribution function of a standard normal random variable. Thus for all £ + 1
integrals we obtain Equation 3.17.

©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8962-8996.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Existing methods in change point detection
	Comparison of our method to existing Bayesian methods

	Experimental methods
	Collection of in-vitro data
	Data for cargo simultaneously bound to one Kinsein-1 and one DDB motor


	Statistical methods and algorithms
	Mathematical models for motor cargo-system
	Biophysical model 
	Statistical Model: Brownian motion with drift 

	Posterior approximation for selecting number of change points 
	Prior and hyper-prior selection 
	Target distribution for unknown number of change points
	Initialization of inferred model parameters
	Sampling the unknown model parameters
	Output of the algorithm for unknown number of change points

	Bayesian inference for model parameters given a number of change points 
	Prior selection
	Sampling the unknown model parameters

	Posterior estimates for quantities of interest 
	Posterior point estimates 
	Velocity distributions accounting for segment duration 
	Quantifying transitions between biological states 

	Pre-processing of the molecular motor data 
	Change of coordinates to longitudinal position
	Handling missing data points 


	Numerical methods for validation of the protocol 
	Simulating from the bio-physical model 
	Model for the observational error 
	Numerical experiment scenarios 
	Selecting biological parameters for numerical experiments 
	Selecting algorithm parameter for numerical experiments 


	Results
	Compact prior for segment velocities is necessary for successful model selection
	Comparison of methods 
	Results on simulated data sets
	Analysis restricted to subset of simulated paths with `meaningful' changes
	Comparing estimates for the number of change points using NC-CI and BCP method

	Characterization of motor velocities within a family of motor proteins 
	Kinesin-1 as a processive motor
	Heterogeneity within DDB velocities
	Heterogeneity within Kinesin1-DDB velocities

	Comparison of motor velocities between motor families
	Transitions among biophysical states: reversals often involve paused states

	Discussion
	Appendix
	Derivation of marginal likelihood in Section 3.2 


