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Abstract: Enhancer is a non-coding DNA fragment that can be bound with proteins to activate 

transcription of a gene, hence play an important role in regulating gene expression. Enhancer 

identification is very challenging and more complicated than other genetic factors due to their 

position variation and free scattering. In addition, it has been proved that genetic variation in 

enhancers is related to human diseases. Therefore, identification of enhancers and their strength has 

important biological meaning. In this paper, a novel model named iEnhancer-MFGBDT is developed 

to identify enhancer and their strength by fusing multiple features and gradient boosting decision tree 

(GBDT). Multiple features include k-mer and reverse complement k-mer nucleotide composition 

based on DNA sequence, and second-order moving average, normalized Moreau-Broto auto-cross 

correlation and Moran auto-cross correlation based on dinucleotide physical structural property 

matrix. Then we use GBDT to select features and perform classification successively. The accuracies 

reach 78.67% and 66.04% for identifying enhancers and their strength on the benchmark dataset, 

respectively. Compared with other models, the results show that our model is useful and effective 

intelligent tool to identify enhancers and their strength, of which the datasets and source codes are 

available at https://github.com/shengli0201/ iEnhancer-MFGBDT1. 
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1. Introduction  

Enhancers are non-coding DNA fragments, which hold responsibility for regulating gene 
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expression in both transcription and translation and the production of RNA and proteins [1]. Unlike 

the proximal elements promoters of the gene, enhancers are distal elements that can be located up to 

20kb upstream or downstream away from a gene, or even located on a different chromosome [2]. 

Such locational variation makes the identification of enhancers challenging. Moreover, genetic 

variation in enhancers has been demonstrated that it is related to many human illnesses, such as 

cancer [3,4], disorder [4,5] and inflammatory bowel disease [6]. Genome-wide study of histone 

modifications has shown that enhancers are a large group of functional elements with many different 

subgroups, such as strong enhancers and weak enhancers, poised enhancers and inactive enhancers [7]. 

Because enhancers of different subgroups have different biological activities, understanding 

enhancers and their subgroups is an important task, especially for the identification of the enhancers 

and their strength. 

Due to the importance of enhancers in genomics and disease, the identification of the enhancers 

and their strength has become a popular topic in biological research. The pioneering works carried 

out purely by the experimental techniques include chromatin immunoprecipitation followed by deep 

sequencing [8–10], DNase I hypersensitivity [11] and genome-wide mapping of histone 

modifications [12–16]. However, the experimental methods are expensive, time consuming and low 

accuracy. Therefore, several computational methods were developed in order to fast identify 

enhancers and their strength in genomes. In 2016, Liu et al. [2] developed a two-layer predictor 

iEnhancer-2L, which is the first computational model for identifying not only enhancers, but also 

their strength by pseudo k-tuple nucleotide composition. At the same year, Jia et al. [17] proposed 

EnhancerPred model by fusing bi-profile Bayes and pseudo-nucleotide composition as multiple 

features, and a two-step wrapper for feature selection to distinguish between enhancers and 

non-enhancers and to determine enhancers’ strength. In 2018, Liu et al. [18] established the 

iEnhancer-EL model for identifying enhancers and their strength with ensemble learning approach. 

In 2019, Nguyen et al. [19] put forward iEnhancer-ECNN model to identify enhancers and their 

strength using ensembles of convolutional neural networks. At the same year, Tan et al. [20] used 

ensemble of deep recurrent neural networks for identifying enhancers via dinucleotide 

physicochemical properties. Le et al. [21] developed iEnhancer-5Step model to identifying enhancers 

and their strength using hidden information of DNA sequences via Chou's 5-step rule and word 

embedding. In 2021, Basith et al. [22] proposed Enhancer-IF model by integrative machine learning 

(ML)-based framework for identifying cell-specific enhancers. At the same year, Cai ea al. [23] 

established iEnhancer-XG model by using XGBoost as a base classifier and k-spectrum profile, 

mismatch k-tuple, subsequence profile, position-specific scoring matrix and pseudo dinucleotide 

composition as feature extraction methods. Le et al. [24] use a transformer architecture based on 

BERT and 2D convolutional neural network to identify DNA enhancers. Lim et al. [25] proposed 

iEnhancer-RF model to identify enhancers and their strength by enhanced feature representation 

using random forest. However, the stability of the model still needs to be improved, especially for 

identifying the strong enhancers from the weak enhancers.  

In this study, we focus on developing a novel model named iEnhancer-MFGBDT to identify 

enhancers and their strength. Its first layer serves to identify whether a DNA sequence sample is of 

enhancer or not, while its second layer is to identify whether the identified enhancer as being strong 

or weak. We fuse k-mer and reverse complement k-mer nucleotide composition based on DNA 

sequence, and second-order moving average, normalized Moreau-Broto auto-cross correlation and 

Moran auto-cross correlation based on dinucleotide physical structural property matrix as extracted 
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multiple features, and a 902-dimensional feature vector is obtained for each enhancer sequence. Then, 

gradient boosting decision tree (GBDT) algorithm in this study is adopted as the feature selection 

strategy and also as the classifier. The accuracy of enhancers and their strength on the benchmark 

dataset with the 10-fold cross-validation are 78.67% and 66.04%, respectively. The accuracy of 

enhancers and their strength on the independent dataset with the 10-fold cross-validation are 77.50% 

and 68.50%, respectively. The experimental results indicate that our model improves the accuracies 

to identify enhancers and their strength, and is a useful supplementary tool. 

2. Materials and methods 

2.1. Datasets 

In order to facilitate comparison, in this study, we adopt the benchmark dataset S  constructed 

by Liu et al. [2], they obtain the 2968 enhancer sequences with 200bp which can be formulated by 

                          strong weak

S S S

S S S

+ −

+ + +

=

=

U

U
,                              (1) 

where S +  contains 1484 enhancer sequences, S−  contains 1484 non-enhancer sequences, strongS +
 

contains 742 strong enhancer sequences, 
weakS +  contains 742 weak enhancer sequence, in which 

none of the enhancer DNA sequences has the pairwise sequences similarities more than 80%. 

2.2. Feature extraction 

Suppose that a DNA enhancer sequence D  with L  nucleic acid residues is expressed by 

1 2 3 ,i LD B B B B B= L L                              (2) 

{ (adenosine), (cytidine),  (guanosine),  (thymine)},iB A C G T           

where iB  denotes the i -th nucleic acid residue of the DNA sequence at the sequence position i . In 

this study, 902 multiple features are extracted by fusing k-mer nucleotide composition, reverse 

complementary k-mer, second-order moving average, Moreau-Broto auto-cross correlation, and 

Moran auto-cross correlation based on dinucleotide property matrix. 

2.2.1. K-mer nucleotide composition 

K-mer nucleotide composition is a basic feature extraction approach and widely used in 

different fields of bioinformatics [26–29]. For a enhancer sequence with L  nucleotides, the k-mer 

nucleotide compositions involve all the possible subsequences with length k  of the enhancer 

sequence. We slide along the enhancer sequence with one nucleotide as a step size using a sliding 

window k . When the subsequence of the enhancer sequence matches with the i -th k-mer 
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nucleotide composition, the occurrence number of the k-mer is denoted by in . if  represents the 

occurrence frequency of the i -th k-mer, and can be expressed by  

.
1

i
i

n
f

L k
=

− +
                               (3) 

For each k , we can obtain 4k
 k -mer features, here we let 1,2,3k = , Finally, each enhancer 

sequence obtains 1 2 34 4 4 84+ + = -dimensional k-mer feature vector. 

2.2.2. Reverse complementary k-mer 

The reverse complementary k-mer is a variant of the basic k-mer, and abbreviated as RevKmer, 

in which the k-mers are not expected to be strand-specific, so reverse complements are collapsed into 

a single feature. For example, when k =2, there are totally 16 basic k-mers, but by removing the 

reverse complementary k-mers, only 10 different dinucleotides AA, AC, AG, AT, CA, CC, CG, GA, 

GC and TA are be retained. In other words, we obtain 10 reverse complementary 2-mer features. Let 

1,2,3,k =  2+10+32 = 44 RevKmer features are extracted, which can be calculated by a web server 

named Pse-in-One 2.0 [30]. 

2.2.3. Second-order moving average based on dinucleotide property matrix  

As has been reported, DNA physicochemical properties play crucial role in gene expression 

regulation and genome analysis, and are also closely correlated with the functional non-coding 

elements [31–33]. In this study, six dinucleotide physical structural properties are adopted, include 

three the local translational parameters related to shift, slide and rise, and three the local angular 

parameters related to twist, tilt and roll [34]. The values of six DNA dinucleotide physical structural 

properties are shown in Table 1. Each DNA physical structural property is normalized for reducing 

the bias and noise by the following formula 

min

max min

,
P P

P P

−

−
                                (4) 

where P  is the original value of the property, minP  and maxP  are the minimum and the maximum 

property values, respectively. 

A DNA sequence is a polymer of four nucleotides with A, C, G and T. Any combination of two 

nucleotides is called dinucleotide. Hence, there are totally 4*4 = 16 basic dinucleotides. First of all 

each dinucleotide in a DNA sequence is replaced by the value of the physical structural property. 

Then, each DNA sequence in the datasets can be converted into a matrix 
, ( 1) 6( )i j LP p − = , which is 

named by dinucleotide property matrix (DPM), where L  represents the number of nucleic acid 
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residue in this DNA sequence. 
,i jp  represents the value of the i th dinucleotide corresponding to 

the j th physical structural property.  

Table 1. The original values of the six physical structural properties for the 16 dinucleotides in DNA. 

Dinucleotide  
Physical structural property 

Rise Roll Shift Slide Tilt Twist 

AA/TT 7.65 2.26 1.69 0.026 0.020 0.038 

AC/GT 8.93 3.03 1.32 0.036 0.023 0.038 

AG/CT 7.08 2.03 1.46 0.031 0.019 0.037 

AT 9.07 3.83 1.03 0.033 0.022 0.036 

CA/TG 6.38 1.78 1.07 0.016 0.017 0.025 

CC/GG 8.04 1.65 1.43 0.026 0.019 0.042 

CG 6.23 2.00 1.08 0.014 0.016 0.026 

GA/TC 8.56 1.93 1.32 0.025 0.020 0.038 

GC 9.53 2.61 1.20 0.025 0.026 0.036 

TA 6.23 1.20 0.72 0.017 0.016 0.018 

 

Second-order moving average (SOMA) algorithm is proposed by Alessio et al. [35], which is 

defined by fusing the idea of the moving average and the second-order difference. SOMA mainly 

investigate the long-range correlation properties of a stochastic time series.  

Let a discrete stochastic time series be ( ), 1,2, , ,y i i L=  where L  is the size of the 

stochastic series ( )y i . The algorithm of the SOMA is described as follows  

Step 1. Calculate the moving average ( )ny i  of the time series ( )y i  as 

1

0

1
( ) ( ),

n

n

k

y i y i k
n

−

=

= −                            (5) 

where n  is the moving average window. When 0n→ , then ( ) ( ).ny i y i→  

Step 2. For a given moving average window n , 2 n L  , the second-order difference between 

the ( )y i  and ( )ny i  is defined by 

2 21
[ ( ) ( )] ,

L

MA n

i n

y i y i
L n


=

= −
−
                       (6) 

where 2

MA  is a systematic analysis of the properties of ( )y i  with respect to ( )ny i , so 2

MA  is 

called the second-order moving average. 

A dinucleotide property matrix contains 6 columns, each column is considered a time series, in 
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other words, a dinucleotide property matrix contains 6 time series. Hence, each enhancer DNA 

sequence is represented by 6 SOMA features for a certain moving average window n . Here, we let 

2,3, ,10n = , we construct a 6 9 54 = -dimensional SOMA-DPM feature vector for each 

enhancer sequence. 

2.2.4. Moreau-Broto auto-cross correlation based on dinucleotide property matrix 

Normalized Moreau-Broto auto-cross correlation (NMBACC) [36] based on dinucleotide 

property matrix for extracting global sequence information can be described by 

( )
1

, ,

1

1
, , , ( , 1,2, ,6,0 )

1

L

i s i t

i

NMBACC s t p p s t L
L



 


− −

+

=

=  =  
− −

 L        (7) 

where   is the lag of the auto-cross correlation along the column in dinucleotide property matrix. 

,i sP  represents the value at the i -th row for the s -th column (s-th property index), 
,i tP +

 

represents the value at the i + -th row for the t -th column ( t -th property index). When s t= , 

( ), ,NMBACC s s   represents the auto- correlation with the same property. When s t , 

( ), ,NMBACC s t   represents the cross-correlation with the different property. Here, we let 

1,2,3, ,10 = ， finally, each enhancer sequence obtains a 6 6 10 360  = -dimensional 

NMBACC-DPM feature vector. 

2.2.5. Moran auto-cross correlation based on dinucleotide property matrix 

Moran auto-cross correlation (MACC) [37] based on dinucleotide property matrix for 

extracting global sequence information can be described by 

( )
( )( )

( )( )

1

, ,

1

1

, ,

1

1

1
, , , ( , 1,2, ,6,0 )

1

1

L

i s s i t t

i

L

i s s i t t

i

p p p p
L

MACC s t s t L

p p p p
L






 

− −

+

=

−

=

− −
− −

= =  

− −
−




L    (8) 

where   is the lag along the column in dinucleotide property matrix, ,i sp
 
and ,i tp represent the 

value at the i-th row for the s -th column and t -th column in dinucleotide property matrix, 

respectively. 
+ ,i tp   

represents the value at the ( )i + -th row for the t -th column in dinucleotide 

property matrix. sp  and tp  are the average value for the s -th and t -th column, respectively. 

When s t= , ( ), ,MACC s s   represents the auto-correlation with the same property. When ,s t
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( ), ,MACC s t  represents the cross-correlation with the different property. Here, we let 

1,2,3, ,10 = ， finally, each enhancer sequence obtains a 6 6 10 360  = -dimensional 

MACC-DPM feature vector. 

2.3. Gradient boosting decision tree 

Gradient boosting decision tree (GBDT) is a Boosting algorithm based on decision tree as base 

learner, was proposed by Freidman in 2001 [38, 39]. It builds a decision tree in each iteration to 

reduce the residual of the current model in the gradient direction. Then linearly combines the 

decision tree with the current model to obtain a new model. GBDT repeats the iteration until the 

number of decision trees reaches the specified value, and the final strong learner is obtained. GBDT 

is commonly used for regression, classification and feature selection. GBDT’s advantages include: (a) 

It flexible processes of various types of data, including both continuous and discrete dataset; (b) It 

has powerful predictive ability and generalization ability; (c) It has good interpretability and 

robustness, can automatically discover high-order relationships between features, and does not 

require data normalization and other processing. 

   The GBDT classification algorithm process is as follows 

Input: training dataset 1 1 2 2{( , ), ( , ), ,( , )}m mD x y x y x y= . Suppose that the maximum iteration 

number is T , the loss function is ( , ( ))L y f x , and m  is the number of samples.  

(1) Initialize the weak classifier as follows 

0

1

( ) arg min ( , ),
m

i
c i

f x L y c
=

=                             (9) 

c  is the constant value that minimizes the loss function, that is, 0( )f x  is a tree with only one root node. 

(2) For 1t =  to T  

a. For 1i =  to m , calculate negative gradient as follows 

1( ) ( )

( , ( ))
,

( ) 1 exp( ( ))
t

i i i
ti

i i if x f x

L y f x y
r

f x y f x
−=

 
= − = 

 + 
                (10) 

where the loss function ( , ( )) log(1 exp( ( ))), { 1,1}.L y f x yf x y= +  −  

b. Use ( , ), 1,2, ,i tiL x r i m= L  to fit a CART regression tree to get the t -th regression tree, and 

its corresponding leaf node area is 
tjR , 1,2, , .j J= L  J  is the number of leaf nodes of the 

regression tree t . 
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c. For leaf node area 1,2, ,j J= L , calculate the best residual fitting value as follows 

1arg min log[1 exp( ( ( ) ))].
i tj

m

tj i t i
c x R

c y f x c−



= + − +                  (11) 

As the above equation is difficult to optimize, 
tjc  is generally replaced by the approximate 

value as 

.
| | (|1 |)

i tj

i tj

ti

x R

tj

ti ti

x R

r

c
r r





=
−




                           (12) 

d. Update the strong classifier by 

1

1

( ) ( ) ( ).
J

t t tj tj

j

f x f x c I x R−

=

= +                        (13) 

(3) Get the final strong classifier ( )f x  by 

1 1

( ) ( ) ( ).
J J

T tj tj

t j

f x f x c I x R
= =

= =                      (14) 

Output: ( )Tf x . 

GBDT can not only be used for classification, but also can be used for feature selection by 

calculating the gini index. The gini index is ranked in descending order by the importance of the 

feature, the first k  features can be selected as needed. In this study, we adopt GBDT to carry out 

feature selection and classification. 

2.4.  Cross-validation and performance assessment 

In order to save the computational time, 10-fold cross-validation is carried out for each feature 

to evaluate the identification performance in this study. The dataset is randomly divided into ten 

subsets with approximately equal size, and the ratio of the testing set to the training set is 1:9. Each 

subset is in turn taken as a test set and the remaining nine subsets are used to train the GBDT 

classifier, and finally the average performance measures over the ten validation results are used for 

performance evaluation. K-fold cross-validation approach can improve the reliability of evaluation, 

because all of the original data are considered and each subset is tested only once. 

To make an objective and comprehensive evaluation, we employ different performance 

measures [40–43], including sensitivity (Sn), specificity (Sp), accuracy (Acc) and Matthews 

correlation coefficient (MCC), The MCC value is ranging from -1 to 1, while the values of other 

three measures range from 0 to 1. They can be formulated as 
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1 0 1

1 0 1

1

1 1

1 1

N
Sn Sn

N

N
Sp Sp

N

N N
Acc Acc

N N

N N

N N
MCC MCC

N N N N

N N

+

−

+

−

+

−

+ −

− +

+ −

+ −

− +

+ −

− + + −

+ − − +

+ −


= −  


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
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

 −
−   +  = −  

   − −
+ +   

  

         (15) 

where N +  represents the total number of the true enhancer sequences investigated, while N +

−
 

represents the number of true enhancer sequences incorrectly identified to be non-enhancer sequences; 

N −  represents the total number of the non-enhancer sequences investigated while N −

+
 represents the 

number of the non-enhancer sequences incorrectly identified to be enhancer sequences.  

We also employ the receiver operating characteristic (ROC) curve [44] and the area under the 

ROC curve (AUC) [45] to evaluate our model. The ROC curve plots the true positive rate 

(Specificity) as a function of the false positive rate (1-Specificity) for all possible thresholds. The 

ROC curve is closer to the upper left corner, the better the identification performance is. In other 

words, the closer the AUC is to 1, the better the identification system is. 

3. Results and discussion 

3.1. Identification performance on the benchmark dataset 

Identifying enhancers is a binary classification problem, which can be divided into two layers, 

the first layer is devoted to identify whether a DNA sequence is of enhancer or not, while the second 

layer is committed to identify enhancer sequence as being strong or weak enhancer. In this study, a 

novel model iEnhancer-MFGBDT is proposed by using multi-features and gradient boosting decision 

tree. Firstly, the 902 multi-features are extracted for both layers of each enhancer sequence, which 

contain 84 k-mer features, 44 RevKmer features, 54 SOMA-DPM features, 360 NMBACC-DPM 

features and 360 MACC-DPM features. Next, 156 features for the first layer, 263 features for the 

second layer are selected from 902 multi-features with the GBDT algorithm by the gini index, 

respectively. Finally, the GBDT classifier is adopted to implement classification using the 10-fold 

cross-validation. The Figure 1 shows the operating flow of iEnhancer-MFGBDT model. 

Identification results by the 10-fold cross-validation are shown in Table 2 by our 

iEnhancer-MFGBDT model on the benchmark datastet. From Table 2, we can see that the accuracy 

reaches 78.67% and 66.04% for the first and second layers on the benchmark dataset, respectively. 

Meanwhile, the values of Sn, Sp and MCC reach 77.54%, 79.78%, 0.5735 for the first layer, 70.56%, 

61.63%, 0.3232 for the second layer. The AUC indicates the probability at which the model ranks a 

randomly selected positive sample higher than a randomly selected negative sample. In fact, The 

AUC can measure the overall performance of a given identification system. The ROC curves are 
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plotted for the both first and second layers, and shown in Figure 2. The AUC values on the 

benchmark dataset are 0.8615 and 0.7187 for the first layer and the second layer, respectively. 

Obviously, the second layer is more difficult to identify than the first layer due to their position 

variation and free scattering.  

 

Figure 1. The flowchart of the iEnhancer-MFGBDT model. 

 

Figure 2. The ROC curves for the first and second layers on the benchmark dataset. 
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Table 2. The identification performance of iEnhancer-MFGBDT with 10-fold cross validation 

on the benchmark dataset. 

Identification layer                      Acc(%) Sn(%) Sp(%) MCC AUC 

First layer  78.67   77.54   79.78 0.5735 0.8615 

Second layer  66.04 70.56 61.63 0.3232 0.7187 

3.2. Feature group analysis 

In this study, we adopt five different approaches to extract features from the benchmark dataset, 

which are named as K-mer, RevKmer, SOMA-DPM, NMBACC-DPM and MACC-DPM feature 

group, respectively. For the purpose of obtaining the importance of single feature group, we calculate 

the performance for K-mer, RevKmer, SOMA-DPM, NMBACC-DPM and MACC-DPM, 

respectively, and as shown in Table 3. The accuracy of single feature group is lower than that of 

multiple features after GBDT feature selection (MGBDT) for the both layers. Therefore, the fusion 

of multiple features is very necessary. From Table 3, we can see that the best identification 

performance is K-mer, followed by RevKmer, NMBACC-DPM, SOMA-DPM successively, the 

MACC-DPM is the lowest one for the first layer. Meanwhile, we also can see that the best 

identification performance is RevKmer, followed by K-mer, SOMA-DPM, MACC-DPM 

successively, the NMBACC-DPM is the lowest one for the second layer. Among these five feature 

groups, k-mer and RevKmer are the feature extraction methods based on DNA sequence, 

SOMA-DPM, NMBACC-DPM and MACC-DPM are the feature extraction methods based on 

physical structural properties of DNA dinucleotide. Obviously, the DNA sequence-based feature 

group is superior to physical structural properties-based feature group.  

Table 3. Feature group analysis of iEnhancer-MFGBDT with 10-fold cross validation on 

the benchmark dataset. 

  Feature group                      Acc(%) Sn(%) Sp(%) MCC 

First layer 

K-mer 76.99 75.15 78.80 0.5399 

  RevKmer 76.48 74.08 78.91 0.5364 

  SOMA-DPM 75.03 73.68 76.30 0.4999 

  NMBACC-DPM 75.34 74.25 76.43 0.5066 

MACC-DPM 74.96 71.33 78.59 0.5000 

 MGBDT 78.67 77.54 79.78 0.5735 

  Second layer 

K-mer 61.46 68.36 54.57 0.2319 

RevKmer 62.34 69.88 54.64 0.2490 

SOMA-DPM 60.65 64.67 56.51 0.2124 

NMBACC-DPM 59.77 64.12 55.50 0.1972 

MACC-DPM 59.98 60.69 59.37 0.2008 

MGBDT 66.04 70.56 61.63 0.3232 
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3.3. Comparison with feature selection and without feature selection 

   We construct 902 features by multiple features, and the large dimension will lead to decrease 

predictive performance, a handicap for the computation and information redundancy. The features 

selection can help the original classification system achieve a better predictive performance and a 

lower computational cost by removing redundant features. Hence, finding a suitable dimension 

reduction method is very important. The gini index is ranked in descending order by importance for 

GBDT, here, we use “mean” and “gini” as the threshold and criterion for feature selection. Figure 3 

shows the accuracy comparison between our model with feature selection and without feature 

selection. It is obvious that the accuracies have been improved for both layers in the benchmark 

dataset, and clearly shows that GBDT feature selection method has great effect on improving 

accuracy. The accuracy is improved by 1.35% and 5.87% for the first layer and the second layer by 

using GBDT feature selection, respectively. These experimental results show that GBDT is very 

effective for the benchmark dataset.  

 

Figure 3. Identification accuracy comparison between with feature selection and without 

feature selection on the benchmark dataset.  

3.4. Comparison with different classifiers 

   To demonstrate the superiority of GBDT classifier, support vector machine (SVM), extra trees 

(ET), random forest (RF) and Bagging classifiers are tested successively using the selected features 

by GBDT based on the 10-fold cross-validation. As shown in Figure 4, the identification accuracy of 

SVM, ET, RF and Bagging reaches 75.64%, 77.02%, 77.15% and 76.75% for the first layer, and 

60.04%, 62.47%, 65.02% and 64.75% for the second layer, respectively. However, the identification 

accuracy of GBDT reaches 78.67% and 66.04% for the first and second layer, respectively, we can 

see that from Figure 4, the accuracies of SVM, ET, RF and Bagging are all lower than the accuracies 

obtained by GBDT for the both layers. The results show that GBDT is more powerful for our 

benchmark dataset than other classifiers.  
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Figure 4. Identification accuracy comparison with different classifiers. 

3.5.  Independent dataset test 

 In order to avoid experimental errors, it is persuasive to use an independent dataset to 

objectively evaluate our model. We adopt the independent dataset also constructed by Liu et al. [2], 

which contains the 400 enhancer sequences with 200bp, among them, 100 strong enhancer sequences, 

100 weak enhancer sequences and 200 non-enhancer sequences, and sequence similarity is less than 

or equal to 80% . The results obtained by the proposed model using the 10-fold cross-validation on 

the independent dataset test are given in Table 4. For the first layer, the ACC, Sn, Sp, MCC and AUC 

reach 77.50%, 76.79%, 79.55%, 0.5607 and 0.8589, respectively. For the second layer, the ACC, Sn, 

Sp, MCC and AUC reach 68.50, 72.55%, 66.81%, 0.3862 and 0.7524, respectively. The values of 

these metrics further illustrate the effectiveness of our model.  

Table 4. The identification performance of iEnhancer-MFGBDT with 10-fold cross validation 

on the independent dataset. 

  Identification layer                      Acc(%) Sn(%) Sp(%) MCC AUC 

First layer 77.50 76.79   79.55 0.5607 0.8589 

Second layer 68.50 72.55 66.81 0.3862 0.7524 

3.6. Performance comparison with other models 

 The proposed iEnhancer-MFGBDT model, is compared with eight state-of-the-art models: 

iEnhancer-2L [2], iEnhancerPred [17], iEnhancer-EL [18], iEnhancer-ECNN [19], Tan et al. [20], 

iEnhancer-XG [23], BERT-2D CNNs [24] and iEnhancer-RF [25]. The values of Acc, Sn, Sp and 

MCC are listed in Tables 5 and 6. 
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Table 5. The comparison with other methods in identifying enhancers and their strength on the 

benchmark dataset. 

Model Acc(%) Sn(%) Sp(%) MCC 

First layer 

iEnhancer-2L [2] 76.89 78.09 75.88 0.5400 

iEnhancerPred [17] 73.18 72.57 73.79 0.4636 

iEnhancer-EL [18] 78.03 75.67 80.39 0.5613 

 Tan et al.[20] 74.83 73.25 76.42 0.4980 

 iEnhancer-XG[23] 81.10 75.70 86.50 0.6265 

 iEnhancer-RF[25] 76.18 73.64 78.71 0.5264 

iEnhancer-MFGBDT 78.67 77.54 79.78 0.5735 

Second layer 

iEnhancer-2L [2] 61.93 62.21 61.82 0.2400 

EnhancerPred [17] 62.06 62.67 61.46 0.2413 

iEnhancer-EL [18] 65.03 69.00 61.05 0.3149 

Tan et al.[20] 58.96 79.65 38.28 0.1970 

iEnhancer-XG[23] 66.74 74.94 58.55 0.3395 

iEnhancer-RF[25] 62.53 68.46 56.61 0.2529 

iEnhancer-MFGBDT 66.04 70.56 61.63 0.3232 

 Table 6. The comparison with other methods in identifying enhancers and their strength 

on the independent dataset. 

Model Acc(%) Sn(%) Sp(%) MCC 

First layer 

iEnhancer-2L [2] 73.00 71.00 75.00 0.4604 

iEnhancerPred [17] 74.00 73.50 74.50 0.4800 

iEnhancer-EL [18] 74.75 71.00 78.50 0.4964 

iEnhancer-ECNN [19] 76.90 78.50 75.20 0.5370 

 Tan et al.[20] 75.50 75.50 76.00 0.5100 

iEnhancer-XG[23] 75.75 74.00 77.50 0.5150 

 BERT-2D CNNs[24] 75.60 80.00 71.20 0.5140 

iEnhancer-MFGBDT 77.50 76.79 79.55 0.5607 

Second layer 

iEnhancer-2L [2] 60.50 47.00 74.00 0.2180 

EnhancerPred [17] 55.00 45.00 65.00 0.1020 

iEnhancer-EL [18] 61.00 54.00 68.00 0.2220 

iEnhancer-ECNN [19] 67.80 79.10 56.40 0.3680 

Tan et al.[20] 68.49 83.15 45.61 0.3120 

iEnhancer-XG[23] 63.50 70.00 57.00 0.2720 

iEnhancer-MFGBDT 68.50 72.55 66.81 0.3862 

For the benchmark dataset, iEnhancer-2L, iEnhancerPred, iEnhancer-EL, Tan et al., 

iEnhancer-XG and iEnhancer-RF models are adopted for comparison for the both layers, of which 
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the values of ACC, Sn, Sp and MCC are listed in Table 5. Among the six models, the accuracy for 

our model is lower than that of iEnhancer-XG model for the both layers, but the stability of our 

model is higher than that of iEnhancer-XG model. The accuracy for our model is 1.78%, 5.49%, 

0.64%, 3.84% and 2.49% higher than the iEnhancer-2L, iEnhancerPred, iEnhancer-EL, Tan et al. and 

iEnhancer-RF models for the first layer, respectively, and the accuracy for our model is 4.11%, 

3.98%, 1.01%, 7.08% and 3.51% higher than the iEnhancer-2L, iEnhancerPred, iEnhancer-EL, Tan 

et al and iEnhancer-RF models for the second layer, respectively. As shown in Table 5, our model has 

the best performance and is the most stable model from Sn, Sp and MCC.  

For the independent dataset, iEnhancer-2L, iEnhancerPred, iEnhancer-EL and iEnhancer-ECNN, 

Tan et al., iEnhancer-XG and BERT-2D CNNs models are adopted for comparison for the first layer, 

of which the values of ACC, Sn, Sp and MCC are listed in Table 6. The accuracy is improved by 

0.6%–4.5% for the first layer. From Table 6, we can see that iEnhancer-2L, iEnhancerPred, 

iEnhancer-EL and iEnhancer-ECNN, Tan et al., and iEnhancer-XG models are adopted for 

comparison for the second layer, The accuracy is improved by 0.01%-13.5% for the second layer. 

The test results still show that the performance of iEnhancer-MFGBDT is best on the independent 

dataset. Our model achieves remarkably better results than other existing models, and make a 

considerable improvement for performance. 

4. Conclusions 

In this study, an effective computational tool called enhancers-MFGBDT has been developed 

for identification of DNA enhancers and their strength. The iEnhancer-MFGBDT model is 

established by fusing multi-features and GBDT based on the 10-fold cross validation. Compared 

with the existing models, our model can obtain satisfactory accuracies for the first and second layers 

on the benchmark dataset and independent dataset. It is anticipated that iEnhancer-MFGBDT will 

become a very useful high throughput tool for researching enhancers or, at the least, play an 

important complementary role to the existing models. As pointed out in [46] by Chou and Shen, 

user-friendly and publicly accessible web-servers represent the future direction for practically 

developing more useful computational tools, and have increasing impacts on medical science [47]. In 

the future, we will make great efforts to establish a web-server for the iEnhancer-MFGBDT model to 

facilitate communication among colleagues in bioinformatics. 
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