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Abstract: Virtual experimentation is a widely used approach for predicting systems behaviour 

especially in situations where resources for physical experiments are very limited. For example, 

targeted treatment inside the human body is particularly challenging, and as such, modeling and 

simulation is utilised to aid planning before a specific treatment is administered. In such approaches, 

precise treatment, as it is the case in radiotherapy, is used to administer a maximum dose to the infected 

regions while minimizing the effect on normal tissue. Complicated cancers such as leukemia present 

even greater challenges due to their presentation in liquid form and not being localised in one area. As 

such, science has led to the development of targeted drug delivery, where the infected cells can be 

specifically targeted anywhere in the body.  

Despite the great prospects and advances of these modeling and simulation tools in the design 

and delivery of targeted drugs, their use by Low and Middle Income Countries (LMICs) researchers 

and clinicians is still very limited. This paper therefore reviews the modeling and simulation 

approaches for leukemia treatment using nanoparticles as an example for virtual experimentation. A 

systematic review from various databases was carried out for studies that involved cancer treatment 

approaches through modeling and simulation with emphasis to data collected from LMICs. Results 

indicated that whereas there is an increasing trend in the use of modeling and simulation approaches, 

their uptake in LMICs is still limited. According to the review data collected, there is a clear need to 

employ these tools as key approaches for the planning of targeted drug treatment approaches.  
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1. Introduction  

Among the 300,000 children diagnosed with cancer annually, 80% of them live in Low and 

Middle Income Countries (LMICs) where there is incomplete information on paediatric cancer 

incidence, diagnosis distribution, and treatment outcomes [1–3]. While acute lymphoblastic leukemia 

takes the lead among paediatric patients, acute/chronic myeloid leukemia leads among adults with 

annual mortality rates of 0.4 and 2.8 per 100,000 people respectively (4). Chronic myeloid leukemia 

also accounts for 15–20% of the newly diagnosed leukemia cases [4,5]. Leukemia treatment mainly 

depends on the type, disease stage, prior treatment history, age, overall condition and genetic profile. 

Chemotherapy ranks as the number one treatment method followed by radiotherapy, transplantation 

and targeted therapy as other options [6,7]. Unfortunately, chemotherapy yields adverse side effects 

such as poor selectivity, low therapeutic efficacy, hair loss, muscle weakening, general body weakness 

and high remission periods [8]. Crowley’s group noted that liquid biopsies would serve as great tools 

for the treatment of leukemia but unfortunately represent a small proportion of the whole cancer like 

the solid tumors especially metastasis [9]. This is because leukemia is a liquid tumor as compared to 

the solid tumors like breast, prostate, cervical and so on, which can easily be targeted and 

treated [10,11]. Illiteracy, poverty and longer travel/wait times are associated with delays in assessment 

and treatment of leukemia in LMICs [12–15]. Although efforts have been made by programs such as 

the Glivec International Patient Assistance Program (GIPAP) to donate drugs to leukemia patients in 

LMICs, the incidence of the disease is still on the rise [16–18]. Increase in the imaging equipment has 

not also reduced the rising numbers due to the high maintenance costs [19]. Such costs normally 

involve spare parts and experts that are outsourced from developed countries thus leading to an 

expensive procurement process. 

Modeling and simulation presents a novel approach for designing treatment technologies to 

handle such leukemia liquid tumours [20]. Modeling and simulation is the use of models (e.g., physical, 

mathematical, or logical representation of a system, entity, phenomenon, or process) as a basis for 

simulations to develop data utilized for managerial or technical decision making. In their experiments, 

many researchers have proved that Modeling and Simulation Approaches (MSAs) using 

superparamagnetic iron oxide nanoparticles (SPIONs) will benefit a wide range of leukemia treatment 

through concentrating the therapeutic effect at the target site while minimizing deleterious effects to 

off-target sites [21–24]. SPIONs which lie within the range of 1–20 nm are biodegradable, 

biocompatible and can be endocytosed into cells thus making them responsive to magnetic fields. 

During the focused workshop that was held in London, I. Roeder and M. d‘Inverno reported that such 

MSAs can not only fix the existing data or predict an individual mechanism but can also challenge the 

stem cell concepts from which leukemia cells emanate [25]. Nanomedicine presents a great potential 

to specifically deliver anti-cancer drugs to the cancerous tumor without causing toxic damage to the 

healthy cells. Research has shown that early detection and the development of nanomedical therapy 

with protocol-driven treatment has led to long-term cancer survival in the Western world [27–31]. For 

instance, magnetic cell targeting provides an efficient, safe and straightforward delivery technique 

using SPIONs (superparamagnetic iron oxide nanoparticles). SPIONs are biodegradable, 
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biocompatible and can be endocytosed into cells thus making them responsive to magnetic fields [26]. 

The aim of this study is therefore to review the trend of modeling and simulation approaches for 

designing and delivering cancer therapy technologies while highlighting the limited use of such 

technologies in LMICs. This review is also aimed at suggesting possible software platforms that can 

be utilised to carry out modelling and simulation for the treatment of leukemia in LMICs. 

2. Materials and methods 

2.1. Search strategy 

The authors carried out a systematic review of five databases namely, PMC (PubMed Central), 

Scopus, Google scholar, Embase and Science direct. Seven groups of key words were used to collect 

all studies that used a modeling and simulation approach as a tool for cancer treatment with a focus on 

leukemia in LMICs. These key words were searched from the title, abstract and key words of various 

papers from the above databases. 1. Targeted AND Cancer AND Treatment AND Modeling and 

Simulation OR 2. Leukemia AND Treatment AND Modeling and Simulation OR 3. Cancer AND 

Treatment AND Low and Middle Income Countries OR 4. Targeted AND Cancer AND Treatment 

AND Low and Middle Income Countries OR 5. Targeted AND Cancer AND Treatment AND Low and 

Middle Income Countries AND Modeling and Simulation OR 6. Targeted AND Drug AND Delivery 

AND Modeling and Simulation OR 7. Iron oxide nanoparticles AND Cancer AND Treatment AND 

Magnetic strength 

2.2. Study selection 

After removing duplicates, the authors reviewed the title and abstract of each article using 

Mendeley software. All non-English papers and those with unclear description of modeling and 

simulation techniques for cancer treatment in low- and middle-income countries were excluded. 

Conference abstracts with no full conference papers were also excluded. Only reviewed papers 

published between 1999 and 2020 were included. 

2.3. Analysis of studies 

The authors categorized the selected papers under 6 subdivisions below as abbreviated the 

divisions as per the United Nationa (UN) secretariat [32] 

Studies that involved MSAs in high-income countries (HICs) 

Studies that involved MSAs in middle-income countries (MICs) 

Studies that involved MSAs in low-income countries (LICs) 

Studies that involved MSAs in high- and middle-income countries (HMICs). In such studies, 

some authors came from HICs while the rest came from MICs. 

Studies that involved MSAs in low- and middle-income countries (LMICs). In such studies, some 

authors came from LICs while the rest came from MICs. 

Studies that involved MSAs in high-and low-income countries (HLICs). In such studies, some 

authors came from HICs while the rest came from LICs. 

The search revealed 3077 papers across 5 databases as shown by Figure 1. After removing 
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duplicates, 1772 papers were screened for language, clear authors, title, abstract, year of publication 

and journal. Additionally, using the inclusion and exclusion criteria above, 234 papers were screened 

out of the 1772 papers. The 234 papers were further subdivided into 110 papers that involved leukemia 

treatment approaches that never involved modeling and simulation and 124 papers that involved 

modeling and simulation. The selected 124 papers were then subdivided as per Figure 1. 

 

Figure 1. Selection and sorting method for the relevant papers in this systematic review. 

 

Figure 2. A histogram showing the MSA publications per year between 2000 to 2020. 
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3. Discussion 

3.1. Trend in the MSA publications 

The analysis of these articles revealed an increasing trend in the publication of articles relating to 

MSAs as a tool for designing technologies used for leukemia treatment (Figure 2). Although there was 

some earlier research work registered before 2000, more interest was focused onto the recent studies 

between 2000–2020. It was assumed that such recent articles provide updated information which could 

easily be translated into potential development. The number of articles between 1999 and 2010 is low 

with a fluctuating trend that later on rises after 2010 to date. This trend decreases slightly from 16 to 

11 articles between 2016 and 2018 but increases after 2018. This increase in the trend shows the level 

of interest gained over the years in the modeling and simulation field and clearly indicates its promising 

results seen by several researchers. 

3.2. Nanomedicine approaches towards leukemia treatment 

Nanomedicine based technologies potentially present superiority over current therapeutic 

practices as they can effectively deliver drugs to the affected tissues, thus reducing drug toxicity and 

can lead to an increased drug accumulation within a target site irrespective of the method and route of 

drug administration. As illustrated in Table 1, such superiority has led to an interest of coupling 

nanomedicine with different MSAs although such related articles are still fewer as compared to the 

non-nanomedical MSAs. This table shows only 23 out of 97 MSA publications incorporated the 

nanomedicine based technology which potentially shows some interest in the usage of targeted drug 

delivery. 

Through, nanomedicine techniques, researchers have explored the use of gold and ferromagnetic 

nanoparticles as tools for diagnosis and treatment of various leukemias [33]. For example, an aptamer-

based model was proposed for the treatment of acute leukemia which yielded to 10 leukemia cells per 

millilitre [34,35]. Progress has been presented by various researchers relating to functionalizing 

magnetic nanoparticles [36] with several antigens (CD19, CD20, and CD45) so as to specifically target 

and treat leukemia cells from mixed samples using the nanomedicine techniques. Sahoo et al, used a 

permanent magnet to study avidin-modified magnetic nanoparticles functionalized with CD20 so as to 

treat leukemia cells by using hybridoma cell line (BCRC 60427) [37–40]. Gossai et al. functionalized 

15 nm AuNPs with oligonucleotides in a sequence so as to treat chronic myeloid leukemia [41]. Other 

studies examined the in vitro efficacy of drug-coated AuNPs on AML treatment where Song and 

colleagues went further to use folate receptors which are highly expressed on the tumour cells 

receptors [42–44]. 

Animal models, normally used for in vivo treatment of leukemia, will not follow the same 

pathogenesis of leukemia than humans [45]. Additionally, such models cannot replicate the complex 

microenvironment from which these human cancers arise. Hence, MSAs using nanoformulations may 

have enhanced biomarker detection, providing simpler protocols with higher sensitivity. 

Nanomedicines have also been shown to improve the efficacy–toxicity ratio of anticancer agents, 

leading to the possibility of real-time treatment in leukemia management [46]. The experimental 

variations in the preclinical studies using nanoparticles to tackle leukemia also contribute to their 

reduced clinical impact. The lack of standardized manufacturing procedures and controls, recognized 
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by regulatory agencies also limits the clinical translation of nanoscale diagnostic assays and treatment. 

Although essential studies for in vivo toxicity, stability, and biodistribution are increasing, 

computational MSAs could provide deeper insights before moving onto in vivo studies so as to gain a 

broader picture of the study outcomes [47,48]. 

Leukemia cells highly contain heterogeneous hematological malignancies that affect people of all 

ages and ethnicities. Such cells usually spread widely throughout the body due to the liquid nature of 

many of these malignancies, as well as the complex microenvironment from which they arise. 

Therefore, this multifaceted genetic basis adds a lot of difficulty in generating appropriate and 

translational models to study them. Computational modeling and simulation models could hence have 

a significant and powerful tool in the study of such cancers [49] 

3.3. Leukemia treatment in LMICs 

In high-income countries (HICs), increased rates of survival among cancer patients are achieved 

through the use of protocol-driven treatment [31,50]. In comparison to HICs, differences in 

infrastructure, supportive care, and human resources, make compliance with protocol-driven treatment 

challenging for LMICs. For successful implementation of protocol-driven treatment, treatment 

protocols must be resource-adapted for the LMICs context, and additional supportive tools must be 

developed to promote protocol compliance. Using these treatment protocols, the 5-year overall 

survival (OS) for leukemia treatment in high-income countries is approaching 90% as compared to 

LMICs which is far less than 50%. Additionally, there is limited protocol data and therapeutic results 

from low and middle income countries (LMIC) which calls for an urgent need to implement such 

protocol driven treatment approaches [51].  

LMICs also have limited resources, suboptimal risk stratification and disproportionate patient to 

infrastructure ratio which in turn lead to a low survival with high relapse incidence of patients with 

leukemia after treatment [52]. It is interesting to note that certain countries in the LMIC bracket like Iran, 

Brazil and China have made remarkable advances in the use of the MSAs while treating leukemia which 

proves the possibility to employ such tools in other low and middle income countries [34,53–56]. 

3.4. MSA tools used with their intended interventional procedure 

Table 1 below illustrates seventeen (17) virtual MSA tools that were found from the reviewed 

articles. These tools have been grouped as named by the different authors with their corresponding 

interventional procedure. Four (4) interventional procedures have been presented by these tools as 

shown with treatment taking the highest target and theranostics taking the lowest target. Molecular 

dynamic simulation has been noted as the most widely used tool followed by mathematical models as 

indicated. Additionally, the table presents a huge gap between the articles that had a nanomedical 

technique as compared to those that never had this technique.  

Although some of these models are only experimental like virtual screening, real-time 

surveillance tool, molecular dynamics simulation, Markov simulation model, survival analysis model, 

Bayesian hierarchical model, there are some which are both experimental and mathematical for 

example; event simulation, dynamical simulation, point of care, pathway modeling, 

pharmakokinetics/pharmacodynamics (PK/PD) modeling, agent-based, predictive and population 

balance models. It was observed that such models with both experimental and 
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mathematical/computational approaches had a variety of result comparisons that led to better 

approximations and robust models. 

Babashov et al. used a mathematical model to simulate the patient treatment progress from the 

referral point to the point when the patient meets an oncologist [57]. This was aimed at determining 

the challenges and quantifying the available resources so as to minimize the patient waiting time 

towards treatment. The model was able to identify the sensitive from the non-sensitive parameters so 

as to make the most effective use of limited resources. 

In their work, Lopresto et al. were able to design numerical models that would improve the 

experimental outcomes using Microwave Thermal Ablation (MTA) for cancer treatment. The results 

showed a close match with the experimental results in the analysis of the temperature dependent 

variables onto the cancerous tissue [58]. Under this model, McDougall’s group also used a 

mathematical model to connect vessel growth with blood flow through a tumor and were able to 

observe great targets for tumor treatment [59]. 

In their article about “fighting global disparities in cancer care”, Hoekstra et al. emphasized the 

role of computational analysis in enhancing the therapeutic decision-making for cancer patients. Such 

analysis would aid not only specialists but also non-specialists so as to implement vital decisions for 

effective treatment outcomes [29]. 

Pathway modeling was used by Drusbosky’s team so as to identify key elements related to the 

treatment response after combining genomics, computational modeling and chemosensitivity testing. 

This combination was able to successfully yield to novel results that would be able to advise future 

trials on BET inhibitors [60]. Silverbush et al. were also able to get a systematic trained computational 

model for different cancerous drug sensitivity and resistance tumors. This model simulates the signal 

pathways through which cancerous tumors develop so as to provide drug resistance [61]. 

In reference to PK/PD modeling, Pefani’s group designed a mathematical model that would 

control the toxicity levels and improve the effectiveness of the drug. This model greatly improved the 

drug management in comparison with the pre-clinical animal experiments and the empirical clinical 

trials used with less experienced physicians [62]. Jost et al. additionally used this PK/PD model in 

comparison with the mathematical model and were able to conduct different virtual protocols that led 

to personalised treatments with better clinical outcomes [63]. 

Preen, Bull and Adamatzky used an agent-based model with a computational approach to 

optimize the cancerous drug while maximizing tumor regression so as to produce a rapid multicellular 

computing approach [64]. 

Calmelet’s group designed an eight-compartment computational model that would predict the 

treatment effects onto the cancer stem cells (CSCs). Such a computational model was able to highlight 

stage-specific phenotypic features during discrete and continuous therapy as compared to other 

models [65]. Prediction models were also used with a mathematical model so as to study the effects of 

the radiofrequency ablation in complex interventions within the spine. This was aimed at drug 

optimization so as to achieve better treatment outcomes with minimal drug doses [66]. 

A Population Balance Model (PBM) was used with ordinary differential equations so as to 

compare the experimental data with the mathematical oscillations in studying the cell cycle behaviour. 

The results indicated that a particular cell cycle model dictates a lot about the simulated treatment 

outcomes under similar parameters as compared to different cell cycle models [65]. 
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Table 1. Different Modeling and Simulation Approaches (MSAs) with their interventional procedure, nanomedical or non-nanomedical 

technique. 

Modeling and Simulation 

Approach/Tool (MSAs) 

MSA Advantage Interventional 

procedure 

References Nanomedical 

technique 

Event simulation This model can identify sensitive and non-sensitive system parameters 

used for analyzing radiotherapy planning processes 

Diag [57] NO 

Virtual screening This model can analyze large databases of compounds so as to identify 

potential inhibitors 

Tre [67] NO 

Dynamic simulation model This tool studies the effects of temperature-dependent variations in the 

dielectric and thermal properties of the targeted tissue on the prediction 

of the temperature increase and the extension of the thermally coagulated 

zone. 

Tre [58] 

 

NO 

Computational simulations Computational biology modeling can be used to generate patient-specific 

protein network maps of activated and inactivated protein pathways 

translated from each genomic profile. 

Tre 

Prog 

Ther 

Pro 

Tre 

Tre 

Tre 

Diag 

[64] 

[68] 

[60] 

[69] 

[70] 

[71] 

[72] 

[73] 

NO 

NO 

YES 

NO 

YES 

NO 

NO 

YES 

Point of Care (PoC) tool The principle of this protocol is to tailor treatment to available resources, 

reduce preventable toxic death, and direct limited resources toward those 

children who are most likely to be cured. 

Tre 

Tre 

Prog 

Tre 

Tre 

[74] 

[52] 

[74] 

[51] 

[75] 

NO 

NO 

NO 

NO 

YES 

Real-time surveillance tool This tool can guide interventions to improve clinical outcomes in LMICs. Prog [2] NO 

Continued on next page 
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Mathematical model Mathematical models can help in support for simulation-driven decisions 

for clinical doctors so as to estimate parameters for 7-specific models, 

mathematical models can also estimate the number of blood cells studied. 

Tre 

Tre 

Tre 

Tre 

Prog 

Tre 

Tre 

Tre 

Tre 

Tre 

Tre 

Tre 

Tre 

Tre 

Tre 

Ther 

Tr 

Tre 

Tre 

Tre 

[76] 

[59] 

[77] 

[78] 

[50] 

[79] 

[80] 

[81] 

[66] 

[82] 

[83] 

[65] 

[84] 

[85] 

[86] 

[25] 

[87] 

[88] 

[89] 

[62] 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

Pathway modeling This tool can enhance our understanding in the cellular signalling 

mechanisms which can later help in discovering new therapeutic targets 

for the treatment of various diseases. 

Tre [90] 

 

NO 

Continued on next page 
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Molecular dynamics simulation This tool can model key biological mechanisms as a means to gain 

insight into the effects of chemotherapy, which can then be used as a 

predictive tool for patient response during treatment. 

Tre 

Tre 

Tre 

Tre 

Prog 

Tre 

Tre 

Tre 

Tre 

Diag 

Ther 

Tre 

Tre 

Tre 

Tre 

Tre 

Prog 

Tre 

Tre 

Diag 

Tre 

Tre 

Tre 

[91] 

[62] 

[90] 

[92] 

[93] 

[53] 

[94] 

[61] 

[63] 

[95] 

[67] 

[62] 

[96] 

[28] 

[97] 

[98] 

[34] 

[55] 

[54] 

[81] 

[49] 

[99] 

[100] 

YES 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

YES 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

YES 

YES 

YES 

YES 

YES 

Computational fluid dynamics This tool can model the potential improvements in drug absorption for 

specific locations of the body. 

Tre 

Tre 

[101] 

[102] 

NO 

YES 

Continued on next page 
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Population balance model This tool can describe the changes in the leukocyte proliferative capacity 

after treatment. 

Prog 

Tre 

[103] 

[65] 

NO 

NO 

Markov simulation model This tool can estimate the lifetime costs and outcomes of treating 

leukemia patients. 

Prog 

Tre 

Prog 

Tre 

Prog 

[104] 

[105] 

[106] 

[107] 

[108] 

NO 

NO 

NO 

NO 

NO 

Survival analysis model This tool can assess the effectiveness of medical products and treatments 

and their risk factors. 

Prog [109] NO 

Prediction model This tool can predict a minimum time interval for active treatment, a time 

to discontinue treatment, and a rest period during treatment in order to 

guarantee patient safety and recovery. 

Prog 

Pro 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

Prog 

[110] 

[111] 

[112] 

[75] 

[113] 

[114] 

[115] 

[116] 

[117] 

[54] 

[118] 

[61] 

[73] 

NO 

NO 

NO 

NO 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

YES 

Bayesian hierarchical model This tool can be used to develop a dose-schedule-finding algorithm that 

sequentially allocates patients to the best dose-schedule combination 

under certain criteria and provide for the systems-level statistical 

description. 

Tre 

Tre 

Diag 

[56] 

[119] 

[120] 

NO 

NO 

YES 

Continued on next page 
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Agent-based model This tool can represent the heterogeneity within the hematopoietic stem 

cell population. 

Prog [121] NO 

Pharmacokinetics 

/Pharmacodynamics model 

This tool can help in individualizing different doses through simulating 

alternative dosing strategies with shorter infusion intervals that would 

potentially enhance clinical efficacy. 

Prog 

Tre 

Tre 

Tre 

Tre 

Diag 

Tre 

Tre 

[122] 

[123] 

[124] 

[125] 

[63] 

[50] 

[126] 

[127] 

NO 

NO 

NO 

NO 

NO 

NO 

YES 

YES 
 

Key: Diag-Diagnostics, Ther-Theranostics, Prog-Prognosis, Tre-Treatment 

Table 2. Different computational and mathematical models with their respective aims, modeled parameters and number of citations. 

Model used Modeled parameters Model aim Software platform used References 

Debye model -Spherical tumor 

-Healthy surrounding tissue 

-Magnetic nanoparticles 

-External AC magnetic field 

Evaluate the efficiency of magnetic 

fluid hyperthermia in cancer 

treatment. 

 

 

Comsol [99,128]  

Michaelis– 

Menten model 

-Signalling pathways like JAK/ 

STAT and MAPK 

-Inhibitors 

-Receptors on leukemic cells 

This model studies the effects of 

different enzymes and proteins in 

different bio-chemical reactions. 

 

Michaelis–Menten  

enzyme kinetics  

[118,129,130]  

Continued on next page 
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Linear parameter-

dependent model 

-Chronic myelogenous leukemia 

(CML) 

-Imatinib 

-Anti-leukemia immune response 

This model uses different parameters 

to develop an efficient and effective 

modeling approach for cancer 

treatment. 

Matlab [48,86,100] 

 

Semi-mechanistic 

models 

 

6-mercaptopurine (6-MP) 

metabolism -Red blood cell 

mean corpuscular volume 

(MCV)  

-Leukopenia, a major side effect. 

This model provides specific 

treatment and prescribes an optimal 

dose with the lowest side effects. 

Matlab [73,129] 

Tumour-immune 

interaction model 

-Tumour-immune interaction  

-Immunotherapy 

 

This model probes the tumor 

incidence characteristics towards the 

immune system in terms of a 

travelling wave. 

Matlab [130,131]  

Hematopoiesis 

model 

-Leukemia stem cell (LSC) 

division kinetics 

-LSC renewal rates 

This model estimates the properties 

of the leukemia stem cell so as to 

predict the patient’s overall survival. 

Matlab [60,86,129,132–136] 

Arrhenius injury 

model 

-Magnetic and gold nanoparticle 

size and shape 

-Excitation wavelength and 

power 

-Tissue properties 

This model studies the effects of 

localized hyperthermia on a 

cancerous tumor with nanoparticles. 

Matlab [137] 

Bioheat equation 

model 

 

-A heat transfer parameter using 

High Intensity Frequency 

Ultrasound (HIFU) 

-A drug delivery parameter 

 

This model simulates the effects of 

heating the tumor targeted with 

Temperature Sensitive Liposomes 

(TSL) encapsulated with 

doxorubicin (DOX) drug. 

Comsol [128,137]  

Continued on next page 
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Navier-Stokes 

equations (NSE) 

 

-Spherical particle dynamics 

-Lattice-Boltzmann 

hydrodynamics 

This model optimizes the 

nanoparticle physical characteristics 

and the external magnetic fields so 

as to provide an efficient targeted 

drug delivery system.  

Matlab [99,131,138–140]  

Lattice-

Boltzmann model 

-Body forces (e.g., gravity) 

-Diffusivity 

-Dipolar interactions 

This model aids in directing 

nanoparticles to patient-specific 

geometries using an external 

magnetic field. 

HemeLB  [49,139,141,142] 

Dissipative 

particle dynamics 

(DPD) 

-Shear rate 

-Bonding energy   

-Nanoparticle shape 

This model analyses the relationship 

between the shear rate, bonding 

energy and the shape of the 

nanoparticle. 

Comsol [49,131,141,143]  

Finite element 

method (FEM) 

model 

-Uniformly dispersed individual 

nanoparticles 

-NP clusters of varying size 

-Uniform NP heating in the 

magnetic field 

FEM models aid in studying the 

heating effects of clustered 

nanoparticles in comparison with 

dispersed nanoparticles while 

predicting treatment. 

Comsol [49,99,100,131,138–

141,144–149]  

Electromagnetic 

model 

-Magnetic nanoparticles 

-Different number of magnets 

-Position of magnets away from 

the particles 

This model tests the robustness of 

electromagnets to predict field 

gradients and intensities used in 

cancer treatment. 

Comsol [139,142,146,147,150–154] 

Heat transfer 

model 

-Magnetizing field strength 

-Nanoparticle size 

-Diffusion coefficients 

-Porous media parameters  

This model improves the 

nanoparticle mediated drug delivery 

for cancer treatment using heat 

energy. 

Comsol [99,128,137,138,141,142, 

144,146,150,155,156]  
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3.5. Computational and mathematical models 

The systematic nature and cost effectiveness of computational and mathematical modeling and 

simulation has facilitated the understanding of several cancer-related therapies. Such models have 

identified significant relationships used in characterizing various cancer states and can improve many 

experimental designs commonly used in LMICs. Unfortunately, such experimental designs are not 

only time consuming, but they are also cumbersome and expensive. Therefore, computational and 

mathematical models might assist in analysing the different leukemia states so as to reduce the burden 

imposed by the experimental approaches [142]. 

Computational modeling has become an important investigation tool for various parameters and 

has provided new opportunities for the chaotic nature of analysing different cancer cells. This analysis 

has in turn yielded to efficient modeling approaches that have proposed effective treatment plans that 

are robust with respect to different cancer patients [86]. Such model analysis has greatly improved on 

the leukemia stem cell (LSC) intervention as it studies the different LSC properties so as to predict the 

overall patient survival [133]. 

Computational and mathematical modeling can provide a new approach for designing leukemia 

treatment technologies for LMICs as it reveals the extent and dominance of a specific cancer before 

implementing the experimental approaches. Such knowledge can provide useful approximations that 

can potentially optimize the limited resources while providing the effective treatment results [146]. 

Table 2 presents a summary of different mathematical models with their respective parameters 

and aims. Most of these models are biased with magnetic field energy and nanomedical techniques 

used for drug delivery approaches and have provided useful insights and formulations towards 

leukemia cancer treatment. Recent years have clearly shown a technological advancement in cancer 

treatment with respect to MSAs for HICs. However, such an advancement has not reflected well for 

LMICs hence calling for an interventional need to reduce this gap. It is therefore worth undertaking 

for scientists, engineers, and clinicians to translate novel cancer care technologies used by HICs into 

innovative tools that are resource-appropriate for LMICs. Computational and mathematical MSAs 

coupled with the existing experimental approaches offer a robust opportunity to revolutionize the 

leukemia cancer care delivery in LMICs. 

4. Conclusions 

The reviewed articles clearly indicate that HICs always contest for MSAs than LMICs due to 

their high treatment flexibility levels with the available resources. This review has identified a 

comprehensive knowledge of current MSAs with a focus on computational and mathematical 

approaches that can effectively aid with designing technologies for leukemia treatment in LMICs. 

Given the rising burden of leukemia cases with the current lifelong treatment methods, computational 

approaches can provide supportive and diligent means to experimental approaches so as to 

appropriately monitor the patient while providing an effective treatment. Such approaches can also 

provide a favourable discussion about the efficacy, safety and the affordability plans of the therapy 

before implementing it to the patient. Such plans enable both the patient and the healthcare team to 

benefit from an integrated treatment method that embraces each patient’s unique characteristics at an 

affordable cost. Out of the 17 modeling and simulation approaches reviewed quantitatively (Table 1), 
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computational and mathematical approaches were qualitatively studied in Table 2 and the study 

revealed that most of these models were used alongside with the experimental models yielding to 

reliable and robust results. 

Additionally, computational and mathematical models provided complementary and innovative 

solutions used to overcome the limited data and resource constraints. Such models can mimic diverse 

tumor conditions with their respective treatment outcomes at a much affordable rate than experimental 

models. Among the computational and mathematical models discussed in Table 2, the heat transfer 

model and the Finite Element Method (FEM) models have greatly been used and can provide a robust, 

cost-effective and efficient approach to design novel leukemia treatment approaches that can be used 

in LMICs. 
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