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Abstract: Colorectal cancer (CRC), one of the most common malignancies worldwide, leads to
abundant cancer-related mortalities annually. Pyroptosis, a new kind of programmed cell death, plays
a critical role in immune response and tumor progression. Our study aimed to identify a prognostic
signature for CRC based on pyroptosis-related genes (PRGs). The difference in PRGs between CRC
tissues and normal tissues deposited in the TCGA database was calculated by “limma” R package.
The tumor microenvironment (TME) of CRC cases was accessed by the ESTIMATE algorithm. The
prognostic PRGs were identified using Cox regression analysis. A least absolute shrinkage and
selector operation (LASSO) algorithm was used to calculate the risk scores and construct a clinical
predictive model of CRC. Gene Set Enrichment Analysis (GSEA) was performed for understanding
the function annotation of the signature in the tumor microenvironment. We found that most PRGs
were significantly dysregulated in CRC. Through the LASSO method, three key PRGs were selected
to calculate the risk scores and construct the prognostic model for CRC. The risk score was an
independent indicator of patient’s prognosis. In addition, we classified the CRC patients into two
clusters based on risk scores and discovered that CRC patients in cluster 2 underwent worse overall
survival and owned higher expression levels of immune checkpoint genes in tumor tissues. In
conclusion, our study identified a PRG-related prognostic signature for CRC, according to which we
classified the CRC patients into two clusters with distinct prognosis and immunotherapy potential.
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1. Introduction

Colorectal cancer (CRC), one of the most common malignancies worldwide, ranks the third and
fifth leading cause of cancer-related mortality in the United States and China, respectively [1].
Despite advances in therapeutic methods, CRC patients with metastasis, recurrence, or
drug-resistance still undergo a poor prognosis [2]. Therefore, novel therapeutic targets are urgently
required to improve the clinical outcome of CRC patients. Besides, reliable novel prognostic models
are also needed to make therapeutic methods more feasible.

Pyroptosis is a pro-inflammatory programmed cell death which is activated by inflammasomes
in both canonical and noncanonical inflammasome pathways [3]. Pyroptotic cells are characterized
by cell swelling, plasma membrane lysis, chromatin fragmentation and release of the intracellular
proinflammatory contents [4]. Pyroptosis is closely related to the malignant progression of
tumors. On one hand, pyroptosis can create a tumor-suppressive environment by releasing
inflammatory factors [4]. Mounting studies reported that various chemical agents function through
regulating proptosis in CRC. For example, GW4064 and LPS enhance the chemosensitivity of CRC
cells to oxaliplatin via inducing pyroptosis [5,6]. In addition, FL118 restrains the growth and
metastasis of CRC by inducing NLRP3-ASC-Caspase-1 mediated pyroptosis [7]. On the other hand,
proptosis also inhibits tumor growth by enhancing anti-tumor immunity [8]. Combinations of BRAF
inhibitors and MEK inhibitors (BRAFi + MEKI) are FDA-approved to treat -mutant melanoma.
Recently, Erkes et al. revealed that BRAFi and MEKi treatment promoted cleavage of gasdermin E
(GSDME), a marker of pyroptosis, and induced tumor-associated T cell and activated dendritic cell
infiltration [9]. Tumor-infiltrating immune cells in the tumor microenvironment significantly
contribute to the malignancy progression and prognosis of CRC. Whereas the correlation between
immune regulation and pyroptosis in CRC remains elusive. Therefore, it is essential to identify a
pyroptosis-related signature to predict prognosis and to indicate immune cell infiltration in CRC.
Fortunately, analysis of next-generation sequencing data is a novel method that can quickly identify
cancer characteristics and suggest us about the most appropriate therapeutic strategies.

In the present study, we performed a systematic bioinformatics analysis to determine the
expression profiles of pyroptosis-related genes (PRGs) and their prognostic significance in CRC.
Based on differentially expressed PRGs, we constructed a prognostic model for CRC and classified
CRC patients into two clusters with distinct prognosis and immunotherapy potential.

2. Materials and methods
2.1. Study design

We first downloaded the RNA sequencing data of genes deposited in TCGA CRC cohort and
analyzed the expression and interaction of 33 PRGs in CRC tissues. Then we selected three
prognostic PRGs and constructed a prognostic model for CRC, which was validated by an
independent Gene Expression Omnibus (GEO) cohort (GSE17536) [10]. Subsequently, we identified
the differentially expressed genes between high-risk score group and low-risk score group and
reclassified CRC patients into two novel clusters. Moreover, the differentially expressed genes were
further used to conduct GO and KEGG pathway analysis. Finally, the immune cell infiltration
between high-risk score group and low-risk score group was analyzed. The flow diagram of this
study was shown in Figure 1.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8783-8796.



8785

2.2. Gene expression data and processing

The RNA sequencing data of genes deposited in TCGA CRC cohort and GEO dataset
(GSE17536) were downloaded from the University of California Santa Cruz (UCSC) Xena browser
(https://xenabrowser.net/datapages/) and GEO database (https://www.ncbi.nlm.nih.gov/geo/). CRC
patients without survival information were ignored. 33 pyroptosis-related genes were extracted from
prior studies [3,11]. In fact, in addition to canonical pyroptosis-related genes, PRGs also contain
genes that regulate pyroptosis indirectly, such as ELANE, IL6, and CASP9. For example, GSDMD
cleavage and activation in neutrophils was caspase independent and was mediated by ELANE [12].
Besides, ineffective formation of the Apaf-1/caspase-9 decreased processing of procaspases-3 and -8
to trigger pyroptosis [13]. The differentially expressed PRGs were identified by R package
“limma” with a P-value < 0.05.

2.3. GSEA analysis

The GSEA analysis was used to search for gene sets that are correlated with risk score in CRC.
The gene expression data were obtained from the TCGA CRC cohort. CRC tissue samples were
clarified into a high expression group and a low expression group according to the median value of
risk score. The GSEA tool was implemented to explore the distribution of gene sets in the MSigDB
database [14]. The gene sets whose [normalized enrichment score (NES)| > 1, normalized p-value <
0.05, and FDR value < 0.25 were identified to be significantly correlated.

2.4. Enrichment analysis and hub genes selection

Gene ontology (GO) enrichment analysis and Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway analysis were conducted in the DAVID database (https://david.ncifcrf.gov) [15],
whose results were represented by a bubble chart using the OmicShare tool, a free online platform
for data analysis (http://www.omicshare.com/tools). A protein-protein interaction (PPI) network for
PRGs was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING)
(https://string-db.org/) database. The top ten hub genes among the PPI network were identified by
using the Cytohubba plug-in in Cytoscape.

2.5. Evaluating immune cell infiltration level in CRC tissues

To investigate the immune infiltration landscape of CRC tissues, the ESTIMATE algorithm was
used to assess the immune cell infiltration level according to the expression levels of immune
cells-specific marker genes. Marker genes of immune cells were obtained from the bulk
transcriptome data of Bindea et al. [16]. The immune infiltration analysis was performed with the
TIMER?Z2 online tool (http://timer.cistrome.org).

2.6. Construction of prognostic model

Univariate and multivariate Cox regression analysis were performed to select prognostic PRGs
and clinicopathological characteristics. The key PRGs were further used to construct a prognostic
model through least absolute shrinkage and selection operator (LASSO) regression using R software.

2.7. Statistical analysis

Statistical analysis was performed by GraphPad Prism 8.0 (GraphPad Software, USA). Analysis
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between the two groups were performed using the unbiased Mann-Whitney test. Survival analysis
was performed using Kaplan-Meier curves with a log-rank test or Cox proportional hazard model.
The Spearman correlation analysis was used to evaluate correlations. P-value < 0.05 was considered
statistically significant.

3. Results
3.1. Identification of differentially expressed PRGs in CRC tissues

The expression levels of 33 PRGs were compared in CRC tissues and normal tissues, and we
identified 32 differentially expressed PRGs in CRC (all p-value < 0.05) among which 20 genes
(ELANE, NLRP7, NLRP2, CASP5, GZMA, NLRP6, NLRC4, NLRP3, 1L18, TNF, NLRP1,
GSDMB, CASP1, PYCARD, CASPY9, TIRAP, PRKACA, CASP3, CASP6, and GSDMD) were
downregulated while 11 other genes (CASP8, GPX4, NOD1, CASP4, PLCGL1, IL1B, IL6, NOD2,
GZMB, GSDMA, and GSDMC) were upregulated in CRC tissues (Figure 2A). To explore the
interactions of these PRGs, a PPI analysis was conducted with a minimum required interaction score
of 0.9 (Figure 2B). Moreover, we determined that NLRP1, 1L18, PYCARD, IL1B, CASP1, TNF,
NLRC4, CASP4, NOD2, and AIM2 were top 10 hub genes (Figure 2C).

RNA expression data from TCGA CRC cohort

PPI analysis

Compare the expression of 33 PRGs

Screen prognostic PRGs

LASSO regression identifies a 3 PRGs signature

Validation in a GEO cohort (GSE17536)

Survival analysis

Consensus analysis

GO and KEGG pathway analysis

Analysis of immune cell infiltration ‘

Figure 1. The specific workflow graph of data analysis.
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T T

Figure 2. Analysis of PRGs in CRC. (A) The expression of PRGs between CRC tissues
and normal tissues based on TCGA database. (B) The interactions between PRGs
revealed by PPI network. (C) the top ten hub genes among PPI network of PRGs. *, p <
0.05; **, p < 0.01; ***, p <0.001.

3.2. Constructing a prognostic model for CRC using differentially expressed PRGs

To generate a prognostic model for CRC, we first performed univariate Cox regression analysis
to screen the prognostic PRGs. We identified three significantly differentially expressed PRGs
(PRKACA, CASP3, and GPX4) that were significantly correlated with prognosis (Figure 3A). Then
PRGs were considered for LASSO regression analysis to generate a prognostic model and three
genes were selected according to the optimum A value (Figure 3B-C). The risk score was determined
using the following formula: PRKACA % (0.677) + CASP3 % (-0.438) + GPX4 % (0.641). Based on
the median value of risk scores, CRC patients were equally divided into low- and high-risk score
groups. The KM plot curve were used to evaluate the performance of three-PRG signature in
predicting the outcome of the CRC patients. As shown in Figure 3D, the overall survival between the
low- and high-risk groups classified by our prognostic model was significantly different (p =
0.0021). The time-dependent receiver operating characteristic (ROC) analysis showed that the area
under the ROC curve (AUC) was 0.705 for 5-year survival (Figure 3E). Moreover, multivariate Cox
regression analysis showed that the risk score was an independent prognostic factor of CRC (Table 1).
To validate our prognostic model, a total of 177 CRC patients from a Gene Expression Omnibus
(GEO) cohort (GSE17536) were utilized. Based on the median risk score identified in the TCGA
cohort, 81 CRC patients and 96 CRC patients in the GEO cohort were classified into the high-risk
group and the low-risk group, respectively. Kaplan—Meier analysis also indicated a significant
difference in the survival rate between the low-and high-risk groups (p = 0.038) (Figure 3F).
These results indicated that the three-PRG prognostic model was robust in predicting the
outcome of CRC patients.
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Figure 3. Constructing prognostic model for CRC. (A) Univariate analysis of the PRGs
in CRC. (B) Coefficient profiles in the LASSO Cox regression model. (C) Validation for
turning parameter selection in the LASSO Cox regression model. (D) KM survival curve
of low- and high-risk groups. (E) ROC analysis of the TCGA dataset for prognostic

signature. (F) Validation of the risk model in the GEO cohort.

Table 1. Multivariate Cox regression analysis of clinicopathological characteristics of

CRC patients in TCGA database.

Variables HR 95% CI P value
Gender 1.023 0.58-1.83 0.93
Stage 1.84 0.71-4.77 0.21
pT 2.07 0.97-4.42 0.061
pM 1.61 0.43-6.11 0.48
PN 0.95 0.53-1.69 0.85
Age 1.04 1.01-1.06 0.0069
Risk-score 131 1.12-1.51 0.0015
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3.3. Classifying CRC into two new clusters

To explore genes that influence the risk score of CRC, we determined 1889 differentially
expressed genes (DEGs) between high-risk score group and low-risk score group (Figure 4A).
Univariate Cox regression analysis showed that 11 DEGs (SUCLG2, RIMKLB, ABCD3, CPT2,
MPP2, GABRD, PANX2, CAPN9, ZNF883, MYO16, and CYP46A1) were significantly associated
with patient prognosis with p-value < 0.001 (Figure 4B). In addition, most of the 11 DEGs were
either positively or negatively correlated with PRGs (PRKACA, CASP3, and GPX4) (Figure 4C). To
explore the connections between the pyroptosis-related prognostic model and CRC subtypes, we
performed a consensus clustering analysis based on three prognostic PRGs (PRKACA, CASP3, and
GPX4) and eleven prognostic DEGs (SUCLG2, RIMKLB, ABCD3, CPT2, MPP2, GABRD, PANX2,
CAPN9, ZNF883, MY016, and CYP46A1) between high-risk score group and low-risk score group
by using the R package of Consensus ClusterPlus. The optimal clustering stability (k = 2-9) was
determined by the proportion of ambiguous clustering measurements, and k = 2 was identified
indicating that the CRC patients could be well divided into two clusters (Figure 4D). Based on the
unsupervised clustering, we eventually identified two distinct clusters (Figure 4E). The KM plot
curve analysis showed that CRC patients in cluster 2 underwent worse overall survival than those in
cluster 1 (p < 0.001) (Figure 4F). Consistently, the risk scores of cluster-2 samples were significantly
higher than those of cluster-1 samples (Figure 4G).

3.4. Functional analysis of the DEGs between two risk score groups in CRC

To further explore the differences in the DEG functions and pathways between the high- and
low-risk score groups, GO enrichment analysis and KEGG pathway analysis were then performed.
Biological process (BP) analysis indicated that the DEGs were significantly associated with the
immune response, inflammatory response, apoptosis process, and pyroptosis (Figure 5A). Molecular
function (MF) analysis showed that the DEGs mainly participate in protein binding, cytokine activity,
IL6 receptor binding, and TNF receptor binding (Figure 5B). Cellular component (CC) analysis
exhibited that the DEGs mainly located at cytosol (Figure 5C). Moreover, KEGG pathway analysis
showed that the DEGs were significantly enriched in several vital pathways in cancer, such as TNF
signaling pathway and NF-kappa B signaling pathway (Figure 5D).

3.5. Analysis of the immune activity between two new CRC clusters classified by the prognostic
model

Given that the risk scores were significantly associated with immune regulation in CRC and
differenced between two new CRC clusters classified by the prognostic model, we investigated the
potential connections between immune and two new classified CRC clusters. The GSEA analysis
showed that gene signatures of HALLMARK INFLAMMATORY _RESPONSE,
HALLMARK_COMPLEMENT, HALLMARK_INTERFERON_GAMMA_RESPONSE,
HALLMARK_INTERFERON_ALPHA_RESPONSE,

HALLMARK IL6_JAK_STAT3_SIGNALING, and HALLMARK _IL2_STAT5_SIGNALING were
significantly enriched in cluster 1 samples (Figure 5A). In addition, the immune scores were
significantly downregulated in cluster 1 samples compared with cluster 2 samples (Figure 5B).
Consistently, the infiltrated levels of immune cells, including T cell follicular helper, Tregs,
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tumor-associated macrophages (TAMs), myeloid dendritic cell activated, were significantly elevated
in cluster 2 samples compared with cluster 1 samples (Figure 5C). Moreover, the immune checkpoint
genes (ICGs), including PD-1, PD-L1, and CTLA-4, were significantly upregulated in cluster 2

samples (Figure 6D).
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4. Discussion

Programmed cell death is beneficial to cancer treatment. There are several known cell death
types, such as necrosis, apoptosis, and autophagy [17]. Pyroptosis is a novel form of programmed
cell death triggered by caspase 1/4/5/11 which is activated by several inflammasomes. Caspase-1 is a
protease that activates precursors of IL-18 and IL-1B [3]. The effect of pyroptosis on cancer
development is complex which is dependent of tissues and genetic backgrounds. On one hand,
pyroptosis can suppress the initiation and development of tumors and is regarded as a promising
cancer therapeutic strategy; on the other hand, multiple signaling pathways and inflammatory factors
are released during pyroptosis which forms a cancer promoting environment microenvironment [18].
For example, GSDMD and GSDME, two PRGs, were significantly downregulated in gastric
cancer [19,20], but upregulated in lung cancer [21]. In CRC, seven PRGs (NLRP1, NLRP3,
AIM2, GSDMA, GSDMC, GSDMD, and GSDME) has been reported to be dysregulated in
CRC [20,22-25]. However, the expression of other PRGs as well as their connections remained
unclear. In this study, we discovered that most PRGs were differentially expressed in CRC compared
with normal tissues and NLRP1, IL18, PYCARD, IL1B, CASP1, TNF, NLRC4, CASP4, NOD2, and
AIM2 were hub genes among these PRGs.

Molecular signatures associated with distinct clinical outcomes have been excavated in various
cancers to improve clinical therapeutic strategies. Based on prognostic genes, LASSO Cox
regression analysis was often applied to construct models to predict the overall survival of cancer
patients. Previous studies have identified PRGs-related prognostic signatures for gastric cancer [26], lung
adenocarcinoma [27], and ovarian cancer [11]. However, the prognostic values of PRGs in CRC have
not been reported. In our study, we first constructed a prognostic signature for CRC based on PRGs,
which provided more choices for prognosis prediction in CRC. Although PRGs has been used to
construct prognostic models for several cancers, the PRGs used in diverse cancers is different [11,26,27].
For example, PRGs used in the prognostic model for gastric cancer were GZMB, RBPMS2, CASP1,
TACL1, TPM2, and GBP4 [26], rather than PRKACA, CASP3, and GPX4 in our model. In addition,
the expression of the same PRG in tumors also depends on tissue heterogeneity. So far, our model
should be specific for CRC.

Function analysis showed that the DEGs between high- and low-risk score groups mainly
enriched in pyroptosis, apoptosis, and immune response in CRC. As tumor develops, apoptosis and
pyroptosis may coexist and interact with each other. For instance, three PRGs (CASP3, CASP6, and
PLCG1) are also known as essential regulators in apoptotic signaling pathway. Pyroptosis has some
similar characteristics with apoptosis such as DNA damage, nuclear condensation, and caspase
dependence, whereas it is distinguished from apoptosis by its special morphological features.
Generally, apoptosis keeps an intact cell plasma membrane and does not release intracellular contents
and does not directly cause inflammatory responses, while pyroptosis shows the opposite
characteristics [28]. Wang et al. once designed a bioorthogonal system and suggested that
pyroptosis-induced inflammation triggers robust anti-tumor immunity and can synergize with
checkpoint blockade [29]. In this study, based on risk scores, we classified CRC patients into two
clusters with distinct prognosis and immunotherapy potential. The KM plot curve analysis showed
that CRC patients in cluster 2 underwent worse overall survival than those in cluster 1. Besides, the
infiltrated levels of immune cells, such as Tregs and TAMSs, were significantly elevated in cluster 2
samples compared with cluster 1 samples. Tregs and TAMs have been reported to suppress antitumor
immunity and to be correlated with poor clinical outcomes of CRC patients [30,31]. Over the last
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decade, dramatic advances in cancer treatment through immunotherapy has been authenticated. One
promising method to achieve anti-cancer immunity is to block the immune checkpoint pathways [32].
Our results showed that the immune checkpoint genes (PD-1, PD-L1, and CTLA-4) were
significantly elevated in cluster 2 samples, which suggests that CRC patients in cluster 2 may be
more suitable for immune checkpoint blockade treatment.

Indeed, there are several limitations in our study. First, the expression of PRGs in CRC tissues
were only examined through analysis of TCGA CRC cohort. They should be further validated by
using qRT-PCR analysis of clinical samples. Second, three programmed cell death pathways,
including pyroptosis, apoptosis, and necroptosis, play critical roles in the malignancy progression of
CRC [5,33,34]. Although these pathways have unique characteristics, they utilize common activation
mechanisms, including homotypic interactions to form large activation complexes. Recent studies
have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis,
apoptosis, and necroptosis, which led to the development of the concept of PANoptosis [35]. Though
there are still many unanswered questions about the mechanistic details of this emerging pathway,
the coordinated activation of these pathways through PANoptosis provides an effective backup
strategy for a host to circumvent risks, whereby the blockade of an innate immune signaling pathway
results in the activation of another pathway [36]. Therefore, we plan to construct a prognostic model
for CRC based on PANoptosis-related genes in our subsequent study. Finally, with the development
of pyroptosis research, other new PRGs may be identified. Therefore, it is necessary to update the
prognostic model for CRC to improve its accuracy and prediction value.

5. Conclusion

In summary, we first identified a PRGs-related prognostic model for CRC, according to
which CRC patients can be classified into two clusters with distinct prognosis and
immunotherapy potential.
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