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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in the city
of Wuhan, Hubei province, China, in December 2019 [1] and has since spread all over the world with
over 181.1 million reported cases and over 3.9 million deaths globally as of June 29, 2021 [2]. Fol-
lowing the outbreak of COVID-19, several non-pharmaceutical interventions (NPIs) such as physical
distancing, isolation, hand washing, stay-at-home order, closing of schools and businesses, travel re-
strictions, among others, were implemented all over the world to limit the spread of the disease [3–6].
Despite implementing these NPIs, there is still a significant number of COVID-19 cases and deaths
reported daily. On January 20, 2020, the World Health Organization (WHO) declared COVID-19 a
public health emergency of international concern (PHEIC) [7] and a pandemic on March 11, 2020 [8].
The COVID-19 pandemic has proven to be more than just a medical emergency; But one that affects
society. It has significantly affected our day-to-day activities such as socializing, entertainment, edu-
cation, tourism, health, and business. The need to find an effective way of controlling the pandemic
through integrated science cannot be overemphasized [9].

Since the outbreak of the SARS-CoV-2 virus, researchers have been studying its transmission dy-
namics. The virus is believed to be transmitted through two major pathways namely: the direct and
indirect pathways [10–14]. The direct pathway, also known as human-to-human transmission, includes
transmission through inhalation of virus-infected droplets, coughing, sneezing and having physical
contact with infectious persons. Indirect transmission may occur when a susceptible individual comes
in contact with a contaminated commonly shared surface or object [10, 13]. These contaminations
usually occur when an infectious individual touches, coughs or sneezes on the objects.

Several mathematical models have been developed to study the transmission dynamics of COVID-
19 [15–28]. In [26], two differential equation models were developed to study the effect of the exposed
or latency period on the dynamics of COVID-19 in China. Another model was developed in [28]
to study the effect of super-spreaders on the dynamics of COVID-19 in Wuhan, China. These and
many other mathematical models have provided a lot of insights into the dynamics of COVID-19.
During the early stage of the COVID-19 pandemic, physical distancing, wearing of face masks, hand
washing, and other non-pharmaceutical interventions (NPIs) were the primary interventions against
the disease worldwide. Many mathematical models have been used to study the impact of these NPIs
on the dynamics of COVID-19 [19, 29]. This includes the susceptible-exposed-infected-quarantine-
recovered (SEIQR) model developed in [25] to study the impact of physical distancing on the dy-
namics of COVID-19 in British Columbia (BC), Canada, and the model of [23] used to study the
impact of different mitigation strategies on the dynamics of COVID-19 in Ontario, Canada. In [30],
a susceptible-exposed-infected-removed (SEIR) model was designed on a temporal network, which
evolves according to the activity-driven paradigm. Their model was used to study the spread of the
disease as a function of the fraction of the population following public health measures. Their result
shows that physical distancing and mask-wearing can effectively prevent COVID-19 outbreaks if ad-
herence to both measures involves a substantial fraction of the susceptible population. The effect of
timing of adherence to COVID-19 NPIs such as social distancing on COVID-19 in the United States
was studied using an agent-based model in [31]. Their model was applied to Dane County, Wisconsin,
the Milwaukee metropolitan area and New York City (NYC), and show that the timing of implementing
and easing the social distancing measures has major effects on the number of COVID-19 cases. The
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results obtained in the works of [32, 33] are also in the same line with the findings mentioned above.
Many of these models focus on direct transmission of COVID-19 through in-person contacts despite
the emphasis by the world health organization (WHO) on indirect transmission of the disease [13].

A few researchers have studied indirect transmission of COVID-19 [20–22,34–37]. In [35], a novel
deterministic susceptible-exposed-infected-removed-virus-death (SEIRVD) model was developed to
study the potential impact of both direct and indirect transmission of COVID-19 on the dynamics of the
disease in Ontario, Canada. Their results showed significant increase in number of cases with indirect
transmission. They also highlighted the importance of implementing additional preventive and control
measures to minimize the spread of COVID-19 through both transmission routes. A five-compartment
model for both direct and indirect transmission pathways was developed in [37], and used to study the
impact of both transmission pathways on the dynamics of COVID-19. The mathematical model of [36]
also used indirect transmission mechanisms to study the dynamics of COVID-19. They examined the
conditions under which contaminated objects may lead to a significant spread of SARS-CoV-2 during
and after lock-down using a SEIR model with the addition of a fomite term. They proposed that the
addition of a fomite term will help to better understand the transmission dynamics of the virus and
also in policy making. To the best of our knowledge, none of these studies have looked at the effect
of adherence and non-adherence to COVID-19 NPIs on both direct and indirect transmissions of the
disease.

In this study, we develop a susceptible-exposed-infectious-recovered-virus (SEIRV) compartmental
model for studying the transmission dynamics of COVID-19. Our model considers both direct and
indirect transmission of the disease following the approach of [35]. It has a similar structure to the
model of [25] used to study the impact of physical distancing on the contact rates in British Columbia
(BC), Canada, where BC population was divided into the groups practicing physical distancing and
those not practicing physical distancing. Here, we stratify our population into two groups: those that
adhere to all COVID-19 non-pharmaceutical interventions (NPIs) and those that do not adhere. We
compute the control reproduction number and final epidemic size for our model, and study the effect
of different parameters of the model on these quantities. This model is used to assess the impact of
adherence to COVID-19 non-pharmaceutical interventions and indirect transmissions on the dynamics
of the disease. Our study highlights the importance of adhering to the COVID-19 NPIs as instructed
by the World Health Organization (WHO) in reducing infections and eventually controlling the spread
of the disease.

The remaining part of this paper is organized as follows: The model is developed in Section 2.
In Section 3, the control reproduction number of the disease is calculated using the next generation
matrix approach. We also computed a final size relation for the epidemic in this section. In Section
4, we numerically study the effect of important model parameters on the control reproduction number
calculated in Section 3. In addition, we present numerical simulations of the SEIRV model for different
scenarios in this section. These simulations are used to comprehend the effect of direct and indirect
transmission, with or without adherence on the dynamics of the disease. We conclude the paper in
Section 5 with a brief discussion.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8905–8932.



8908

2. Mathematical model

A compartmental SEIRV model of COVID-19 epidemic is developed and analyzed. The model
considers both direct and indirect transmission routes and divides the population into two main groups:
adherent and non-adherent populations. The adherent population include individuals in the population
that adhere to all COVID-19 non-pharmaceutical interventions (NPIs), while the non-adherent popu-
lation contains those that do not adhere to the NPIs. The compartments of the model for non-adherent
population are defined as follows: susceptible (S ); exposed (E); infectious (I); and recovered/removed
(R). Corresponding compartments for the adherent population are given by S a, Ea, Ia, and Ra, respec-
tively. Note that individuals in the exposed compartments E and Ea are not infectious [26, 38–41].
We assume that recovered individuals have permanent immunity from the disease (no reinfection).
The compartment V accounts for the virus shed on contaminated surfaces and objects by infectious
individuals.

Figure 1 shows a schematic diagram of the model, where the solid black arrows indicate the direc-
tion of the flow of individuals between the compartments at the rates indicated beside the arrows. The
dashed red arrows show virus shedding or contamination of surfaces by infectious individuals. The
differential equations for non-adherent population are given by

dS
dt
= −
βS
N

(I + σaIa) −
βvS
N

V + γaS a − γS ,

dE
dt
=
βS
N

(I + σaIa) +
βvS
N

V − µE + γaEa − γE,

dI
dt
= µE − rI + γaIa − γI,

dR
dt
= rI + γaRa − γR,

(2.1a)

where β and βv are the direct and indirect transmission rates, respectively, for non-adherent population.
The parameter σa, with 0 ≤ σa ≤ 1 is used to model the reduction in virus shedding (or contamination
of surfaces), susceptibility, and onward transmission of disease due to adherence to NPIs. Parameters
γa and γ are the rates of movement from adherence to non-adherence and vice versa, respectively, while
µ denotes the rate of transitioning from the exposed compartment E to the infectious compartment I,
and r is the recovery rate. The corresponding equations for the adherent population are given by

dS a

dt
= −
βaS a

N
(I + σaIa) −

βavS a

N
V − γaS a + γS ,

dEa

dt
=
βaS a

N
(I + σaIa) +

βavS a

N
V − µEa − γaEa + γE,

dIa

dt
= µEa − rIa − γaIa + γI,

dRa

dt
= rIa − γaRa + γR,

(2.1b)

where S a, Ea, Ia and Ra denote susceptible, exposed, infectious, and recovered individuals in the adher-
ent population, respectively. The parameters βa and βav are the direct and indirect disease transmission
rates, respectively, for the adherent population. We assume that individuals in both adherent and non-
adherent population transition from exposed to infectious compartments, and recover from the disease
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at the same rates, µ and r, respectively. In addition, we assume that individuals move from adherent
to non-adherent and vice versa, at the same rates in the susceptible, exposed, infectious, and recovered
compartments. The disease dynamics for both non-adherent (2.1a) and adherent (2.1b) populations are
coupled to the dynamics of the virus in the environment or on contaminated surfaces given by

dV
dt
= maIa + mI − (τ + δ)V, (2.1c)

where m and ma are the virus shedding (or surface contamination) rates for non-adherent and adherent
populations, respectively. The parameter δ is the decay rate of SAR-CoV-2 in the environment and
on surfaces, and τ is the environment cleaning/sanitization rate. We assume that our population is
constant throughout the epidemic period so that N = N⋆(t) + Na(t) for all time t ≥ 0, where N⋆(t) =
S (t) + E(t) + I(t) + R(t) and Na(t) = S a(t) + Ea(t) + Ia(t) + Ra(t). In our SEIRV model (2.1), the
compartments S , E, I,R, S a, Ea, Ia,Ra have dimension of individual, while the virus compartment V
has dimension of virus particle. The dimensions of the model parameters are given as follows:

[β] = [βa] =
1

time
, [βv] = [βav] =

individual
virus particle × time

,

[γ] = [γa] = [µ] = [r] = [τ] = [δ] =
1

time
, [m] = [ma] =

virus particle
individual × time

,

(2.2)

where [λ] represents dimension of λ. Note that σa is a dimensionless parameter in our model.

Sa Ea RaIa
βa (I + σaIa) + βav V µ r

S E RI
β (I + σaIa) + βv V µ r

V

mma

γaγ γaγ γaγ γaγ

Figure 1. Schematic of the SEIR model. Compartments for non-adherent population are
as follows: Susceptible (S ); exposed (E); infectious (I); and recovered (R). Corresponding
compartments for adherent population are with subscript a. Individuals move from non-
adherence to adherence at a rate γ and vice versa at a rate γa. The compartment V is used to
account for the virus shed by infectious individuals on to surfaces/objects. Black solid arrows
show the flow of individuals between the compartments at rates indicated beside the arrows,
while the dashed red arrows show virus shedding or contamination of surfaces by infectious
individuals (see (2.1) for more details).
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Table 1. Model variables and description.

Variable Description
S Non-adherent susceptible population
E Non-adherent exposed population
I Non-adherent infectious population
R Non-adherent recovered population
S a Adherent susceptible population
Ea Adherent exposed population
Ia Adherent infectious population
Ra Adherent recovered population
V Virus compartment

It is important to mention that there are relationships between the parameters β, βv, and m for non-
adherent population and βa, βav, and ma of adherent population, respectively. These relationships are
used when computing the control reproduction number in Section 3.1 and final size relation in Sec-
tion 3.2. We define the fraction of adherence in the population as f = γ/(γ + γa), on which the
dynamics of the ODE system (2.1) depends. Since adherence to COVID-19 NPIs reduces transmission
rate for the adherent population, we equate the direct and indirect transmission rates for the adherent
population to those of non-adherent population as follow

βa = σa β and βav = σa βv, (2.3)

where 0 ≤ σa ≤ 1. When σa = 0, we have βa = 0, βav = 0 and σaIa = 0 in (2.1a) and (2.1b), which
implies that adherence to NPIs is 100% effective in preventing infections in the adherent population,
and that adherent individuals do not infect the non-adherent individuals. On the other hand, when
σa = 1, we have βa = β, βav = βv and σaIa = Ia, which implies that disease is transmitted at the
same rate in both adherent and non-adherent populations. Table 1 shows the model variables and their
description.

Table 2 shows the parameters of the SEIRV model (2.1) with their descriptions and values. Some of
these parameters were obtained from published articles, while others were either inferred, derived or
varied. References are provided for parameters that were obtained from published articles. The direct
and indirect transmission rates (βa and βav), and shedding rate ma for adherent population were derived
from those of non-adherent population, respectively, using the relations in (2.3).

3. Model analysis

In this section, we calculate the control reproduction number and the final size relation for the
epidemic using the SEIRV model (2.1). We also consider some limiting scenarios of the epidemic and
derive the control reproduction number and final size relations for these scenarios from the general
control reproduction number and final size relation, respectively.

3.1. Control reproduction number

We compute the control reproduction number for our model (2.1) using the next generational matrix
approach of [42–47] as used in [48]. The next generation matrix is a square matrix whose elements
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Table 2. Model parameters, descriptions, and values. The direct and indirect transmission
rates (βa and βav), and shedding rate ma for adherent population were derived from those of
non-adherent population, respectively, using the relations in (2.3).

Parameter Description Value Reference
N Total population 5,000,000 Assumed
σa Reduction in virus shedding, susceptibility, and

onward transmission of disease due to adherence
to NPIs

Varied

β Direct transmission rate for non-adherence popu-
lation

0.5 [25,35,49]

βv Indirect transmission rate for non-adherence pop-
ulation

0.15 [35, 36]

βa Direct transmission rate for adherence population σa β Derived
βav Indirect transmission rate for adherence population σa βv Derived
γ Rate of movement from non-adherent to adherent 0.3 day−1

[25,50–52]
γa Rate of movement from adherent to non-adherent 0.25 day−1 [50–52]
m Virus shedding rate or the rate of contamination of

surfaces by infectious individuals in non-adherent
population

0.125 ml−1

person−1

day−1

[35,53,54]

ma Virus shedding rate or the rate of contamination of
surfaces by infectious individuals in the adherent
population

σa m Derived

δ Decay rate of virus in the environment 0.4 day−1 [55–59]
τ Environment cleaning/sanitization rate 0.1 day−1 Inferred
r Recovery rate (1/r is the infectious period) 1/5 day−1 [25, 39,

60–63]
µ Rate of transitioning from the exposed to infec-

tious compartments (1/µ is the incubation period)
1/6 day−1 [39–41,

63, 64]

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8905–8932.



8912

describes who is infecting whom in the population, and is defined asM = FV−1, where F andV are
square matrices for the rates of new infections from the susceptible population and transfer between
infected populations, respectively. The dominant eigenvalue of the next generation matrix is the basic
(or control) reproduction number of the epidemic. See [42, 43, 47] for more details. To construct the
F and V matrices, we consider the exposed and infectious compartments of the SEIRV model (2.1)
given by,

dE
dt
=
βS
N

(I + σaIa) +
βvS
N

V − µE + γaEa − γE,

dI
dt
= µE − rI + γaIa − γI,

dEa

dt
=
βaS a

N
(I + σaIa) +

βavS a

N
V − µEa − γaEa + γE,

dIa

dt
= µEa − rIa − γaIa + γI,

dV
dt
= maIa + mI − (τ + δ)V.

(3.1)

Upon using the relations between the transmission rates for the adherent and non-adherent populations
given in (2.3), (3.1) reduce to

dE
dt
=
βS
N

(I + σaIa) +
βvS
N

V − µE + γaEa − γE,

dI
dt
= µE − rI + γaIa − γI,

dEa

dt
=
σaβS a

N
(I + σaIa) +

σaβvS a

N
V − µEa − γaEa + γE,

dIa

dt
= µEa − rIa − γaIa + γI,

dV
dt
= maIa + mI − (τ + δ)V.

(3.2)

Recall that the adherence fraction in the population is given by f = γ/(γ + γa). Therefore, at
the beginning of the epidemic, S (0) = (1 − f )N = N⋆(0) and S a(0) = f N = Na(0). Follow-
ing the arrangement of the equations in (3.2) and the variables ϕ = (E, I, Ea, Ia,V), at the DFE =
(N⋆(0), 0, 0, 0,Na(0), 0, 0, 0, 0), the matrix for the rates of new infections from the susceptible popula-
tion F is given by

F =



0 β (1 − f ) 0 βσa(1 − f ) βv(1 − f )

0 0 0 0 0

0 σa β f 0 σ2
a β f σa βv f

0 0 0 0 0

0 0 0 0 0


. (3.3)
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Similarly, the Jacobian matrix for the rates of transfer between infected populations at the beginning
of the epidemic is given by

V =



(µ + γ) 0 −γa 0 0

−µ (r + γ) 0 −γa 0

−γ 0 (µ + γa) 0 0

0 −γ −µ (r + γa) 0

0 −m 0 −ma (τ + δ)


. (3.4)

Upon constructing the next generation matrix using (3.3) and (3.4), and computing its spectral radius
using the symbolic computational software SageMath [74], we obtain that the control reproduction
number satisfies

Rc = RD + RID, (3.5a)

where RD, which accounts for disease transmission through direct route among non-adherent and ad-
herent individuals is given by

RD = RD⋆ + σaRDa. (3.5b)

Here, RD⋆ and RDa are defined as

RD⋆ =
β(1 − f )Φ

r(γa + γ + µ)(γa + γ + r)
and RDa =

β fΨ
r(γa + γ + µ)(γa + γ + r)

. (3.5c)

The second term in the control reproduction number (3.5a) accounts for indirect transmissions, and it
is given by

RID = RID⋆ + σaRIDa, (3.5d)

where RID⋆ and RIDa are the indirect transmissions contributed by the non-adherent and adherent pop-
ulations, respectively, and are given by

RID⋆ =
βv(1 − f )

[
m(χa + rµ) + maχ

]
r(τ + δ)(γa + γ + µ)(γa + γ + r)

and RIDa =
βv f

[
ma(χ + rµ) + mχa

]
r(τ + δ)(γa + γ + µ)(γa + γ + r)

. (3.5e)

The newly introduced variables χ, χa, Φ, and Ψ are defined as follows:

χ = γ2 + γγa + γ(µ + r) and χa = γ
2
a + γγa + γa(µ + r) (3.5f)

Φ = χa + µr + σaχ and Ψ = χa + σa(χ + µr). (3.5g)

Suppose there is no adherent population, that is, f = 0 and γ = 0 (consequently, σa = 0 and γa = 0),
which gives Φ = µr and Ψ = 0. Therefore, (3.5a) reduces to

R̂c =
1
r

(
β +
βvm
δ + τ

)
, (3.6)
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where R̂D = β/r accounts for infections cause through direct transmission, while R̂ID = βvm/(r(δ + τ))
accounts from those of indirect transmission. Observe that R̂D will increase as both the transmission
rate β and infectious period 1/r increase. This shows that an infectious individual will spread the
virus/disease more if the transmission rate of the disease increases and if it takes longer for them to
recover from the disease. For R̂ID = βvm/(r(δ+ τ)), infections increases as the shedding/contamination
rate of infectious individuals increase and decrease as the virus decay rate δ and the environment
cleaning or sanitization rate τ increases. Assuming a fraction f̃ of the population were already adhering
to COVID-19 NPIs before the disease was introduced into the population (as a precaution before the
first case arrives) and there is no movement from adherent to non-adherent and vice versa, that is, γ = 0
and γa = 0, but σa , 0, (3.5a) reduces to

R̃c =
β

r

[
(1 − f̃ ) + σ2

a f̃
]
+

βv

r(τ + δ)

[
(1 − f̃ )m + σama f̃

]
, (3.7)

where the parameter σa with 0 ≤ σa ≤ 1 account for the reduction in acquiring or transmitting the dis-
ease due to adherence to COVID-19 NPIs. Similar to (3.5a) and (3.6), the control reproduction number
R̃c for this scenario also accounts for the contribution from both direct and indirect transmissions. Here,
the contribution to R̃c due to direct transmissions is given by

R̃D =
β

r

[
(1 − f̃ ) + σ2

a f̃
]
, (3.8)

where β(1− f̃ )/r accounts for infections through direct transmissions caused by those that do not adhere
to the NPIs, while σ2

a f̃β/r is the contribution from those that adhere to the NPIs. As one would expect,
the transmissions caused by the adherent population will always be less than the infections caused by
those that do not adhere if f̃ < 0.5 since 0 ≤ σa ≤ 1. For this scenario, the contribution from indirect
transmission is given by

R̃ID =
βv

r(τ + δ)

[
(1 − f̃ )m + σama f̃

]
, (3.9)

where βv(1− f̃ )m/[r(δ+τ)] is the contribution from the non-adherent population and σaβvma f̃ /[r(δ+τ)]
is from the adherent population. Note that f̃ is the fraction of the population that adhere to the COVID-
19 NPIs at the beginning of the epidemic.

3.2. Final size relation

Next, we derive a relation for the final epidemic size of our SEIRV model (2.1). This final size rela-
tion gives the total number of cases of the disease in the population during the epidemic. We consider
a scenario where there is no movement between adherent and non-adherent susceptible populations.
In other words, we assume that susceptible individuals do not change their behaviour from adhering
to the COVID-19 NPIs to non-adherence and vice versa. This way, the equation for the susceptible
populations S and S a in (2.1a) and (2.1b), respectively, reduce to

dS
dt
= −β

S
N

(I + σaIa) − βv
S
N

V and
dS a

dt
= −βa

S a

N
(I + σaIa) − βav

S a

N
V. (3.10)

We assume that a fraction f , with 0 ≤ f ≤ 1, of the susceptible population adhere to COVID-19 NPIs
before a disease outbreak, so that S (0) = (1 − f )N = N⋆(0) and S a(0) = f N = Na(0). In addition,
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we assume that at the beginning of the epidemic, there is a small number Ea(0) = Ea0 and Ia(0) = Ia0

in the adherent population, with E(0) = E0 and I(0) = I0 in the non-adherent populations. All other
compartments are initially empty. Following the approach in [48, 65–73] and using the ODE system
(2.1) together with the assumptions for the susceptible population in (3.10), we derive the final size
relation for non-adherent population as

log
S 0

S∞
= ♣1

[
1 −

S∞
N⋆(0)

]
+ ♠1

[
1 −

S a∞

Na(0)

]
+ ♢1

f Ia(0)
Na(0)

+ ♡1
(1 − f ) I(0)

N⋆(0)
− ♣1

I(0)
N⋆(0)

− ♠1
Ia(0)
Na(0)

+
βv (1 − f ) V0

(τ + δ)N⋆(0)
,

(3.11a)

where ♣1 = RD⋆ + RID⋆ and ♠1 = RDa + RIDa with RD⋆,RID⋆,RDa and RIDa as given in (3.5). The
remaining variables ♢1 and ♡1 are defined as follows

♢1 =
β(σa (r + γ) + γa)

r (r + γ + γa)
+
βv (ma(r + γ) + m γa)
r (τ + δ) (r + γ + γa)

,

♡1 =
β(σa γ + (r + γa))

r (r + γ + γa)
+
βv (ma γ + m (r + γa))
r (τ + δ) (r + γ + γa)

.

(3.11b)

Similarly, the final size relation for adherent population is given by

log
S a0

S a∞
= ♣2

[
1 −

S∞
N⋆(0)

]
+ ♠2

[
1 −

S a∞

Na(0)

]
+ ♢2

f Ia(0)
Na(0)

+ ♡2
(1 − f ) I(0)

N⋆(0)
− ♣2

I(0)
N⋆(0)

− ♠2
Ia(0)
Na(0)

+
βv f V0

(τ + δ)Na(0)
,

(3.12)

where ♣2 = σa♣1, ♠2 = σa♠1, ♢2 = σa♢1 and ♡2 = σa♡1 with ♣1, ♠1, ♢1 and ♡1 as given in (3.11). The
final size relations in (3.11) and (3.12) for non-adherent and adherent population, imply that S∞ > 0
and S a∞ > 0, respectively. They give the relationship between the reproduction number Rc and the final
epidemic size. The total infected population over the course of the epidemic is given by Na(0) − S a∞

and N⋆(0) − S∞ for the adherent and non-adherent population, respectively, which can be described in

terms of the attack rates as
[
1 −

S a∞

Na(0)

]
and

[
1 −

S∞
N⋆(0)

]
as in [67]. The final size relations in (3.11)

and (3.12) can be written together in matrix form as
log

S 0

S∞

log
S a0

S a∞

 =

♣1 ♠1

σa ♣1 σa ♠1



1 −

S∞
N⋆(0)

1 −
S a∞

Na(0)

 −

♣1 ♠1

σa ♣1 σa ♠1




I(0)
N⋆(0)

Ia(0)
Na(0)


+


♢1 ♡1

σa ♢1 σa ♡1



(1 − f ) I(0)

N⋆

f Ia(0)
Na

 +

βv (1 − f ) V0

(τ + δ)

σa βv f V0

(τ + δ)




1
N⋆(0)

1
Na(0)

 .
(3.13)

Also, from (3.11) and (3.12), we derive the following relation between the two final sizes

S a∞

S a0
=

(
S∞
S 0

)σa

(3.14)
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Since 0 ≤ σa ≤ 1, we have
S a∞

S a0
≥

S∞
S 0

(3.15)

When
S a∞

S a0
>

S∞
S 0

, we conclude that the attack rate for the adherent population is smaller than that

of the non-adherent population as a result of the reduction in the susceptibility and transmissibility of
the adherent population. Observe that when σa = 1, which implies that there is no protection from
adhering to NPIs, we have from (3.14) that S a∞/S a0 = S∞/S 0. This implies that the attack rate is the
same in both adherent and non-adherent populations, and as a result, we expect the epidemic size to
be the same in both populations. This result agrees with our numerical simulation shown in red in the
top left panel of Figure 4. On the other hand, when σa = 0, which implies that adhering to NPIs is
100% effective in preventing new infections, (3.14) reduces to S a∞ = S a0. This shows that there are
no infections in the adherent population throughout the epidemic. Therefore, adherence to the NPIs
during the pandemic is beneficial to reducing/containing the spread of the disease.

When the outbreak begins with no infectious individuals, that is, the outbreak begins through an
indirect transmission, the final size relations in (3.11) and (3.12) reduce to

log
S 0

S∞
= ♣1

[
1 −

S∞
N⋆(0)

]
+ ♠1

[
1 −

S a∞

Na(0)

]
+
βv (1 − f ) V0

(τ + δ)N⋆(0)
,

log
S a0

S a∞
= ♣2

[
1 −

S∞
N⋆(0)

]
+ ♠2

[
1 −

S a∞

Na(0)

]
+

βv f V0

(τ + δ)Na(0)
.

(3.16)

Similarly, when the outbreak begins with only direct transmission with an infective, (3.11) and (3.12)
become

log
S 0

S∞
= ♣1

[
1 −

S∞
N⋆(0)

]
+ ♠1

[
1 −

S a∞

Na(0)

]
+ ♢1

f Ia(0)
Na

+ ♡1
(1 − f ) I(0)

N⋆
− ♣1

I(0)
N⋆(0)

− ♠1
Ia(0)
Na(0)

,

log
S a0

S a∞
= ♣2

[
1 −

S∞
N⋆(0)

]
+ ♠2

[
1 −

S a∞

Na(0)

]
+ ♢2

f Ia(0)
Na

+ ♡2
(1 − f ) I(0)

N⋆
− ♣2

I(0)
N⋆(0)

− ♠2
Ia(0)
Na(0)

.

(3.17)

Now, consider an instance where there is no adherent population, so that f = 0, σa = 0, γ = 0, and
γa = 0. For this scenario, we have ♣1 = R̂c, where R̂c is as given in (3.6), ♠1 = 0, Ia(0) = 0, N⋆(0) = N,
♣1 = ♡1. Also, since σa = 0, we have ♣2 = ♠2 = ♢2 = ♡2 = 0. This way, (3.11) and (3.12) reduces to

log
S 0

S∞
= R̂c

[
1 −

S∞
N

]
+
βvV0

(τ + δ)N
, (3.18)

where R̂c = β/r + βvm/(r(δ + τ)) is the control reproduction number, given in (3.6), for the scenario
without adherent population. As expected, when there is no adherent population, the final size relation
reduces to that of a single population, and depends on the control reproduction number. When a
fraction f̃ of the population adhere to COVID-19 NPIs but there is no movement between the adherent

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8905–8932.



8917

and non-adherent populations throughout the epidemic, that is, γ = γa = 0 and σ , 0. The final size
relation for non-adherent population given in (3.11) reduces to

log
S 0

S∞
= ♣̃1

[
1 −

S∞
N⋆(0)

]
+ ♠̃1

[
1 −

S a∞

Na(0)

]
+
βv (1 − f ) V0

(τ + δ)N⋆(0)
, (3.19)

where

♣̃1 =
β(1 − f )

r
+
βvm(1 − f )

r(τ + δ)
and ♠̃1 =

βσa f
r
+
βv f ma

r(τ + δ)
. (3.20)

Similarly, for the adherent population, the final size relation (3.12) reduces to

log
S a0

S a∞
= ♣̃2

[
1 −

S∞
N⋆(0)

]
+ ♠̃2

[
1 −

S a∞

Na(0)

]
+

βv f V0

(τ + δ)Na(0)
, (3.21)

where ♣̃2 = σa♣̃a and ♠̃2 = σa♠̃1 with ♣̃1 and ♠̃1 as defined in (3.20). Let S̃ 0 and S̃∞ be the total
susceptible population at the beginning and the end of the epidemic, respectively. Then at the beginning
of the epidemic, we have

S 0 = (1 − f̃ )S̃ 0 and S a0 = f̃ S̃ 0, (3.22)

where S 0 and S a0 are the initial susceptibles in non-adherent and adherent populations, respectively.
Since there is no movement between the adherent and non-adherent population, the following condi-
tions are satisfied at the end of the epidemic

S∞ = (1 − f̃ )S̃∞ and S a∞ = f̃ S̃∞, (3.23)

where S∞ and S a∞ are the susceptibles left in non-adherent and adherent populations, respectively, at
the end of the epidemic. Upon adding (3.19) and (3.21), and using (3.22) and (3.23), and ma = σam,
we have

log
S̃ 0

S̃∞
=

1
2

(R̃c + R̂c)
[
1 −

S̃∞
N

]
+
βvV0

(τ + δ)N
, (3.24)

where R̂c and R̃c are as given in (3.6) and (3.7), respectively.
In the next section, we present numerical computations of the control reproduction number (3.5)

for different parameters of the model. We also present numerical simulations of the SEIR model (2.1),
where we numerically computed final epidemic sizes for different scenarios.

4. Numerical simulations

In this section, we study the effect of different parameters of the model on the control reproduction
number Rc, given in (3.5). These results are presented as contour plots. In addition, we present nu-
merical simulations of the SEIRV model (2.1) and investigate the effect of different parameters of the
model on the disease dynamics and final epidemic size.

In Figure 2, we present contour plots of the control reproduction number (3.5) computed as a func-
tion of different parameters of the model (2.1). The top left panel of this figure shows Rc as a function
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Figure 2. Computed control reproduction number. Contour plots of the control reproduc-
tion number (3.5) computed as a function of different parameters of the model. Top left: the
direct transmission rate β and indirect transmission rate βv. Top right: the adherence rate γ
and direct transmission rate β. Middle left: the adherence rate γ and indirect transmission
rate βv. Middle right: the shedding rate for non-adherence individuals m and indirect trans-
mission rate βv. Bottom left: the environment cleaning rate τ and indirect transmission rate
βv. Bottom right: the environment cleaning rate τ and the shedding rate for non-adherence
individuals m. Parameters are as given in Table 2, except when used to generate the plot.
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of the direct and indirect transmission rates. As one would expect, Rc increases as both transmission
rates increase. We also notice that the direct transmission rate β has more effect on the control repro-
duction number than the indirect transmission rate βv. This may be because indirect transmissions are
mitigated by environment cleaning and virus decay rate. In the top right panel of the same figure, we
have Rc as a function of the adherence rate γ and the direct transmission rate β. This result shows that
the adherence rate has little effect on the control reproduction number when the transmission rate is
low, but has more effect on it as the transmission rate increases. When the transmission rate is low,
there is a lesser chance of getting infected, as a result, adherence to the NPIs will have little effect on
the spread of infection. However, when transmission rate is high, adhering to the NPIs will signifi-
cantly reduce disease transmission. Similar result is shown in the middle left panel of Figure 2 for the
adherence rate γ and the indirect transmission rate βv. For this scenario, Rc increases as the adherence
to NPIs decreases even for a low indirect transmission rate, unlike the case of direct transmission (top
right panel of Figure 2), where adherence rate does not affect Rc when β is small. The reason for this
is that indirect transmission does not only depend on the transmission rate. It also depends on the en-
vironment cleaning/sanitization rate and the shedding and decay rate of the virus. If a lot of shedding
is happening, or the decay rate of the virus is low, there may be a need to adhere more to the NPIs to
reduce the spread of the disease.

For a fixed indirect transmission rate, Rc increases as the virus shedding rate increases, although,
if the transmission rate is low, Rc remains constant irrespective of the shedding rate. Similarly, for a
fixed shedding rate m for non-adherent population, Rc increases as βv increases, but remains constant
when shedding rate is too low irrespective of the value of βv (see the middle right panel of Figure 2).
This result shows that when infectious individuals do not shed much virus or contaminate surfaces,
there will be no indirect disease transmission through these surfaces. Similar result is obtained when
Rc is computed as a function of the shedding rate ma for the adherent population and the indirect
transmission rate βv. In the bottom panel of Figure 2, we present Rc as a function of the environ-
ment cleaning/sanitization rate and the indirect transmission rate βv (left panel), and the environment
cleaning/sanitization rate and the shedding rate of non-adherent individuals m (right panel). Both re-
sults show that Rc decreases as the environment cleaning/sanitization rate increases, and increases with
increase in the transmission and shedding βv and m, respectively.

Figure 3 shows the total infectious population
(
I(t)+ Ia(t)

)
over time for different rates of movement

from adherent population to non-adherent and vice versa. These results are used to investigate the
effect of adherence to COVID-19 NPIs on the dynamics of the disease. We consider four (4) different
scenarios based on the rate of movement from adherent to non-adherent population γa and the rate
of moving from non-adherent to adherent population γ for different values of the parameter σa, used
to model the reduction in susceptibility, shedding of virus, and onward disease transmission for the
adherent population. The first scenario shown in the top left panel of Figure 3 is for γ = γa = 0,
where there is no movement of individuals between non-adherence and adherence populations. For
this scenario, the epidemic final size is 60.19% when σa = 0.5, 80.71% when σa = 0.75, and 91.43%
when σa = 1. Recall that the epidemic final size is the total fraction of the population that becomes
infected during the course of the epidemic. As expected, the largest epidemic occurs when there
is no protection derived from adhering to the NPIs, that is, when σa = 1. Epidemic decreases as the
protection from NPIs increases (σa decreases). Similar results are observed for the remaining scenarios
in this figure. When there is movement between the adherent and non-adherent population such that

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8905–8932.



8920

0 200 400 600
0

2

4

6

10
5

0 200 400 600
0

2

4

6

10
5

0 200 400 600
0

2

4

6

10
5

0 200 400 600
0

2

4

6

10
5

Figure 3. Effect of adherence to NPIs on COVID-19 epidemic. Total infectious popu-
lation over time for different values of the parameter σa (used to model reduction in virus
shedding, susceptibility, and onward disease transmission for the adherent population) and
the movement rates γ (non-adherence to adherence) and γa (adherence to non-adherence).
Top left: γ = γa = 0 with f̃ = 0.5, top right panel: γ = γa = 0.3, bottom left: γ = 0.25
and γa = 0.3, and bottom right: γ = 0.3 and γa = 0.25. All other parameters are as given
in Table 2 with initial conditions S (0) = (1 − f )N, E(0) = 1, I(0) = 1,R(0) = 0, S a(0) =
f N, Ea(0) = 1, Ia(0) = 1, Ra(0) = 0 and V(0) = 1.
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the rate of going from adherence to non-adherence is the same as that of going from non-adherence to
adherence, specifically, when γ = γa = 0.3, the final epidemic size is 59.50% for σa = 0.5, 81.20%
for σa = 0.75 and 91.43% for σa = 1. The plots for this scenario are shown in the top right panel of
Figure 3.

In the bottom panel of Figure 3, we show the results for γ = 0.25 and γa = 0.3 (left panel), and
γ = 0.3 and γa = 0.25 (right panel). For the result in the left panel where the rate of movement from the
adherent population to non-adherent (γa) is higher than that of going from non-adherence to adherence
(γ), the epidemic final sizes are 64.86%, 82.49% and 91.43% for σa = 0.5, σa = 0.75 and σa = 1,
respectively. On the other hand, for γ = 0.3 and γa = 0.25 (bottom right panel of Figure 3), where
the rate of movement from the non-adherence to adherence is higher than that of going from adherent
population to non-adherent, the epidemic final size is 53.41% for σa = 0.5, 79.83% for σa = 0.75,
and 91.43% for σa = 1. We observe from the results in this figure that the epidemic size decrease
as σa decreases. This shows that fewer infections are occurring as people get more protection from
adhering to the NPIs, since the benefit of adhering to NPIs increases as σa decreases. In addition, the
epidemic size when σa = 1 (no protection due to adherence to NPIs) is the same for any values of γ
and γa. For σa = 0.5 and σa = 0.75, the smallest epidemics were predicted for the scenario where the
rate of movement from non-adherence to adherence γ is higher than that of moving from adherence to
non-adherence γa (bottom right panel of Figure 3). Whereas the largest epidemics occur when the rate
of adherence γ = 0.25 is lower than that of non-adherence γa = 0.3. These results show that there will
be smaller epidemic if more people adhere to the NPIs.

The results in Figure 4 were obtained using the same parameters and initial conditions as those in
Figure 3 but plotted in terms of the adherent and non-adherent populations. Presenting the results in
this way enables us to study the dynamics of the two populations as the movement rates γ and γa are
varied. We notice from the results in this figure that even though the final epidemic size is the same for
all four scenarios whenσa = 1 (as discussed earlier in Figure 3), the dynamics of the disease is different
for each scenario. When γ = γa, the disease dynamics is the same for both adherent and non-adherent
population when σa = 1 (see the red plots in the top panel of Figure 4). This is because the population
is divided into two equal halves between the adherent and non-adherent population for these scenarios,
and no protection is derived from adhering to the NPIs (since σa = 1). When σa , 1, for the scenario
with γ = γa = 0.3, the dynamics of the disease in the two populations are the same irrespective of σa

(see top right panel of Figure 4). However, this is not the case for γ = γa = 0, even though f = 0.5 in
both scenarios. For σa = 0.5 and σa = 0.75, there are more infections in non-adherent population than
the adherent population. This is as a result of the protection derived from adhering to the COVID-19
NPIs. When γ = 0.25 and γa = 0.3, there are more infections in the non-adherent population than the
adherent population for all values of σa. This is due to the fact that there are more people in the non-
adherent population since the non-adherence rate is higher (γa > γ) and they do not get protection from
the NPIs. The most interesting and counter-intuitive result is when γ = 0.3 and γa = 0.25 (bottom right
panel of Figure 4). This result shows that there are more infections in the adherent population than non-
adherent population. Recall that γ is the adherence rate and γa is the non-adherence rate. For γ = 0.3
and γa = 0.25, the initial fraction of the population that adhere to COVID-19 NPIs is f ≈ 0.5455,
which is larger than the population of those that do not adhere. As time goes on, more people adhere to
COVID-19 NPIs than they stop adhering since γ > γa. This increasing the adherence population and
consequently the adherent-susceptible and -infectious population. Therefore, causing more infections
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Figure 4. Dynamics of adherent and non-adherent populations. Infectious population
over time for adherent and non-adherent populations for σa = 0.5 (black), σa = 0.75 (blue)
and σa = 1 (red). Top left: γ = 0 and γa = 0 with f̃ = 0.5, top right panel: γ = 0.3 and
γa = 0.3, bottom left: γ = 0.25 and γa = 0.3, and bottom right: γ = 0.3 and γa = 0.25. All
other parameters are as given in Table 2 and initial conditions are the same as in Figure 3.
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in the adherence population than in the non-adherent population. Note that even though there are more
infections in the adherent population than the non-adherent population, the final epidemic size is still
smaller for this scenario relative to that of the γ = 0.25 and γa = 0.3 scenario for σa = 0.75 and
σa = 0.5, as discussed earlier and shown in the bottom left panel of Figure 4. The epidemic size is the
same for both scenario when σa = 1.
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Figure 5. Effect of indirect transmission rate on disease dynamics. Total infectious pop-
ulation over time for different values of the indirect transmission rate βv and virus shedding
(or surface contamination) rate m for non-adherent population. Left panel: m = 0.02 and
right panel: m = 0.125. βv = 0.15 (black), βv = 0.35 (blue) and βv = 0.55 (red). All other
parameters are as given in Table 2 and initial conditions are the same as in Figure 3.

In Figure 5, we investigate the effect of the indirect transmission rate βv and the shedding rate m
for non-adherent population on the dynamics of the disease. When the shedding rate is m = 0.02 (left
panel of Figure 5), the final epidemic size is 46.66% for βv = 0.15, 48.50% for βv = 0.35, and 50.25%
for βv = 0.55. As the shedding rate increases to m = 0.125 (right panel of Figure 5), the final epidemic
size for βv = 0.15 is 53.44%, for βv = 0.35 is 62.11%, and 68.87% for βv = 0.55. This shows that the
final epidemic size increases, as the transmission rate βv increases. When the shedding rate is low, there
is not much difference in the epidemic size as the transmission rate βv increases. However, for a higher
virus shedding rate or surface contamination rate, there is a significant difference in the final epidemic
size as βv increases. This is because when infectious individuals do not shed much virus or contaminate
shared surfaces, there will be no disease transmission even if the transmission rate (implicitly Rc) is
high. On the other hand, when a lot of shedding or surface contamination is happening, the disease
will spread more easily leading to bigger epidemics as βv increases. This results agree with the Rc

computation shown in the middle left panel of Figure 2. A similar result was obtained for the shedding
ma for the adherent population (result not included).

Next, we study the effect of different initial conditions on the dynamics of the diseases. We consider
two main scenarios: when the epidemic starts mainly through direct transmissions and when it starts
mainly through indirect transmissions. For the scenario where the epidemic starts through direct trans-
mission, we assume that there are only twenty infected individuals in the population at the beginning
of the epidemic; five in the exposed and another five in the infectious compartments of the adherent
population. Similar infected population is specified for the non-adherent population, that is, E(0) = 5,
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Figure 6. Effect of initial infection on disease dynamics. Total infectious population over
time showing the effect of different initial conditions on the dynamics of the diseases. The
solid curves are for when the epidemics start mainly through direct transmissions with initial
conditions E(0) = 5, Ea(0) = 5, Ia(0) = 5, I(0) = 5 and V(0) = 1. The dashed curves are
for when the epidemic starts mainly through indirect transmissions with initial conditions
E(0) = 1, Ea(0) = 1, Ia(0) = 1, I(0) = 1, and V(0) = 10. The remaining initial conditions
are as given in Figure 3. Left panel: γ = 0.25 and γa = 0.3 and right panel: γ = 0.3 and
γa = 0.25. σa = 0.5 (black), σa = 0.75 (blue) and σa = 1 (red). Remaining parameters are
as given in Table 2.

Ea(0) = 5, Ia(0) = 5 and I(0) = 5, and V(0) = 1, while the remaining compartments are empty. On
the other hand, when the epidemic starts mainly through indirect transmissions, the initial conditions
used are E(0) = 1, Ea(0) = 1, Ia(0) = 1, I(0) = 1, and V(0) = 10, with the remaining compartments
empty. The results for both scenarios are shown in Figure 6 for different values of the movement pa-
rameters γ and γa, where the solid curves are for the case where epidemic starts mainly through direct
transmissions, and the dashed curves are for when the epidemic starts mainly through indirect trans-
missions. We observe from these results that for all the cases considered, the total infectious population
increases more rapidly when direct transmissions dominate at the beginning of the epidemic, compared
to when it starts mainly through indirect transmissions. However, the final epidemic size is the same
irrespective of the initial conditions. This result agrees with the Rc computation in the top left panel of
Figure 2 that shows that the control reproduction number is more sensitive to the direct transmission
rate β compared to the indirect transmission rate βv.

The results in Figure 7 show the effect of the environment cleaning or sanitization rate on the disease
dynamics. When βv = 0.15, the final epidemic size for τ = 0.1 is 53.44%, 51.26% for τ = 0.3, and
50.00% when τ = 0.5. As the indirect transmission rate increases to βv = 0.5, the final epidemic size
also increases with 67.33% for τ = 0.1, 62.38% for τ = 0.3, and 59.23% for τ = 0.5. Overall, the final
epidemic size decreases as the rate of cleaning/sanitizing the environment increases. When the indirect
transmission rate βv is small, there is not much difference in the final epidemic size as τ increases, but
for a higher transmission rate βv, an increase in the environment sanitizing rate significantly decreases
the epidemic final size. These results are consistent with the Rc computation in the bottom left panel of
Figure 2, where there is no significant difference in the control reproduction number as τ increase for a
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small value of βv, and a significant decrease in Rc as τ increases for a higher indirect transmission rate.
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Figure 7. Effect of environment cleaning/sanitization on disease dynamics. Total in-
fectious population over time for different environment cleaning/sanitization rate τ and the
indirect transmission rate βv for non-adherent population. Left panel: βv = 0.15 and right
panel: βv = 0.5. τ = 0.1 (black), τ = 0.3 (blue), and τ = 0.5 (red). All other parameters are
as given in Table 2 and initial conditions are the same as in Figure 3.

5. Discussion

We have developed and analyzed a SEIRV model for studying the dynamics of COVID-19. Our
model divides the population into two groups: adherent and non-adherent, and considers both direct
and indirect transmission of the disease. Individuals in the adherent population are assumed to adhere
to all COVID-19 non-pharmaceutical interventions (NPIs) such as hand washing, physical distancing,
wearing face masks, and avoiding large gatherings. In contrast, those in the non-adherent population
do not adhere to these NPIs. By adhering to the NPIs, those in the adherent population have reduced
their susceptibility, transmissibility and infectiousness. By direct transmission, we mean disease trans-
mission that occurs when a susceptible individual comes directly in contact with the saliva and other
respiratory droplets expelled by an infectious individual when they talk, sing, cough or sneeze, while
indirect transmission refers to the infections that occur through contaminated shared surfaces and ob-
jects such as door handles, utensils, etc. Individuals can move from adherent to non-adherent and vice
versa at some rate in each human compartments.

We calculated the control reproduction number and final size relation for our model and studied
the effect of the model parameters on the calculated control reproduction number. These results are
presented as contour plots in Figure 2 and show that the direct transmission rate has more effect on the
control reproduction number than the indirect transmission rate. We believe this is because indirect
transmission depends on other factors such as shedding rate and environment cleaning rate. Similarly,
when we studied Rc with respect to the adherence rate γ and the direct transmission rate β, we no-
tice that adherence to NPIs has little effect on Rc when the transmission rate is small. As the direct
transmission rate increases, our results show that adhering to the NPIs would significantly reduce Rc.
On other hand, adherence to NPIs is beneficial irrespective of the values of the indirect transmission
rate. We also showed that the virus shedding rate has little effect on the control reproduction number
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if the indirect transmission rate is too small. However, as the transmission rate increases, an increase
in shedding rate increases the control reproduction number significantly.

Furthermore, we studied the effect of some model parameters on the disease dynamics. We showed
that the disease dynamics is different when there is no movement between adherent and non-adherent
population, compared to when the movement between the two groups happens at the same rate. When
there is no movement between the groups, there are less infections in the adherent population com-
pared to the non-adherent population as a result of protection from adhering to NPIs. On the contrary,
when movement happens between the two groups at the same rate, the level of infection in the two
populations is the same, simply because the entire population becomes homogeneous as a result of
the movement between adherent and non-adherent population happening at the same rate. When the
non-adherence rate is higher than the adherence rate, there are more infections in the non-adherent pop-
ulation relative to the adherent population. In a situation where the adherence rate is higher than the
non-adherence rate, the infection in the adherent population is higher compared to the non-adherent
population, although, one would have expected the infections in the adherent population to be low
because of the protection from adhering to the NPIs. This counterintuitive observation is due to the
movement parameters γ and γa, and the parameter σa used to model protection in the adherent popu-
lation due to NPIs. Observe from the results in Figure 4 that we have more infections in the adherent
population only when the rate γ of adhering to COVID-19 NPIs is larger than the non-adherence
rate γa. For this scenario, the initial fraction of the total population adhering to the COVID-19 NPIs
is larger than the non-adherence population, and as the epidemic continues, we have more people
moving to the adherence population that they are becoming non-adherent. Therefore, increasing the
adherent susceptible and infected populations, and consequently leading to a larger epidemic in this
population compared to the non-adherent population. As the protection derived from adhering to the
NPIs increases, fewer adherent individuals are getting infected as shown in the bottom left panel of
Figure 4. Overall, even though there are more infections in the adherent population when the rate of
movement from non-adherent to adherent is higher than that of moving vice versa, the final epidemic
size is smaller for this scenario than the other scenarios. This result shows the benefits of adhering to
the COVID-19 NPIs in reducing the epidemic size.

Also, we examined the effect of different initial conditions on the dynamics of the diseases. We
considered when the epidemic starts mainly through direct transmissions and when it starts mainly
through indirect transmissions. For the scenario where the epidemic starts through direct transmissions,
we assume that only twenty infected individuals are in the population at the beginning of the epidemic
with a unit of virus on contaminated surfaces. On the other hand, when the epidemic starts mainly
through indirect transmissions, we assume that there are only four infected individuals in the population
and ten units of viruses on contaminated surfaces at the beginning of the epidemic. These initial
conditions are carefully selected to model the dominance of one transmission route over the other at
the beginning of the epidemic. Our results show that the epidemic increases more rapidly when it
starts mainly through direct transmissions, compared to when it starts through indirect transmissions,
although the final epidemic size is the same irrespective of the initial conditions. This result agrees
with the result obtained when we studied the effect of the direct and indirect transmission rates on
the control reproduction number. Finally, we study the effect of environment sanitization on disease
dynamics. Our results show that environmental sanitization reduces the prevalence of COVID-19 and
consequently reduces the final epidemic size.
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An immediate and interesting future direction in this project is to fit the model to reported cases
of COVID-19 in a specific location and use region-specific parameters. By fitting the model to the
cases data, important parameters that are not immediately available can be estimated from the data.
The model can then be used to make forecasts/predictions and test the effect of implementing different
intervention strategies. Another important future direction is to include vaccination compartments into
the model. The COVID-19 vaccines became available and have been administered since early 2021.
As of July 6, 2021, over 2.9 billion doses of the vaccine have been administered [2]. To properly
capture the dynamics of COVID-19 in any population starting from January 2021, vaccination needs
to be included in the model. It would be worthwhile to stratify the population by age so that the
model can be used to answer age related questions such as those of school reopening and age-specific
vaccination plans. There are currently four SARS-CoV-2 variants of concern (VOC) that are believed
to be in circulation worldwide. These VOC are believed to be more contagious, leading to more severe
sickness than the initial SARS-CoV-2 virus [75]. An interesting extension of our model would be to
incorporate these variants of concerns.

Our model is prone to some limitations. This includes our assumptions that the population is well-
mixed. We know contact rates vary from one person to another depending on their age group and
activity level. Also, mixing patterns are different for individuals of different age groups. Using ho-
mogeneous mixing, we assume that everyone in the population has the same contact rate and mixing
pattern. Another limitation of our model is that we have clustered all COVID-19 non-pharmaceutical
interventions (NPIs) into one group, assuming that any individual that adheres to one of them will ad-
here to all. This may not be the case in reality. Some individuals may adhere to only a few of the NPIs.
It would be nice to distinguish between the NPIs and study the effect of different NPIs on the disease
dynamics. Similarly, we have assumed that the rate of movement from adherence to non-adherence
and vice versa are constant over time. In a real-world scenario, these rates may change from time
to time and may be affected by government policies and their implementation of the NPIs. Further
limitation to our study includes lack of stochasticity. An interesting future work may include adding
uncertainties and parameter estimation into this modeling framework. Despite these limitations, our
model can capture the overall dynamics of the COVID-19 epidemic considering infections transmitted
through direct and indirect routes, and with and without adherence to the COVID-19 NPIs.
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