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Abstract: Colorectal cancer (CRC), one of the most common malignancies worldwide, leads to 

abundant cancer-related mortalities annually. Pyroptosis, a new kind of programmed cell death, plays 

a critical role in immune response and tumor progression. Our study aimed to identify a prognostic 

signature for CRC based on pyroptosis-related genes (PRGs). The difference in PRGs between CRC 

tissues and normal tissues deposited in the TCGA database was calculated by “limma” R package. 

The tumor microenvironment (TME) of CRC cases was accessed by the ESTIMATE algorithm. The 

prognostic PRGs were identified using Cox regression analysis. A least absolute shrinkage and 

selector operation (LASSO) algorithm was used to calculate the risk scores and construct a clinical 

predictive model of CRC. Gene Set Enrichment Analysis (GSEA) was performed for understanding 

the function annotation of the signature in the tumor microenvironment. We found that most PRGs 

were significantly dysregulated in CRC. Through the LASSO method, three key PRGs were selected 

to calculate the risk scores and construct the prognostic model for CRC. The risk score was an 

independent indicator of patient’s prognosis. In addition, we classified the CRC patients into two 

clusters based on risk scores and discovered that CRC patients in cluster 2 underwent worse overall 

survival and owned higher expression levels of immune checkpoint genes in tumor tissues. In 

conclusion, our study identified a PRG-related prognostic signature for CRC, according to which we 

classified the CRC patients into two clusters with distinct prognosis and immunotherapy potential. 
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1. Introduction 

Colorectal cancer (CRC), one of the most common malignancies worldwide, ranks the third and 

fifth leading cause of cancer-related mortality in the United States and China, respectively [1]. 

Despite advances in therapeutic methods, CRC patients with metastasis, recurrence, or 

drug-resistance still undergo a poor prognosis [2]. Therefore, novel therapeutic targets are urgently 

required to improve the clinical outcome of CRC patients. Besides, reliable novel prognostic models 

are also needed to make therapeutic methods more feasible. 

Pyroptosis is a pro-inflammatory programmed cell death which is activated by inflammasomes 

in both canonical and noncanonical inflammasome pathways [3]. Pyroptotic cells are characterized 

by cell swelling, plasma membrane lysis, chromatin fragmentation and release of the intracellular 

proinflammatory contents [4]. Pyroptosis is closely related to the malignant progression of 

tumors. On one hand, pyroptosis can create a tumor-suppressive environment by releasing 

inflammatory factors [4]. Mounting studies reported that various chemical agents function through 

regulating proptosis in CRC. For example, GW4064 and LPS enhance the chemosensitivity of CRC 

cells to oxaliplatin via inducing pyroptosis [5,6]. In addition, FL118 restrains the growth and 

metastasis of CRC by inducing NLRP3-ASC-Caspase-1 mediated pyroptosis [7]. On the other hand, 

proptosis also inhibits tumor growth by enhancing anti-tumor immunity [8]. Combinations of BRAF 

inhibitors and MEK inhibitors (BRAFi + MEKi) are FDA-approved to treat -mutant melanoma. 

Recently, Erkes et al. revealed that BRAFi and MEKi treatment promoted cleavage of gasdermin E 

(GSDME), a marker of pyroptosis, and induced tumor-associated T cell and activated dendritic cell 

infiltration [9]. Tumor-infiltrating immune cells in the tumor microenvironment significantly 

contribute to the malignancy progression and prognosis of CRC. Whereas the correlation between 

immune regulation and pyroptosis in CRC remains elusive. Therefore, it is essential to identify a 

pyroptosis-related signature to predict prognosis and to indicate immune cell infiltration in CRC. 

Fortunately, analysis of next-generation sequencing data is a novel method that can quickly identify 

cancer characteristics and suggest us about the most appropriate therapeutic strategies. 

In the present study, we performed a systematic bioinformatics analysis to determine the 

expression profiles of pyroptosis-related genes (PRGs) and their prognostic significance in CRC. 

Based on differentially expressed PRGs, we constructed a prognostic model for CRC and classified 

CRC patients into two clusters with distinct prognosis and immunotherapy potential. 

2. Materials and methods 

2.1. Study design 

We first downloaded the RNA sequencing data of genes deposited in TCGA CRC cohort and 

analyzed the expression and interaction of 33 PRGs in CRC tissues. Then we selected three 

prognostic PRGs and constructed a prognostic model for CRC, which was validated by an 

independent Gene Expression Omnibus (GEO) cohort (GSE17536) [10]. Subsequently, we identified 

the differentially expressed genes between high-risk score group and low-risk score group and 

reclassified CRC patients into two novel clusters. Moreover, the differentially expressed genes were 

further used to conduct GO and KEGG pathway analysis. Finally, the immune cell infiltration 

between high-risk score group and low-risk score group was analyzed. The flow diagram of this 

study was shown in Figure 1. 
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2.2. Gene expression data and processing 

The RNA sequencing data of genes deposited in TCGA CRC cohort and GEO dataset 

(GSE17536) were downloaded from the University of California Santa Cruz (UCSC) Xena browser 

(https://xenabrowser.net/datapages/) and GEO database (https://www.ncbi.nlm.nih.gov/geo/). CRC 

patients without survival information were ignored. 33 pyroptosis-related genes were extracted from 

prior studies [3,11]. In fact, in addition to canonical pyroptosis-related genes, PRGs also contain 

genes that regulate pyroptosis indirectly, such as ELANE, IL6, and CASP9. For example, GSDMD 

cleavage and activation in neutrophils was caspase independent and was mediated by ELANE [12]. 

Besides, ineffective formation of the Apaf-1/caspase-9 decreased processing of procaspases-3 and -8 

to trigger pyroptosis [13]. The differentially expressed PRGs were identified by R package 

“limma” with a P-value < 0.05.  

2.3. GSEA analysis 

 The GSEA analysis was used to search for gene sets that are correlated with risk score in CRC. 

The gene expression data were obtained from the TCGA CRC cohort. CRC tissue samples were 

clarified into a high expression group and a low expression group according to the median value of 

risk score. The GSEA tool was implemented to explore the distribution of gene sets in the MSigDB 

database [14]. The gene sets whose |normalized enrichment score (NES)| > 1, normalized p-value < 

0.05, and FDR value < 0.25 were identified to be significantly correlated. 

2.4. Enrichment analysis and hub genes selection 

Gene ontology (GO) enrichment analysis and Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) pathway analysis were conducted in the DAVID database (https://david.ncifcrf.gov) [15], 

whose results were represented by a bubble chart using the OmicShare tool, a free online platform 

for data analysis (http://www.omicshare.com/tools). A protein-protein interaction (PPI) network for 

PRGs was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING) 

(https://string-db.org/) database. The top ten hub genes among the PPI network were identified by 

using the Cytohubba plug-in in Cytoscape. 

2.5. Evaluating immune cell infiltration level in CRC tissues 

To investigate the immune infiltration landscape of CRC tissues, the ESTIMATE algorithm was 

used to assess the immune cell infiltration level according to the expression levels of immune 

cells‑specific marker genes. Marker genes of immune cells were obtained from the bulk 

transcriptome data of Bindea et al. [16]. The immune infiltration analysis was performed with the 

TIMER2 online tool (http://timer.cistrome.org). 

2.6. Construction of prognostic model 

 Univariate and multivariate Cox regression analysis were performed to select prognostic PRGs 

and clinicopathological characteristics. The key PRGs were further used to construct a prognostic 

model through least absolute shrinkage and selection operator (LASSO) regression using R software.  

2.7. Statistical analysis 

Statistical analysis was performed by GraphPad Prism 8.0 (GraphPad Software, USA). Analysis 
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between the two groups were performed using the unbiased Mann-Whitney test. Survival analysis 

was performed using Kaplan‑Meier curves with a log‑rank test or Cox proportional hazard model. 

The Spearman correlation analysis was used to evaluate correlations. P-value < 0.05 was considered 

statistically significant. 

3.  Results 

3.1. Identification of differentially expressed PRGs in CRC tissues 

The expression levels of 33 PRGs were compared in CRC tissues and normal tissues, and we 

identified 32 differentially expressed PRGs in CRC (all p-value < 0.05) among which 20 genes 

(ELANE, NLRP7, NLRP2, CASP5, GZMA, NLRP6, NLRC4, NLRP3, IL18, TNF, NLRP1, 

GSDMB, CASP1, PYCARD, CASP9, TIRAP, PRKACA, CASP3, CASP6, and GSDMD) were 

downregulated while 11 other genes (CASP8, GPX4, NOD1, CASP4, PLCG1, IL1B, IL6, NOD2, 

GZMB, GSDMA, and GSDMC) were upregulated in CRC tissues (Figure 2A). To explore the 

interactions of these PRGs, a PPI analysis was conducted with a minimum required interaction score 

of 0.9 (Figure 2B). Moreover, we determined that NLRP1, IL18, PYCARD, IL1B, CASP1, TNF, 

NLRC4, CASP4, NOD2, and AIM2 were top 10 hub genes (Figure 2C). 

 

Figure 1. The specific workflow graph of data analysis. 
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Figure 2. Analysis of PRGs in CRC. (A) The expression of PRGs between CRC tissues 

and normal tissues based on TCGA database. (B) The interactions between PRGs 

revealed by PPI network. (C) the top ten hub genes among PPI network of PRGs. *, p < 

0.05; **, p < 0.01; ***, p < 0.001. 

3.2. Constructing a prognostic model for CRC using differentially expressed PRGs 

To generate a prognostic model for CRC, we first performed univariate Cox regression analysis 

to screen the prognostic PRGs. We identified three significantly differentially expressed PRGs 

(PRKACA, CASP3, and GPX4) that were significantly correlated with prognosis (Figure 3A). Then 

PRGs were considered for LASSO regression analysis to generate a prognostic model and three 

genes were selected according to the optimum λ value (Figure 3B-C). The risk score was determined 

using the following formula: PRKACA × (0.677) + CASP3 × (-0.438) + GPX4 × (0.641). Based on 

the median value of risk scores, CRC patients were equally divided into low- and high-risk score 

groups. The KM plot curve were used to evaluate the performance of three-PRG signature in 

predicting the outcome of the CRC patients. As shown in Figure 3D, the overall survival between the 

low- and high-risk groups classified by our prognostic model was significantly different (p = 

0.0021). The time-dependent receiver operating characteristic (ROC) analysis showed that the area 

under the ROC curve (AUC) was 0.705 for 5-year survival (Figure 3E). Moreover, multivariate Cox 

regression analysis showed that the risk score was an independent prognostic factor of CRC (Table 1). 

To validate our prognostic model, a total of 177 CRC patients from a Gene Expression Omnibus 

(GEO) cohort (GSE17536) were utilized. Based on the median risk score identified in the TCGA 

cohort, 81 CRC patients and 96 CRC patients in the GEO cohort were classified into the high-risk 

group and the low-risk group, respectively. Kaplan–Meier analysis also indicated a significant 

difference in the survival rate between the low-and high-risk groups (p = 0.038) (Figure 3F). 

These results indicated that the three-PRG prognostic model was robust in predicting the 

outcome of CRC patients. 
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Figure 3. Constructing prognostic model for CRC. (A) Univariate analysis of the PRGs 

in CRC. (B) Coefficient profiles in the LASSO Cox regression model. (C) Validation for 

turning parameter selection in the LASSO Cox regression model. (D) KM survival curve 

of low- and high-risk groups. (E) ROC analysis of the TCGA dataset for prognostic 

signature. (F) Validation of the risk model in the GEO cohort. 

Table 1. Multivariate Cox regression analysis of clinicopathological characteristics of 

CRC patients in TCGA database. 

Variables HR 95% CI P value 

Gender 1.023 0.58-1.83 0.93 

Stage 1.84 0.71-4.77 0.21 

pT 2.07 0.97-4.42 0.061 

pM 1.61 0.43-6.11 0.48 

pN 0.95 0.53-1.69 0.85 

Age 1.04 1.01-1.06 0.0069 

Risk-score 1.31 1.12-1.51 0.0015 
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3.3. Classifying CRC into two new clusters 

To explore genes that influence the risk score of CRC, we determined 1889 differentially 

expressed genes (DEGs) between high-risk score group and low-risk score group (Figure 4A). 

Univariate Cox regression analysis showed that 11 DEGs (SUCLG2, RIMKLB, ABCD3, CPT2, 

MPP2, GABRD, PANX2, CAPN9, ZNF883, MYO16, and CYP46A1) were significantly associated 

with patient prognosis with p-value < 0.001 (Figure 4B). In addition, most of the 11 DEGs were 

either positively or negatively correlated with PRGs (PRKACA, CASP3, and GPX4) (Figure 4C). To 

explore the connections between the pyroptosis-related prognostic model and CRC subtypes, we 

performed a consensus clustering analysis based on three prognostic PRGs (PRKACA, CASP3, and 

GPX4) and eleven prognostic DEGs (SUCLG2, RIMKLB, ABCD3, CPT2, MPP2, GABRD, PANX2, 

CAPN9, ZNF883, MYO16, and CYP46A1) between high-risk score group and low-risk score group 

by using the R package of Consensus ClusterPlus. The optimal clustering stability (k = 2–9) was 

determined by the proportion of ambiguous clustering measurements, and k = 2 was identified 

indicating that the CRC patients could be well divided into two clusters (Figure 4D). Based on the 

unsupervised clustering, we eventually identified two distinct clusters (Figure 4E). The KM plot 

curve analysis showed that CRC patients in cluster 2 underwent worse overall survival than those in 

cluster 1 (p < 0.001) (Figure 4F). Consistently, the risk scores of cluster-2 samples were significantly 

higher than those of cluster-1 samples (Figure 4G).  

3.4. Functional analysis of the DEGs between two risk score groups in CRC 

To further explore the differences in the DEG functions and pathways between the high- and 

low-risk score groups, GO enrichment analysis and KEGG pathway analysis were then performed. 

Biological process (BP) analysis indicated that the DEGs were significantly associated with the 

immune response, inflammatory response, apoptosis process, and pyroptosis (Figure 5A). Molecular 

function (MF) analysis showed that the DEGs mainly participate in protein binding, cytokine activity, 

IL6 receptor binding, and TNF receptor binding (Figure 5B). Cellular component (CC) analysis 

exhibited that the DEGs mainly located at cytosol (Figure 5C). Moreover, KEGG pathway analysis 

showed that the DEGs were significantly enriched in several vital pathways in cancer, such as TNF 

signaling pathway and NF-kappa B signaling pathway (Figure 5D). 

3.5. Analysis of the immune activity between two new CRC clusters classified by the prognostic 

model 

Given that the risk scores were significantly associated with immune regulation in CRC and 

differenced between two new CRC clusters classified by the prognostic model, we investigated the 

potential connections between immune and two new classified CRC clusters. The GSEA analysis 

showed that gene signatures of HALLMARK_INFLAMMATORY_RESPONSE, 

HALLMARK_COMPLEMENT, HALLMARK_INTERFERON_GAMMA_RESPONSE, 

HALLMARK_INTERFERON_ALPHA_RESPONSE, 

HALLMARK_IL6_JAK_STAT3_SIGNALING, and HALLMARK_IL2_STAT5_SIGNALING were 

significantly enriched in cluster 1 samples (Figure 5A). In addition, the immune scores were 

significantly downregulated in cluster 1 samples compared with cluster 2 samples (Figure 5B). 

Consistently, the infiltrated levels of immune cells, including T cell follicular helper, Tregs, 
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tumor-associated macrophages (TAMs), myeloid dendritic cell activated, were significantly elevated 

in cluster 2 samples compared with cluster 1 samples (Figure 5C). Moreover, the immune checkpoint 

genes (ICGs), including PD-1, PD-L1, and CTLA-4, were significantly upregulated in cluster 2 

samples (Figure 6D). 

 

Figure 4. Reclassify CRC patients into two clusters. (A) Heatmap of DEGs between 

high-risk score group and low-risk score group. (B) Univariate analysis of the DEGs in 

CRC with p-value < 0.001. (C) Correlations between prognostic DEGs and PRGs. (D–E) 

Consensus clustering analysis identified two subgroups according to the risk score. (F) 

KM survival curve of cluster 1 and cluster 2 patients. (G) The risk score of CRC tissues 

in cluster 1 and cluster 2. ***, P < 0.001. 
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Figure 5. Functional analysis of DEGs between high-risk score group and low-risk score 

group. (A) Biological process analysis, (B) Molecular function analysis, (C) Cellular 

component analysis, and (D) KEGG pathway analysis of DEGs between high-risk score 

group and low-risk score group. 
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Figure 6. immunity analysis of two reclassified clusters. (A) GSEA analysis of cluster 1 

and cluster 2 samples. (B) The immune scores between cluster 1 and cluster 2 samples. 

(C) The infiltrated levels of immune cells between cluster 1 and cluster 2 samples. (D) 

The expression of PD-1, PD-L1, and CTLA-4 in in cluster 1 and cluster 2 samples. ns, 

not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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4.  Discussion 

Programmed cell death is beneficial to cancer treatment. There are several known cell death 

types, such as necrosis, apoptosis, and autophagy [17]. Pyroptosis is a novel form of programmed 

cell death triggered by caspase 1/4/5/11 which is activated by several inflammasomes. Caspase-1 is a 

protease that activates precursors of IL-18 and IL-1β [3]. The effect of pyroptosis on cancer 

development is complex which is dependent of tissues and genetic backgrounds. On one hand, 

pyroptosis can suppress the initiation and development of tumors and is regarded as a promising 

cancer therapeutic strategy; on the other hand, multiple signaling pathways and inflammatory factors 

are released during pyroptosis which forms a cancer promoting environment microenvironment [18]. 

For example, GSDMD and GSDME, two PRGs, were significantly downregulated in gastric 

cancer [19,20], but upregulated in lung cancer [21]. In CRC, seven PRGs (NLRP1, NLRP3, 

AIM2, GSDMA, GSDMC, GSDMD, and GSDME) has been reported to be dysregulated in 

CRC [20,22–25]. However, the expression of other PRGs as well as their connections remained 

unclear. In this study, we discovered that most PRGs were differentially expressed in CRC compared 

with normal tissues and NLRP1, IL18, PYCARD, IL1B, CASP1, TNF, NLRC4, CASP4, NOD2, and 

AIM2 were hub genes among these PRGs.  

Molecular signatures associated with distinct clinical outcomes have been excavated in various 

cancers to improve clinical therapeutic strategies. Based on prognostic genes, LASSO Cox 

regression analysis was often applied to construct models to predict the overall survival of cancer 

patients. Previous studies have identified PRGs-related prognostic signatures for gastric cancer [26], lung 

adenocarcinoma [27], and ovarian cancer [11]. However, the prognostic values of PRGs in CRC have 

not been reported. In our study, we first constructed a prognostic signature for CRC based on PRGs, 

which provided more choices for prognosis prediction in CRC. Although PRGs has been used to 

construct prognostic models for several cancers, the PRGs used in diverse cancers is different [11,26,27]. 

For example, PRGs used in the prognostic model for gastric cancer were GZMB, RBPMS2, CASP1, 

TAC1, TPM2, and GBP4 [26], rather than PRKACA, CASP3, and GPX4 in our model. In addition, 

the expression of the same PRG in tumors also depends on tissue heterogeneity. So far, our model 

should be specific for CRC.  

Function analysis showed that the DEGs between high- and low-risk score groups mainly 

enriched in pyroptosis, apoptosis, and immune response in CRC. As tumor develops, apoptosis and 

pyroptosis may coexist and interact with each other. For instance, three PRGs (CASP3, CASP6, and 

PLCG1) are also known as essential regulators in apoptotic signaling pathway. Pyroptosis has some 

similar characteristics with apoptosis such as DNA damage, nuclear condensation, and caspase 

dependence, whereas it is distinguished from apoptosis by its special morphological features. 

Generally, apoptosis keeps an intact cell plasma membrane and does not release intracellular contents 

and does not directly cause inflammatory responses, while pyroptosis shows the opposite 

characteristics [28]. Wang et al. once designed a bioorthogonal system and suggested that 

pyroptosis-induced inflammation triggers robust anti-tumor immunity and can synergize with 

checkpoint blockade [29]. In this study, based on risk scores, we classified CRC patients into two 

clusters with distinct prognosis and immunotherapy potential. The KM plot curve analysis showed 

that CRC patients in cluster 2 underwent worse overall survival than those in cluster 1. Besides, the 

infiltrated levels of immune cells, such as Tregs and TAMs, were significantly elevated in cluster 2 

samples compared with cluster 1 samples. Tregs and TAMs have been reported to suppress antitumor 

immunity and to be correlated with poor clinical outcomes of CRC patients [30,31]. Over the last 
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decade, dramatic advances in cancer treatment through immunotherapy has been authenticated. One 

promising method to achieve anti-cancer immunity is to block the immune checkpoint pathways [32]. 

Our results showed that the immune checkpoint genes (PD-1, PD-L1, and CTLA-4) were 

significantly elevated in cluster 2 samples, which suggests that CRC patients in cluster 2 may be 

more suitable for immune checkpoint blockade treatment. 

Indeed, there are several limitations in our study. First, the expression of PRGs in CRC tissues 

were only examined through analysis of TCGA CRC cohort. They should be further validated by 

using qRT-PCR analysis of clinical samples. Second, three programmed cell death pathways, 

including pyroptosis, apoptosis, and necroptosis, play critical roles in the malignancy progression of 

CRC [5,33,34]. Although these pathways have unique characteristics, they utilize common activation 

mechanisms, including homotypic interactions to form large activation complexes. Recent studies 

have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, 

apoptosis, and necroptosis, which led to the development of the concept of PANoptosis [35]. Though 

there are still many unanswered questions about the mechanistic details of this emerging pathway, 

the coordinated activation of these pathways through PANoptosis provides an effective backup 

strategy for a host to circumvent risks, whereby the blockade of an innate immune signaling pathway 

results in the activation of another pathway [36]. Therefore, we plan to construct a prognostic model 

for CRC based on PANoptosis-related genes in our subsequent study. Finally, with the development 

of pyroptosis research, other new PRGs may be identified. Therefore, it is necessary to update the 

prognostic model for CRC to improve its accuracy and prediction value. 

5.  Conclusion 

In summary, we first identified a PRGs-related prognostic model for CRC, according to 

which CRC patients can be classified into two clusters with distinct prognosis and 

immunotherapy potential. 
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