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Abstract: Coronary artery disease (CAD) is a heterogeneous disease that has placed a heavy 
burden on public health due to its considerable morbidity, mortality and high costs. Better 
understanding of the genetic drivers and gene expression clustering behind CAD will be helpful 
for the development of genetic diagnosis of CAD patients. The transcriptome of 352 CAD patients 
and 263 normal controls were obtained from the Gene Expression Omnibus (GEO) database. We 
performed a modified unsupervised machine learning algorithm to group CAD patients. The 
relationship between gene modules obtained through weighted gene co-expression network 
analysis (WGCNA) and clinical features was identified by the Pearson correlation analysis. The 
annotation of gene modules and subgroups was done by the gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Three gene expression subgroups 
with the clustering score of greater than 0.75 were constructed. Subgroup I may experience 
coronary artery disease of an in-creased severity, while subgroup III is milder. Subgroup I was 
found to be closely related to the upregulation of the mitochondrial autophagy pathway, whereas 
the genes of subgroup II were shown to be related to the upregulation of the ribosome pathway. 
The high expression of APOE, NOS1 and NOS3 in the subgroup I suggested that the patients had 
more severe coronary artery disease. The construction of genetic subgroups of CAD patients has 
enabled clinicians to improve their understanding of CAD pathogenesis and provides potential 
tools for disease diagnosis, classification and assessment of prognosis. 
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1. Introduction  

Coronary artery disease (CAD) is one of the major causes of cardiovascular diseases, such as 
myocardial infarction (MI), ischemic cardiomyopathy, and arrhythmia [1,2]. In the year 2020, statistics 
from the American Heart Association showed that the prevalence of coronary artery disease (CAD) in 
U.S. adults who were ≥ 20 years of age was 6.7%, while the annual incidence of MI (heart attack) in 
the United States totaled up to 805,000 cases, with 605,000 being new cases and 200,000 being 
recurrent cases [3]. CAD mortality and any-mention mortality were 365,914 and 541,008 respectively; 
whereas MI mortality and any-mention mortality were 110,346 and 149,028 respectively [3]. The 
morbidity and mortality of CAD in low- and middle-income countries around Asia and Africa had 
gradually risen to a level close to that of the Western society, turning it into a global issue [4].  

The efficient management of CAD diseases depends on scientific classification and targeted 
treatment. At present, classifications based on pathological characteristics, disease progression and 
clinical symptoms have gradually matured, while genotypic subgroup is currently developing at a 
slower pace [5]. Increasing evidences suggest the involvement of inheritance in the initiation or 
progression of CAD [6,7]. With the commercialization of DNA microarray and high-throughput 
sequencing, the study of CAD diseases at the genetic level has been greatly facilitated [8–10]. Sinnaeve 
et al. of Duke University tested the peripheral blood transcriptome of 110 CAD patients and 112 
healthy controls, and 160 genes were found to be related to the CAD index (indicators for assessing 
the severity of CAD) [11]. Han et al. also analyzed the relationship between atherosclerotic plaque and 
immune infiltration in CAD patients by using sequencing results from the GEO database [12]. 
Nevertheless, the establishment of gene expression subgroups to classify CAD patients based on 
sequencing data is still a field less researched. 

A better understanding of the genetic drivers of CAD will help to promote the development of 
relevant drugs, and even catalyze the inception of a novel gene therapy strategy. Therefore, the 
transcriptome data of 352 CAD cases were summarized, a consensus clustering analysis was 
established and the differences between the subgroups were compared in this study. The gene 
expression subgroup was constructed via the consensus clustering method that was based on an 
unsupervised learning algorithm. The WGCNA and Gene Set Enrichment Analysis (GSEA) was 
combined to elaborate the correlations between genes. Henceforth, the results from this study provide 
the basis for CAD gene grouping. 
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2. Materials and methods 

2.1. Acquisition and processing of GEO microarray data 

Gene expression datasets (GSE12288, GSE20680 and GSE20681) of CAD and healthy controls 
were downloaded from the GEO database of the NCBI (https://www.ncbi.nlm.nih.gov/geo/). 
GSE12288 came from GPL96, while GSE60280 and GSE60281 were based on GPL4133. Annotations 
of the three datasets were done using the corresponding platform files. The data were then normalized 
with the “limma” and “sva” packages using the ComBat method of the R software to eliminate the 
batch effect [13,14]. The homogenized data were subsequently combined to obtain a final gene expression 
profile of the 352 CAD patients and 263 normal controls. Clinical information such as age, CAD index, 
gender and smoking status were also collated into the data. Duke Coronary Artery Disease Index (CAD 
index) is a prognostic assessment of the extent of coronary artery disease, reflecting the number and 
severity of lesions and diseased vessels, as well as the involvement of left anterior descending branch and 
left main stem lesions [15,16]. For example, the CAD index is 0 in patients without coronary artery disease 
and 23 in patients with at least one stenosis greater than 50%; therefore, the greater the number of vascular 
lesions and the greater the severity of the stenosis, the greater the CAD index [15]. 

2.2. Construction of subgroups based on consensus clustering 

The gene expression matrix of all 352 CAD patients was extracted for grouping purposes. The 
algorithm of unsupervised class discovery was implemented with minor modifications to precisely 
identify CAD patients with shared genetic features. In particular, an estimation of the number of 
unsupervised classes in the data set can be obtained through quantitative and visual approach via 
consensus clustering (CC), a kind of unsupervised learning algorithm. ConsensusClusterPlus is a 
method of extended CC in the R language that exhibits more functions and visualizations, such as 
project tracking, project consensus, and generating cluster consensus graphs [17]. In short, the 
homogenized gene matrix was passed to the consensus clustering algorithm (input parameters k = 2–10) 
to generate the cluster membership of each CAD sample. Upon running the R software, the cophenetic 
coefficient for the k = 2 to k = 10 clusters and the silhouette values for the “best cluster” (k = 3) were 
obtained. As shown in Figure 2A, when the clustering variable was 3, all the CAD cases were divided 
into 3 subgroups, the clustering score of each subgroup was greater than 0.75 with better clustering 
consensus. The core idea of the consensus cluster was to generate multiple partitions from the dataset 
to establish an ideally more meaningful consensus subgroup for the data. The clustering score greater 
than 0.75 in this study indicated that these three subgroups have high similarity in gene expression and 
can be classified into three subgroups. Further, each subgroup with homogeneity can be regarded as a 
cluster for in-depth analysis. 

2.3. Comparison of clinical characteristics of different subgroups 

According to the series matrix file retrieved from the three gene sets of GSE12288, GSE20680 
and GSE20681 in the GEO database, clinical information such as age, gender, CAD index, and 
smoking status were collected. The age and CAD index acted as the continuous variables, and were 
compared by means and standard deviations before subsequently presented using box plots. The 
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proportions of patients who were male and smoking were analyzed as categorical variables by their 
ratio and were presented in a histogram. Patients who are currently smoking, or who had quit smoking 
within the last two months in the original data were defined as smoking. 

2.4. Top gene identification and protein-protein interaction (PPI) network construction 

The corresponding differential genes of each subgroup were obtained by comparing between the 
normal group and the other subgroups. The selection criteria were mean differences that were greater 
than 0.2 and adjusted P-value of less than 0.05. The top 10 genes with the upregulated and unique in 
subgroups I, II and III were listed in Table 1. The online PPI analysis website STRING (https://string-
db.org/) was used to analyze the top 10 genes of the three subgroups to identify the relationship 
between each subgroup in terms of protein linkage. The minimum interaction score required was 0.4 
(the default parameter). The horizontal histogram shows the 10 genes with the most relationship pairs. 

2.5. GSEA analysis of each subgroup 

The comparison files of the control group and the subgroups I, II and III were transformed into 
gene list files and gene set files as required by the Perl software (Version 5) to run the GSEA analysis. 
These lists and set files were uploaded to the GSEA software for analysis. Run options (max size) were 
set to 5000 in order to meet the data criteria of a large gene set. 

2.6. Construction and analysis of WGCNA 

The conversion of data from gene expression profile to scale-free network was carried out by the 
WGCNA package of R Software [18]. The optimal soft threshold power (soft power = 9) was screened in 
reference to the standard scale-free network analysis. The adjacency values among all differentially 
expressed genes (DEGs) and correlation matrices were calculated by the power function. Then, the 
topological overlap matrix (TOM) and corresponding dissimilarity (1-TOM) values were computed using 
the adjacency values obtained in the previous step. The identification and stabilization of modules were 
achieved through the dynamic tree cut method and module preservation function, respectively [19]. 

The Pearson correlation analysis was used to analyze the correlations between clinical 
characteristics and gene modules to identify the association between biological modules and age, CAD 
index, male, and smoking status. The expression of gene modules obtained from the WGCNA analysis 
in subgroups I, II and III was produced by the heatmap package of R software and was presented in 
the form of a heatmap [20]. 

2.7. Functional enrichment analysis of each module and subgroup 

The enrichment analysis of the seven selected gene modules on biological processes, cellular 
components, molecular function and molecular biological pathway were analyzed using the GO database 
(http://geneontology.org/) and KEGG database (https://www.kegg.jp/kegg/pathway.html). The data 
obtained from the database analysis was imported into R software, and the results were displayed through 
the visual bubble diagram generated by the clusterProfiler and enrichplot packages [21,22]. The seven 
pathways (mitophagy-animal, ribosome, neuroactive ligand-receptor interaction, ovarian 
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steroidogenesis, steroid biosynthesis, shigellosis and legionellosis) with the most significant 
upregulation were screened from the KEGG pathways of each module for further analysis. 
Furthermore, pathway correlation heat map was used to demonstrate detailed gene enrichment in these 
seven pathways for the control group and the three subgroups. 

2.8. Statistical analysis 

The statistical software SPSS 25.0 (SPSS Inc., Chicago, IL, USA) and R software (Version 4.0.2) 
were used for statistical analysis. Mean ± standard deviation was used to describe the unity and 
discreteness of continuous variables. Chi-square analysis was used to evaluate percentage differences 
in discrete variables. The data is considered as statistically significant when P-value < 0.05 in a two-
tailed test. 

3. Results 

3.1. Workflow and batch effect removal 

 

Figure 1. Workflow for the whole study. 

The workflow is shown in Figure 1. The batch effect between GSE12288, GSE20680 and 
GSE20681 was assessed and visualized using a principal component analysis (PCA) cluster diagram, 
with results showing that the data of the three gene sets were gathered in three different regions, 
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indicating a batch effect among them (Figure S1A). The gene sets were then normalized by the sav 
package of R software to remove these batch effects. Figure S1B shows the data from the three gene 
sets that was processed by the PCA cluster diagram (Figure S1B). The information from GSE12288, 
GSE20680 and GSE20681 was uniformly distributed and regarded as a synthetic gene set. 

3.2. Sample grouping based on the relevance of transcriptome information 

The consensus clustering analysis with all 352 CAD samples in the GSE12288, GSE20680 and 
GSE20681 data sets was performed to explore the connections between each gene subgroup and 
clinical characteristics of CAD. The clustering variable (k) was set from 2 to 10, resulting in a total of 
9 clusters (Figure 2A). The high intragroup correlations and low intergroup correlations between the 
three subgroups indicated that the 352 CAD patients could be well-divided into 3 clusters based on the 
transcriptome gene (Figure 2B). Finally, consensus clustering analysis yielded three subgroups, with 
54, 196 and 102 cases in subgroups I, II and III respectively, which had significantly distinguished 
expression patterns. 

 

Figure 2. Classification of CAD samples based on transcriptome correlation. (A) The 
cluster consensus scores of different subgroups include 9 classification methods from 2 to 
10 subgroups. The ordinate shows the cluster consensus score. The abscissa shows 
different grouping situations. (B) Gene expression clustering and correlation map of 3 
subgroups. The regularity and color depth of the blue rectangles represent the correlation 
of genes within different subgroups. 

3.3. Analysis of clinical characteristics among the subgroups 

The clinical characteristics of CAD patients, such as age, CAD index, gender, and smoking status, 
were extracted from the platform. The mean and standard deviation for age of the three subgroups 
were 69.87  12.79 (subgroup I), 62.63  12.90 (subgroup II) and 66.54  15.51 (subgroup III) 
respectively. As shown in Figure 3A, the statistically significant difference was observed between 
subgroups I and II (Figure 3A). The mean and standard deviation for CAD index of subgroups I, II and 
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III were 73.83  25.44, 47.68  19.34 and 44.10  19.92, respectively. The contrast between subgroups 
I and II, and subgroups I and III were both significant (Figure 3B). Figure 3C,D demonstrate that the 
proportion of males (84 and 63%) and smoking (64 and 21%) between subgroup II and subgroup III 
were also statistically valid (Figure 3C,D). 

 

Figure 3. Analysis of differences in clinical characteristics of each subgroup. (A) Box plot 
of age differences in the 3 subgroups. (B) Box plot of CAD index differences in the 3 
subgroups. (C) Histogram of the proportion of male CAD patients in the 3 subgroups. (D) 
Histogram of the proportion of smoking CAD patients in the 3 subgroups. P-values were 
showed as: ns: P > 0.05; *: P < 0.05; **: P < 0.01. 

3.4. Differential gene display and PPI network analysis of the subgroups 

Table 1. Top 10 genes specifically upregulated in the three subgroups. 

Subguoup I Subguoup II Subguoup III 
APOE RXRA EED 
VGF ACTN1 CCNC 
NOS1 TOM1 CCDC90B 
FOXA2 BCKDK POT1 
NOS3 TAGLN2 USP1 
GHSR GNB2 COPS4 
CLDN11 CEBPA PRKRIR 
MMP19 MBOAT7 PIBF1 
OR1F2P ZYX PTPN2 
MMP28 CTSA TXNDC9 



8629 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8622–8640. 

The top 10 DEGs that were upregulated and unique among the 3 subgroups are presented in Table 1. 
The PPI network analysis of the top 10 DEGs in each subgroup is presented in Figure 4A. Thirty nodes 
selected nodes and approximately forty-six protein pairs were obtained when the confidence 
coefficient was set to 0.4 (Figure 4A). WDTC1, APOE, RXRA, BCAS2, NOS3, CCNC, COPS4, 
HINT1, NOS1 and TXNDC9 were found to interact most closely among the 3 subgroups (Figure 4B). 

 

Figure 4. PPI network of the top 10 DEGs in each subgroup. (A) The green dashed circle 
contains the DEGs of subgroup I. The purple and red dashed circles contain the DEGs of 
the subgroup II and subgroup III, respectively. The ball and the line represent DEGs and 
their relationships, respectively. (B) The histogram of the core nodes and their numbers of 
proteins pairs. The ordinate is the top 10 core node gene, while the abscissa is the number 
of relationship pairs. 

3.5. GSEA analysis of the subgroups 

 

Figure 5. GSEA analysis of the three subgroups. (A) GSEA analysis of subgroup I. The 
green curve is the value of the enrichment score. The black vertical line is the position of 
each gene in the gene ranking list. The gray area reflects the signal-to-noise ratio between 
subgroup I and the control group. (B) GSEA analysis of subgroup II. (C) GSEA analysis 
of subgroup III. 
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The black vertical lines in Figure 5 represent the unique DEGs among the subgroups, while the 
gray vertical lines represent the DEGs between the subgroups and the normal samples (Figure 5). Both 
sets of data were clustered on the left side of the image. The P-value and FDR value of all 3 subgroups 
were far less than 0.01. The analysis results of GSEA proved that the unique DEGs between the 
different subgroups and the DEGs between the subgroups and the normal samples were consistent. 

3.6. WGCNA analysis of CAD patients 

In the integrated data sets, 352 CAD samples and 263 control samples with 11,314 genes 
expression profiles were included in the WGCNA. After selecting a soft threshold of 9 (Figure 6A), 
the weighted co-expression network was constructed based on the determined genes. Seven modules 
were derived from the gene clustering tree (Figure 6B) based on gene–gene non-ω similarity. 

 

Figure 6. Weighted gene co-expression network analysis. (A) Dissection of network 
topology for various soft-thresholding powers. The left plot shows the scale-free fitting 
index (y-axis) as a function of the soft-thresholding power (x-axis). The right plot displays 
the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). 
(B) Clustering dendrogram of genes. The colored row beneath the dendrogram shows the 
module membership as determined by the dynamic tree cut process, as well as allocated 
merged module colors and original module colors. 
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The top three genes with the most significant differences in each gene module are listed in Figure 
7A. In addition, the association between each module and the clinical information of CAD cases was 
examined by mapping clinical data to samples (Figure 7B). The genes in the green, yellow and gray 
modules were negatively correlated with age and CAD index. The synergistic positive correlation was 
reflected between the red, black, blue and pink gene modules and both the factors of age and CAD 
index. Female CAD patients expressed more genes in the red gene module, while male CAD patients 
expressed more genes that were found in the pink gene module. Surprisingly, smoking had a weak 
positive correlation with the gray gene module. 

 

Figure 7. Representative genes and module-trait relationships of the seven gene modules. 
(A) The three representative genes with the most significant differences in each gene 
module. (B) The relationships between each module and clinical information. Red 
represents genes that were upregulated, whereas blue represents genes that were down-
regulated. The numbers in the rectangles represent the degree of difference and the p-value. 

The correlation between different gene subgroups and the WGCNA modules is shown in 
Figure 8. In subgroup I, expression of genes was low in the blue and yellow modules, and high in 
the green module. In contrast, genes in the blue and yellow modules were highly expressed among 
CAD patients in subgroup III, while low expression was observed for genes in the green module. 
The gene expression of samples from the healthy control group and subgroup II did not differ 
significantly in each gene module. 
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Figure 8. Correlation heat map of different subgroups and gene modules. The orange, 
green, purple and red modules on the horizontal axis represent the control group, subgroup 
I, subgroup II and subgroup III, respectively. The seven colors on the vertical axis represent 
the seven gene modules obtained through WGCNA analysis. Red represents genes that 
were upregulated, whereas blue represents genes that were down-regulated in the heat map. 

3.7. GO and KEGG functional enrichment analysis 

Enrichment analysis of the biological process (Figure 9A), cellular component (Figure 9B) 
and molecular function by GO, (Figure 9C) and the 7 selected gene modules by the KEGG pathway 
(Figure 9D) were displayed through the improved bubble charts. In the GO analysis, seven gene 
modules were not enriched in one term at the same time, indicating that the clustering effect of 
WGCNA was ideal. Genes in the red module were strongly correlated with the biological processes 
of neutrophils activation, degranulation and immune response. As for cellular component, focal 
adhesion, cell-substrate junction, secretory granule lumen, cytoplasmic vesicle lumen and 
secretory granule membrane were related to genes in the pink module. The molecular functions of 
actin binding, actin filament binding, cell adhesion molecule binding and cadherin binding were 
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highly related to genes in the pink module as well. KEGG pathway analysis mapped module genes 
into calcium signaling pathway, autophagy-animal, protein processing in endoplasmic reticulum, 
neuroactive ligand-receptor interaction, etc. (Figure 9D).  

 

Figure 9. Functional enrichment analysis of module genes. (A) GO enrichment analysis 
of biological process. The x-axis shows the gene modules and the number of genes they 
contain. The y-axis represents the terms of biological process. The triangle represents 
statistically significant enrichment results (P < 0.05). The circle indicates that the 
enrichment results are not statistically significant. The size and color of the triangle and 
circle represent the gene ratio and P-value respectively. The larger the shape, the higher 
the gene ratio; the redder the color, the lower the P-value. (B) GO enrichment analysis of 
cellular components. (C) GO enrichment analysis of molecular function. (D) Enrichment 
analysis of the KEGG pathway. 
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Figure 10. Correlation heat map of different subgroups and KEGG enrichment results. The 
orange, green, purple and red modules on the horizontal axis represent the control group, 
subgroup I, subgroup II and subgroup III respectively. The seven colors on the vertical axis 
represent the pathways related to mitophagy-animal, ribosome, neuroactive ligand-
receptor interaction, ovarian steroidogenesis, steroid biosynthesis, shigellosis and 
legionellosis. In the heat map, red indicates genes that were upregulated, whereas blue 
shows genes that were downregulated in the related pathways. 

To further investigate the KEGG pathway enrichment in different subgroups of CAD patients and 
control samples, KEGG heat maps (Figure 10) were presented. The normal samples had no statistical 
significance in selected pathways, mitophagy-animal, ribosome, neuroactive ligand-receptor 
interaction, ovarian steroidogenesis, steroid biosynthesis, shigellosis and legionellosis. The genes 
involved in the mitophagy-animal pathway were highly expressed in subgroup I and lowly expressed 
in subgroup III. The genes associated with the ribosome pathway experienced a low expression in 
subgroup I and high expression in subgroup III. The genes related to the neuroactive ligand-receptor 
interaction pathway were significantly active in subgroup I of CAD patients, while very inactive in 
subgroup III. Genes in subgroup II may be inhibited along the ribosome pathway and were not 
specifically found in other pathways. 
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4. Discussion 

Coronary artery disease is a multifactorial disease that imposes tremendous economic burden 
on modern society besides causing anxiety among cardiologists [23]. Based on the transcriptome 
of coronary artery disease, this study utilized unsupervised learning algorithm to divide CAD 
patients into different subgroups, and then studied the differences between each subgroup. The 
correlation between each subgroup and the clinical characteristics of CDA, and the correlation 
between transcriptome differences among each subgroup were elaborated through combining the 
WGCNA analysis and the GSEA analysis. The subgroup analysis in this study may improve our 
understanding of coronary artery disease and provide a theoretical basis for clinical classification 
based on transcriptomics. 

Many significant strides have been made in understanding the genetics of CAD, which put the 
development of CAD-related gene groupings on the agenda [24–26]. Our research made a challenging 
attempt based on the transcriptome data of 352 CAD patients. Peng et al. conducted a study on the 
molecular subtypes of CAD patients for the first time in 2019, but the deep associations between the 
subgroups need to be further explored [27]. In this study, the high expression of subgroup I, alongside 
high age and CAD index, in the animal mitophagy and neuroactive ligand-receptor interaction 
pathways may suggest dysfunctions related to mitochondrial function and nerve activation in this 
group of CAD patients. The protective effect of mitophagy in cardiovascular disease has been well-
reviewed [28]. Tfrc (transferring receptor), Fbxo32 (atrogin-1/MAFbx) and Sirt6 (stress-responsive 
proautophagic histone deacetylase) are proteins involved in the process of autophagy [29–31]. In 
animal experiments, Tfrc-/-, Fbxo32-/- and Sirt6-/- mice spontaneously developed mitochondrial 
respiration failure, cardiac hypertrophy, poor cardiac function, heart failure and even death [32–34]. 
Interestingly, this phenotype could be partially alleviated through iron supplementation and the 
administration of nicotinamide riboside (which potently induces autophagy and mitophagy). 
According to Figure 3, it is believed that older age and higher CAD index in subgroup I indicate 
coronary heart disease of higher severity. In other words, differential expression of genes associated 
with age and CAD index contributed to the establishment of the subgroup I. In Figure 10, the high 
expression of mitophagy pathways in subgroup I proved that mitophagy was activated to maintain the 
mitochondrial quality control system, thereby resisting the damage inflicted on cardiovascular tissues 
by severe atherosclerosis [35]. Likewise, the activity of the neuroactive ligand-receptor interaction 
pathway in subgroup I also showed that this pathway was involved in cardiovascular protection. This 
conclusion had been notably proven by the experiment of Wang et al. in 2017 [36]. Looking at 
subgroup III with the low CAD index (Figure 3), the contrasting performance of mitophagy pathway 
and neuroactive ligand-receptor interaction pathway once again confirmed our inference. 

In this study, the transcriptome analysis of CAD patients was carried out by unsupervised deep 
learning algorithm with the WGCNA and GSEA methods. The DEGs of the 3 subgroups were divided 
by consensus clustering, and the unique genes of each subgroup were shown in Table 1. The activation 
of APOE (apolipoprotein E), NOS1 (nitric oxide synthase 1) and NOS3 (nitric oxide synthase 3) was the 
characteristic of subgroup I. APOE, a key regulator of plasma lipids, positively correlates with the content 
of triglycerides in the blood of CAD patients [37,38]. The significance of different APOE polymorphisms 
on CAD risk remained unclear, while ε4+ in APOE may increase the severity of CAD [39,40]. In addition, 
APOE knockout mice fed a Western diet were also classic mouse model of atherosclerosis [41]. NOS1 
(neuronal-NOS, nNOS) and NOS3 (endothelial-NOS, eNOS) were both calcium-dependent and 
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belong to the constitutive class of NOS [42]. The NOS1 released from parasympathetic postganglionic 
(nitrergic) neurons could produce NO to reduce vascular resistance and increase blood flow [43]. The 
NOS3 protein synthesizes NO by converting L-arginine to L-citrulline [44]. 

RXRA (retinoid X receptors A), a member of the RXR family which belongs to the nuclear receptor 
superfamily, could be activated by sterol. As reviewed by Ahuja et al., RXRs act as key regulators in the 
metabolism of glucose, fatty acid and cholesterol, as well as in metabolic disorders such as type 2 diabetes, 
hyperlipidemia and atherosclerosis by activating multiple nuclear receptors [45]. Lima et al. conducted a 
free routine blood test in 622 healthy subjects of European ancestry, excluding diabetes and 
secondary dyslipidemia due to renal, liver or thyroid disease, to evaluate the influence of the 
RXRA polymorphisms on lipid and lipoprotein levels [46]. Therefore, the slight elevation of 
RXRA in subgroup II deserves more attention due to the possible effects on numerous metabolic 
signaling pathways. 

TXNDC9 (Thioredoxin domain-containing 9) belongs to the thioredoxins family and was the 
most diverse gene in subgroup II. Recently, research have shown the role of TXDCT9 in both the fields 
of cardiovascular diseases and cancer. The research by Zhou et al. found that TDX could regulate the 
homeostasis of colorectal cancer cells during apoptosis and autophagy, thereby affecting tumor 
development [47]. The regulation of oxidative stress-induced androgen receptor signaling led to the 
progression of prostate cancer, which may be related to the higher number of males in subgroup II 
(Figure 3C) [48]. The precise role of TXNDC9 in apoptosis, autophagy, oxidative stress and androgen 
in coronary heart disease is worth finding out. 

WDTC1 (WD40 and tetratricopeptide repeats 1), the mammalian homolog of Adp, was lowly 
expressed in subgroup III besides being the gene with the most correlation pairs in the PPI network. 
Adipose (Adp) is an evolutionarily conserved gene that can be isolated from naturally occurring obese 
flies with homozygous adp mutation [49]. The deletion of a single WDTC1 allele caused poor 
metabolic profiles and insulin resistance in obese mice. Conversely, transgenic expression of WDTC1 
in fat cells yielded lean mice [50]. Lai et al. examined 935 and 1115 adults of 2 ethnically diverse U.S. 
populations for polymorphisms in the WDTC1 gene [51]. The results suggested that WDTC1 variants 
may be an important risk factor for obesity in these populations. The aforementioned evidences 
suggested that subgroup III with lower expression of WTDC1 may have more obese patients, which 
in turn led to coronary heart disease. 

The findings of this study comprehensively elaborated the possible subtypes of CAD patients based 
on analyses at the molecular level and introduced the characteristics of each subtype. Nevertheless, these 
results should first be validated by prospective studies in larger populations before they can be used in 
clinical practice. Some limitations in this study need to be addressed too. Firstly, the consistency of the 
CAD subgroups requires verification by more data. Secondly, the specific genes of each subgroup need to 
be verified by cytology, zoology and even human tissue specimens. Thirdly, this study involved only 
transcriptome data. The addition of more omics, such as proteomics and metabolomics, may improve the 
precision of the consensus clustering. Lastly, the GEO database lacks detailed clinical features, which 
would be conducive to the integration of gene grouping and clinical typing. 

5. Conclusions 

The present study provided an outline for gene groupings in CAD patients, analyzed the 
differences between each subgroup and annotated the unique genes of each group. The results of this 
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research will be helpful in the clinical application of transcriptome-based CAD patient classification. 
The high expression of APOE, NOS1 and NOS3 in the subgroup I suggested that the patients had more 
severe coronary artery disease. 

6. Research highlights 

1) Patients grouped according to transcriptome have distinct characteristics. 
2) Subgroup Ⅰ may experience coronary artery disease of an increased severity, while subgroup 

Ⅲ is milder. 
3) Genes in group I (APOE, NOS1 and NOS3), group II (RXRA and TXNDC9) and group III 

(WDTC1) play a major role in the development of coronary artery disease. 
4) Bioinformatics provides a new perspective for the study of pathogenesis of CAD. 
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