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Abstract: Background: Uveal melanoma (UM) is the most aggressive intraocular tumor worldwide. 
Accurate prognostic models are urgently needed. The present research aimed to construct and validate 
a prognostic signature is associated with overall survival (OS) for UM patients based on metabolism-
related genes (MRGs). Methods: MRGs were obtained from molecular signature database (MSigDB). 
The gene expression profiles and patient clinical data were downloaded from The Cancer Genome 
Atlas (TCGA) database. In the training datasets, MRGs were analyzed through univariate Cox 
regression analyses and least absolute shrinkage and selection operator (LASSO) Cox analyses to build 
a prognostic model. The GSE84976 was treated as the validation cohort. In addition, time-dependent 
receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses the reliability of the 
developed model. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. 
Nomogram that combined the five-gene signature was used to evaluate the predictive OS value of UM 
patients. Results: Five MRGs were identified and used to establish the prognostic model for UM 
patients. The model was successfully validated using the testing cohort. Moreover, ROC analysis 
demonstrated a strong predictive ability that our prognostic signature had for UM prognosis. 
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Multivariable Cox regression analysis revealed that the risk model was an independent predictor of 
prognosis. UM patients with a high-risk score showed a higher level of immune checkpoint molecules. 
Conclusion: We established a novel metabolism-related signature that could predict survival and might 
be therapeutic targets for the treatment of UM patients. 

Keywords: uveal melanoma; metabolism; TCGA; GEO; prognostic model; immune cell infiltration 
 

1. Introduction 

Uveal melanoma (UM) is the most aggressive intraocular malignant tumor in adults and has a 
poor prognosis. The mean age-adjusted incidence is 5.1 per million in the United States [1]. UM is 
considered a high molecular heterogeneous and immunogenicity disease [2]. The progression of 
clinical treatment includes surgery, photocoagulation, and radiotherapy, which can achieve great local 
tumor control [3]. Nevertheless, previous studies have reported that up to 50% of UM patients will 
have experienced a local tumor recurrence by 10 years, and the survival rate remains poor [4,5]. As 
UM has the tendency to early metastasis, nearly 50% of UM patients develop tumor metastasis via 
hematogenous spread primarily to the liver [1]. The metastatic UM patients are usually fatal within 1 
year of the onset of symptoms [6]. During the past decades, immune checkpoint blockade (ICB) has 
been proven efficacious in cutaneous melanoma. Unlike cutaneous melanoma metastases, UM 
metastases generally respond poorly to ICB, with a response rate of only 05% [7]. Despite being 
treated for their primary intraocular tumor, these patients are at lifetime risk of developing metastasis. 
Therefore, it is crucial to reveal a new biomarker to assess UM prognosis. 

Dysregulated metabolism is one of the well-recognized hallmarks of solid human tumors. It 
relates to the rapid proliferation and preferential survival of cancer cells [8]. During tumorigenesis and 
metastasis, aberrantly activated nutrient acquisition metabolism pathways facilitate the reprogramming of 
cancer cell metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells [9]. 
Otto Warburg first observed the reprogrammed metabolic pathway in the cancer cell, which was later 
termed the “Warburg effect” or “aerobic glycolysis” to describe that cancer cells take up glucose and 
produce lactate regardless of oxygen availability [10]. Previous studies have reported a critical 
metabolic program within poor prognostic monosomy 3 UM, associated with higher metastasis and 
poor prognosis [11]. Monosomy 3 UM exhibited a less glycogenetic and more insulin-resistant 
phenotype, together with reduced glycogen levels, which were associated with the development of 
metastases and a reduced survival rate [12]. UM has the highest oxidative phosphorylation 
characteristics among 31 tumor types. A recent study also indicates that high cysteinyl leukotriene 
receptors, a lipid-signaling molecule, expression correlates with poor survival in UM patients [13]. In 
addition, some energy metabolism protein levels were significantly different in glycolysis after 
irradiation [14]. However, the relationship between metabolism-related genes (MRGs) and UM 
prognosis has not been fully elucidated. 

With the development of next-generation sequencing technology, high-dimensional datasets, 
large-scale gene expression is accessible, which allowing us to detect aberrantly expressed MRGs 
related to occurrence or metastasis of cancers and patients’ survival probability and the response to 
immunotherapy. 

In the present study, we performed a comprehensive analysis in multiple databases and explored 
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the effect of MRGs on the survival of UM patients. Notably, the least absolute shrinkage and selection 
operator (LASSO) Cox regression algorithm was used to analyze high-dimensional data. Then, a five-
gene prognostic model was constructed to generate a prognostics risk score, and patients were stratified 
based on risk score, which was further validated in the gene expression omnibus (GEO) databases. In 
addition, Cox regression analysis was used to relationship between the predictive value and clinical 
information of UM patients. The nomogram was built for predicting the overall survival (OS) of UM. 
Moreover, GSEA and immune infiltration analysis were used to identify the role of a signature in the 
tumor microenvironment. The high-risk group patients have higher expression of immune checkpoint 
molecules. In summary, this study provided a reliable five-genes signature based on MRGs that could 
function as an independent prognostic marker for UM. 

2. Materials and methods 

2.1. Data collection from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) 
databases 

The gene expression profiles and the corresponding clinical data of 80 UM patients were 
downloaded from The University of California Santa Cruz (UCSC) Xena browser 
(https://xenabrowser.net/) with cohort name: TCGA-UVM. Then, the gene expression profiles of the 
TCGA-UVM dataset (FPKM value) were transformed into transcripts per kilobase million (TPM) 
value. Ensemble IDs converted to gene symbols using the “org.Hs.eg.db” and “clusterProfiler” R 
packages. Besides, the gene expression profiles and survival data of GSE84976 (platform GPL10558, 
Illumina HumanHT-12 V4.0 expression beadchip Illumina, Inc., San Diego, CA, United States) were 
downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) databases, which was chosen for this 
study as the validation group. Strawberry Perl (version 5.32.0; http://strawberryperl.com/) was used to 
extract the gene expression data from the TCGA-UVM and GSE84976 datasets and construct a data 
matrix for further analysis. The MRGs were downloaded from the HALLMARK gene sets in the 
Molecular Signature Database (MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/). Finally, a total 
of 944 MRGs were identified for our study. 

2.2. Protein-protein network interaction 

The STRING (search tool for the retrieval of interacting genes/proteins) database (https://string-
db.org/) contains known and predicted PPI [15]. After constructing the PPI, the core genes of the 
network need to be identified. We obtained the top 50 hub genes with the largest numbers of adjacent 
nodes for subsequent analysis using R software. 

2.3. Gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) pathway 
functional enrichment analysis of hub genes 

GO and KEGG enrichment analysis was performed utilizing hub genes. The KEGG results were 
analyzed and visualized using the “ggplot2” and “clusterProfiler” R packages. The GO biological 
process (BP), cellular component (CC), and molecular function (MF) results were visualized using the 
“cnetplots” R package. We used p-value < 0.05 and FDR adjusted p-value < 0.05 as the GO and KEGG 
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enrichment analysis threshold. 

2.4. Construction of the metabolism-related prognostic signature 

The univariate Cox analysis was performed to screen out potential prognostics MRGs (p < 0.001) 
on the training cohort. Only genes that showed significantly associated with OS of patients with UM 
were considered for the subsequent analysis. Then, the LASSO Cox regression was used to screen the 
narrow candidate genes and avoid overfitting by using “glmnet” and “survival” R packages [16]. The 
penalty parameter lambda was detected by using 10-fold cross-validation [17]. The minimum lambda 
was defined as the optimal value, and we obtain a list of prognostic signatures with correlation 
coefficients. Next, the multivariate Cox regression analysis was used to identify the independent 
prognostic MRGs, and a prognostic model was constructed. The risk score of each patient was 
calculated as the following equation:  

Risk score (patients) =	෍ ௚௘௡௘௜݊݋݅ݏݏ݁ݎ݌ݔܧ ௚௘௡௘௜௡௜ୀଵݐ݂݂݊݁݅ܿ݅݁݋ܥ	×  

Here, “n” represents the number of prognostic genes; “I” the serial number of each gene. UM 
patients were divided into high-risk and low-risk groups with the median risk score as a cutoff value 
according to the risk score formula. The Kaplan-Meier (K-M) survival curve was used to compare the 
prognostic gene signature and OS based on the two groups through the “survival” R package. Besides, 
the time-dependent receiver operating characteristic (ROC) curve was constructed by the “timeROC” 
R package, and the area under the curve (AUC) was calculated to measure the sensitivity and 
specificity of the multi-gene prognostic model. 

2.5. Validation of the metabolism-related prognostic signature 

To ensure the stability and repeatability of the multi-gene prognostic model, we calculated the 
risk score of each patient in GSE84976 cohorts, and patients were stratified into the high-risk and low-
risk groups with the median risk score. The K-M curve and log-rank test were performed to evaluate 
the differences in survival rate between the two groups. The ROC curve and AUC analysis were 
implemented to show the predictive ability of prognostic signatures in the validation cohorts. The 1-, 
3-, and 5-year survival rates of patients in the validation cohort were evaluated. 

2.6. Gene set enrichment analysis (GSEA) analysis 

GSEA is a computational method determining whether an a priori defined set of genes shows 
statistically significant, concordant differences between two biological states. The GSEA analysis was 
performed to identify differences in the set of genes expression between the high-risk and low-risk 
groups. In this study, the KEGG gene sets (v7.4) and HALLMARK gene sets (v7.4) were downloaded 
from the MSigDB. According to the GSEA user guide, NOM p-val < 0.05 and FDR q-val < 0.25 were 
considered as statistically significant. The top 5 pathways were selected and visualized. 
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2.7. Construction of the nomogram 

In order to predict the 1-, 3-, and 5-year survival probability of UM patients, the nomogram was 
constructed based on the results of multivariate Cox regression analysis. Moreover, the calibration 
curve for 1-, 3-, and 5-year survival rates was used to access the prognostic accuracy of the nomogram. 
The nomogram and calibration curve were constructed by using “rms” R package. 

 

Figure 1. Screening for metabolism-related genes and gene functional enrichment analysis. 
(A) protein-protein interaction of metabolism-related genes. (B) The top 50 core genes are 
based on the number of adjacent nodes for each protein. (C) The top 30 significant terms 
of GO function enrichment. BP, biological process; CC, cellular component; MF, 
molecular function. (D) The top 10 significant terms of KEGG analysis. KEGG, Kyoto 
Encyclopedia of Genes and Genomes. 
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2.8. Statistical analysis 

All analyses were performed with R software (version 4.0.4, 64-bit; https://www.r-project.org/) 
and its appropriate packages. In addition to noting before, “ggplot2”, “ggpubr”, “limma”, “tidyverse”, 
“dplyr” and “plyr” R packages were also used for data analysis and graph plotting. The Perl 
programming language (version 5.34.0, https://www.perl.org/) was used to process data. The K-M 
curve and log-rank test were used to evaluate the differences in OS between the high-risk and low-risk 
groups. The Wilcoxon rank-sum test was used to verify the differences in expression of immune-
related genes between the high-risk and low-risk groups. The p < 0.05 was considered statistically 
significant. 

3. Results 

3.1. Extraction and screening of metabolism-related genes 

We first downloaded the KEGG metabolism-related genes from the MSigDB. A total of 944 
MRGs were obtained from this gene set. Then, we used the STRING website to perform a PPI network 
analysis between MRGs (Figure 1A). After identifying the core genes of the network and the number 
of adjacent nodes for each protein, we obtained the top 50 core genes (Figure 1B). To understand the 
potential biological functions of these core genes, GO and KEGG analyses were conducted. The GO 
analysis showed that MRGs were closely involved in a variety of terms, including “nucleobase-
containing small-molecule biosynthetic process” in the BP category, “mitochondrial matrix” in the CC 
category, and “coenzyme binding” in the MF category (Figure 1C). In the KEGG pathway enrichment 
analysis, MRGs are involved in material synthesis and material metabolism, including the “purine 
metabolism”, “carbon metabolism”, “pyrimidine metabolism” and et al. (Figure 1D). 

3.2. Establishment of prognostic signature from the training cohort 

We obtained the gene expression data and corresponding clinical information from the TCGA-
UVM cohort. The univariate Cox proportional hazard regression analysis was performed to identify 
the association of MRGs with OS in UM patients. Our results showed that 15 MRGs were significantly 
associated with the OS of UM patients (Figure 2A). Among the survival-related genes, overexpression 
of 13 genes (OGHD, MDH1, TPI1, MDH2, HK1, NME3, NME1, ITPA, TXNRD1, GOT1, SHMT2, 
NT5C2, and GLUD1) was found to be significantly related to worse survival outcomes. In comparison, 
overexpression of 2 genes (PC and ENPP1) showed the prognostic value of indicating better OS. Then, 
we performed a LASSO regression analysis of these genes, and regression coefficients were calculated 
(Figure 2B). the LASSO analysis indicated that the model achieves the best performance when it 
includes 10 genes (Figure 2C). Finally, the multivariate Cox regression analysis was performed to 
construct the prognostic model, and five MRGs were identified as the independent prognostic factors 
(Figure 2D). The prognostic risk score was calculated as follow: Risk score = (expression level of MDH2 * 
2.761058) + (expression level of NME1 * 1.384644) + (expression level of NT5C2 * 1.056515) + (expression 
of level PC * 1.443098) + (expression level of ENPP1 * 0.732329) (Table 1). 
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Table 1. Overall information of five metabolism-related genes is significantly associated 
with the prognosis of patients with uveal melanoma. 

Gene 

symbol 

Description Ensembl ID Coefficient 

MDH2 Malate dehydrogenase 2 ENSG00000146701 2.761058 

NME1 NME/NM23 nucleoside diphosphate kinase 1 ENSG00000239672 1.384644 

NT5C2 Cytosolic 5′ nucleotidase II ENSG00000076685 1.056515 

PC Pyruvate carboxylase ENSG00000173599 1.443098 

ENPP1 Ectonucleotide 

pyrophosphatase/phosphodiesterase 1 

ENSG00000197594 0.732329 

 

 

Figure 2. Establishment of metabolism-related prognostic signature from the training 
cohort. (A) Univariate Cox regression analysis identified candidate MRGs related to the 
UM risks. (B) Screening the Log Lambda value was corresponding to the minimum cross-
validation error point. (C) Selecting the metabolic genes with a non-zero coefficient 
corresponding to the same Log Lambda value. (D) Multivariate Cox regression analysis 
revealed five independent MRGs related to patient prognosis. MRGs, metabolism-related 
genes; UM, uveal melanoma. 
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3.3. Effect of the metabolism-related signature on prognosis for UM 

 

Figure 3. Construction and validation of a prognostic model related to OS based on 
metabolism-related genes. (A),(B) The Kaplan-Meier survival curves for patients with UM 
in the TCGA training cohort (A) and GEO validation database (B). (C),(D) The time-
independent receiver operating characteristic curves of the prognostic signature in the 
TCGA training cohort (C) and GEO validation database (D). OS, overall survival; UM, 
uveal melanoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus. 

The five-genes prognostic signature model was established based on multivariate Cox regression 
analysis. According to the prognostic model, the risk score of each patient was calculated. The patient 
in TCGA and GEO cohorts were divided into high-risk and low-risk groups based on the median risk 
score value. To identify the survival difference between these two groups, we conduct a K-M curve 
analysis. Our results reveal significant differences between the high-risk and low-risk groups. Patients 
in the high-risk group show markedly poorer OS than those in the low-risk group (Figure 3A). Also, 
an unfavorable OS outcome was seen in the high-risk group of the testing group (Figure 3B). 
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Subsequently, the accuracy of the OS estimate derived from the prognostic model was performed 
through a time-dependent ROC curve. The ROC curve showed a gradually increasing accuracy of 
predicting the 1-year, 3-year, and 5-year survival rates. The AUC of the ROC curve was 0.861 at 1-
year, 0.767 at 3-year, and 0.909 at 5-year in the training cohort (Figure 3C). The AUC of the ROC 
curve was 0.807 at 3-year and 0.861 at 5-year in the testing cohort (Figure 3D). 

Furthermore, the distribution of survival status of the five-genes signature of patients both in 
training and testing cohort were plotted in Figure 4A,B. The histogram showed that a higher proportion 
of survival patients in the low-risk group than the high-risk group. We also analyzed the interaction 
between the MRGs identified as the prognostic model (Figure 4C,D). Then, the risk score, survival 
status, and gene expression were presented in Figure 4E and F. As showed in the figure, the survival 
time was longer in the low-risk group than in the high-risk group. In addition, the heatmap showed 
that NT5C2, MDH2, and NME1 were highly expressed in the high-risk group, PC and ENPP1 were 
highly expressed in the low-risk group. 

3.4. Correlation of risk score with the clinical characteristics 

The K-M survival analysis was applied to determine the relationship between OS rate in different 
subgroups of patients according to the risk score level and clinical characters, such as different stages, 
age, grade, gender, and TMN status. The results indicated that five-gene signature can significantly 
distinguish the prognosis of patients with the following characteristics: female, male, age ≤ 65, age > 
65, stage I-II, stage III-IV, T1-2, T3-4, M0, M1, N0, and N1, respectively (Figure 5AL). Subsequently, 
the univariate and multivariate Cox regression analysis also indicated that the novel prognostic model 
could work as an independent prognostic factor related to the OS rate of UM patients (Figure 5M,N). 

3.5. Correlation of risk score with immune checkpoint genes 

Immunotherapy is a novel treatment for advanced tumors, activating the host’s natural immune 
defense system. However, the limitation of immunotherapy is that it can only benefit a minority part 
of patients. So, a more reliable biomarker to predict patient response to immunotherapy. Thus, we 
analyzed the expression level of the immune-related genes between high-risk and low-risk groups. A 
heatmap was then drawn to visualize the expression of these genes of patients in TCGA and GEO 
databases. As shown in Figure 6A, B, the expression level of EDNRB, MICA, and CCL28, which 
negatively regulated the trafficking and infiltration of immune cells into cancer, were significantly 
higher in high-risk groups than in low-risk groups group (p < 0.01). Next, we investigated the 
expression of ICB molecules in the high-risk and low-risk groups. Our results showed that 
programmed cell death-1 (PD-1) was positively correlated with a risk score, was upregulated in the 
high-risk group (Figure 6C,D). In addition, the expression level of critical immune checkpoints 
(CD272, CD27, and IDO1) in the high-risk group was significantly higher than that in the low-risk 
group (Figures 6GJ). We also observed that immunosuppressive cytokines were also upregulated in 
the high-risk group (Figures 6K,L). Altogether, these results indicated that the patient with high-risk 
scores was found to tend to develop an immunosuppressive microenvironment through the 
upregulation of immunosuppressive cytokines and immune checkpoint-related genes. 
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Figure 4. Prognostic value of the metabolism-related risk signature in UM patients. (A),(B) 
Patient survival of the high and low hypoxia risk groups in the TCGA training cohort (A) 
and GEO validation database (B). (C),(D) Interaction analysis of the genes in the risk 
model on the TCGA training cohort (C) and GEO validation database (D). (E),(F) The 
distribution of risk score, survival status, and expression heatmap of the five MRGs in the 
TCGA training cohort (E) and GEO validation database (F). UM, uveal melanoma; TCGA, 
The Cancer Genome Atlas; GEO, Gene Expression Omnibus. 
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Figure 5. Relationship between the risk model and clinical factors. (AL) The Kaplan–
Meier analysis of clinical subgroup patients based on the risk model. The clinical 
characteristics including: female (A), male (B), age <= 65 (C), age > 65 (D), stage I-II (E), 
stage III-IV (F), T1-2 (G), T3-4 (H), M0 (I), M1 (J), N0 (K), and N1 (L). (MN) Univariate 
and multivariate Cox prognostic analyses evaluating the independent risk factors of the 
metabolism-related signature in terms of OS in UM patients. OS, overall survival; UM, 
uveal melanoma. 
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Figure 6. Relationships between the risk score and the immune-related genes and 
immunosuppressive cytokines. (AB) Heatmap of the expression levels of immune-related 
genes in different risk groups on the TCGA training cohort (A) and GEO validation 
database (B). (CJ) The correlation between the expression levels of immune checkpoint 
molecules and different risk groups on the TCGA training cohort and GEO validation 
database. (KL) The immunosuppressive cytokine expression in the high-risk and the low-
risk groups in the TCGA training cohort (K) and GEO validation database (L). TCGA, 
The Cancer Genome Atlas; GEO, Gene Expression Omnibus. *p < 0.05, **p < 0.01, 
and ***p < 0.001. 
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3.6. Gene set enrichment analysis 

To understand the level of pathway enrichment between the high-risk and low-risk groups, the 
GSEA software was used to perform pathway enrichment analysis according to NES, nominal p-value, 
FDR q-value, and FWER p-value. As shown in Figure 7A, we found that all markedly enriched gene 
set of HALLMARK collection was seen in the high-risk group, such as angiogenesis, IL-6-JAK-
STAT3 signaling, inflammatory response, oxidative phosphorylation, and UV response. The other 
related pathway annotated by the HALLMARK was shown in Supplementary Table S1. Moreover, all 
gene sets enriched in the KEGG collection were also enriched in the high-risk group (Figure 7B). 
These pathways mostly correlated with apoptosis, cell cycle, glutathione metabolism, mTOR signaling 
pathway, and p53 signaling pathway. The other related pathway annotated by the KEGG was shown 
in Supplementary Table S2,3. 

3.7. Establishment and calibration of an integrated nomogram 

Nomogram was constructed with the five prognostic genes to predict the OS rate of patients with 
UM. In the present study, a nomogram associated with the 1-year, 3-year, and 5-year survival rates was 
established (Figure 8A). Moreover, the calibration curve of the nomogram indicated an optimal 
agreement between the nomogram-predicted and observed OS rate (Figure 8B). The same results were 
seen in the validation cohort (Supplementary Figure S1). 

 

Figure 7. GSEA enrichment analysis between low-risk and high-risk groups. (A) Five 
representative HALLMARK pathways in low-risk and high-risk patients. (B) Five 
representative KEGG pathways in low-risk and high-risk patients. 
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Figure 8. Development of a nomogram based on the metabolism-related signature in the 
TCGA training cohort. (A) Development of MRGs nomogram. (BD) Calibration plots 
for the signature at 1-year, 3-year, and 5-year. 

4. Discussion 

UM is one of the highly aggressive tumors and remarkably variable in patient’s survival rate. The 
advancement of high-throughput technologies and bioinformatic methodology enables us to identify 
the crucial role of gene signatures based on specific associations in predicting the prognostic 
outcome of UM patients. Moreover, numerous HALLMARK gene sets related to tumor prognosis 
have been defined, such as autophagy, hypoxia, angiogenesis, and metabolism. In addition, the 
novel gene signature may also provide a more reliable and more effective biomarker in early 
detection and treatment.  

Recently, the dysregulated metabolism of cancer has become a hotpot in cancer research, which 
might serve as a biomarker and a novel therapeutic strategy. Moreover, it has been reported to play a 
vital role in tumorigenesis, development, progression, and therapeutic resistance of different types 
of cancer. However, there is little known about the role of MRGs in the pathogenesis and progression 
of UM.  

This study constructed a prognostic signature based on the MRGs in UM patients from the TCGA 
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and GEO databases. Using the univariate Cox regression analysis, we found 15 MRGs were 
significantly correlated with OS rate in UM patients. After conducting the LASSO regression and 
multivariate Cox regression analysis between the patient’s prognosis and gene expression, we obtained 
a novel prognostic signature, which consisted of five MRGs (NT5C2, MDH2, NME1, PC, and ENPP1). 
Then, we divided the UM cohort into the high-risk and low-risk groups according to the median risk 
score. The K-M survival curve analysis showed that the prognosis of patients in the high-risk and low-
risk groups was significantly different. The OS rate in the low-risk group was markedly higher than 
that of their counterpart. Moreover, the time-dependent ROC curve, which aimed to evaluate the 
accuracy of the OS estimate, demonstrated that the AUC for 1-year, 3-year, and 5-year was 0.861, 
0.767, and 0.909, respectively. Thus, the nomogram was constructed to represent the relations between 
MRGs expression level and prognosis. The calibration of the nomogram indicated that it has a good 
agreement between the predicted and observed survival rates. In addition, we performed a K-M 
analysis of the correlation of risk score with other clinical factors, such as gender, age, Stage, and TMN 
status. We also evaluated the prognostic value of this signature in the validation cohort, which indicated 
that the five-genes prognostic signature could be used as an independent prognosis indicator in both 
databases.  

Five MRGs (NT5C2, PC, MDH2, ENPP1, and NME1) were selected as the prognostic signature 
in this study. Some of the genes in our signature have previously been shown to be involved in 
melanoma. However, several genes’ role in UM remains unclear. NT5C2, cytosolic 5’ nucleotidase II, 
plays an essential role in cellular nucleotide homeostasis. Recently studies revealed that NT5C2 is 
associated with cancer cell survival and chemotherapy resistance, including relapsed acute 
lymphoblastic leukemia and glioblastoma [18,19]. Pyruvate carboxylase (PC), a mitochondrial 
enzyme during the tricarboxylic acid cycle, plays a crucial role in catalyzes the ATP-dependent 
carboxylation of pyruvate to oxaloacetate [20]. Overexpression of PC is related to cancer cell survival 
and proliferation in non-small-cell lung cancer [21]. The PC inhibitor phenylacetic acid could suppress 
vemurafenib-treated melanoma cells growth, sensitizing melanoma cells to vemurafenib treatment [22,23]. 
Malate dehydrogenase 2 (MDH2), a member of malate dehydrogenase, is a crucial enzyme involved 
in the citric acid cycle in mitochondria [24]. Zhuang et al. reported that MDH2 could promote the 
proliferation, migration, and invasion but inhibited the apoptosis of the endometrial cancer cell line by 
suppressing PTEN [25]. The previous study also indicated that MDH2 is considered a candidate 
therapeutic target for cancer metabolism and tumor growth [26]. Ectonucleotide 
pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein involved in 
insulin resistance and bone metabolism [27]. Abnormal expression of ENPP1 can increase human lung 
cancer malignancy via epithelial-mesenchymal transition [28]. In addition, the expression level of 
ENPP1 from patients with triple-negative breast cancer was significantly associated with recurrence-
free survival and overall survival [29]. NME1 is a metastasis suppressor gene that inhibits tumor cells’ 
metastatic activity in different types of cancer. NME1 was associated with a statistically significant 
risk of breast cancer relapse and tumor metastasis [30]. NME1 was also able to suppress metastasis in 
a mouse model of UV-induced melanoma [31]. However, Wang et al. reported that NME1 could 
promote the expansion of melanoma cells, thus contributing to the melanoma growth and lung 
colonizing activities, which indicated NME1 could act as a driver of melanoma growth distinct from 
its function as a metastasis suppressor [32].  

The clinical trial indicated that immunotherapy has high efficacy in tumor treatment and can 
improve the quality of life in patients with advanced melanoma. However, the main disadvantage of 
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immunotherapy is that only a minority of patients respond to it. Previous studies reported that immune 
checkpoint molecules could affect the metabolic communication of T cells. For instance, PD-1–PD-
L1 axis might impair the metabolism pathway, such as aerobic glycolysis and glutaminolysis, in T cells 
through the PI3K–AKT–mTOR pathway [33,34]. In addition, to impair the metabolic profile of tumor-
infiltrating lymphocytes, immune checkpoint molecules can also directly support T cell activation via 
reprogramming of metabolism. For example, CD28 signaling can enhance aerobic glycolysis and 
stimulate mitochondrial fusion of T cells [35]. In this study, we identified the association between risk 
score and immune checkpoint molecules. The high-risk group patients have a higher expression level 
of immune checkpoint molecules than those in the low-risk group. 

Furthermore, we found different gene expression levels, which encode chemokines between the 
high-risk and low-risk groups. We found that the high-risk group patients have a high expression of 
six chemokines (CXCL9, CXCL10, CXCL11, CCR5, CCL20, CXCR3) low-risk group. Chemokines 
promote the migration, localization, and progression of several cancers. It has been reported that 
CCL20 is a poor prognostic factor for cutaneous melanoma [36]. CXCL10 is secreted by the various 
immune cell, is associated with melanoma invasion, proliferation, and metastasis [37]. It has also been 
observed that anti-PD-1 therapy is not effective without CXCL9, CXCL10, CXCL11/CXCR3 axis [38]. 
For anti-CTLA4 cancer immunotherapy, the expression levels of this axis were significantly increased 
in melanoma patients with good clinical responses [39]. CCR5 acts as a modulator of the immune 
response of interleukin-2 signaling therapy, contribute to the harmful inflammatory response [40]. 
Taken together, the outcome of our study revealed that the five-genes prognostic signature might be a 
potential predictive indicator in accessing the response of UM patients to immunotherapy. 

However, there are some limitations to our study. First, the size of TCGA-UVM and GSE84976 
cohorts is relatively small, which may not be consistent with the clinical population. Secondly, due to 
the limited clinical characteristic of patients in the GSE84976 cohort, some clinical subgroups analysis 
could not be performed. Finally, long-term prospective clinical research is needed to validate the 
robustness of the prognostic signature. 

5. Conclusions 

In summary, we constructed a novel five-gene signature prognostic risk model based on MRGs 
in the TCGA database that was an independent prognostic factor for UM patients and validated by an 
independent cohort from the GEO database. Our study may provide guidance for targeted therapy and 
potential biomarkers in the future. 
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