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Abstract: Cybersecurity experts estimate that cyber-attack damage cost will rise tremendously. The 
massive utilization of the web raises stress over how to pass on electronic information safely. Usually, 
intruders try different attacks for getting sensitive information. An Intrusion Detection System (IDS) 
plays a crucial role in identifying the data and user deviations in an organization. In this paper, stream 
data mining is incorporated with an IDS to do a specific task. The task is to distinguish the important, 
covered up information successfully in less amount of time. The experiment focuses on improving the 
effectiveness of an IDS using the proposed Stacked Autoencoder Hoeffding Tree approach (SAE-HT) 
using Darwinian Particle Swarm Optimization (DPSO) for feature selection. The experiment is 
performed in NSL_KDD dataset the important features are obtained using DPSO and the classification 
is performed using proposed SAE-HT technique. The proposed technique achieves a higher accuracy 
of 97.7% when compared with all the other state-of-art techniques. It is observed that the proposed 
technique increases the accuracy and detection rate thus reducing the false alarm rate.  

Keywords: intrusion detection system (IDS); stream data mining; stacked autoencoder; DPSO; 
Hoeffding tree; feature selection 
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1. Introduction 

With the development of internet technology, there is a tremendous increase in the dimensions of 
information that are generated, exchanged and processed. Almost in all the fields there is a difficulty 
in handling large amount of high dimensional data. These data become the target for illegal activities 
which impose a severe threat to the network security. The traditional security techniques such as 
antivirus, firewall, data encryption and user identification which acts as the first line of defense that 
alone is not sufficient to provide the better security to the network. The second line of security is highly 
recommended that can be provide by an Intrusion Detection System (IDS) [1]. Using these two lines 
of security enhances the overall network security. An Intrusion Detection System (IDS) identifies the 
intruders who are harmful to an organization. The main goal of an IDS is to monitor the network or 
system for abnormal pattern or traffic and prevent it from unauthorized access [2]. However, the key 
problem is identifying the unknown malicious traffic. The Intrusion Detection Systems is broadly 
classified into two types based on the source of data. First, Network Intrusion Detection System (NIDS) 
placed near the network points checks the network traffic from the routers and gateways for intrusion. 
It can detect attacks in real time. The main limitation of NIDS is that it can monitor the traffic passing 
through the specific network nodes. Second, the Host Intrusion Detection System (HIDS) scans the 
individual host for suspicious activities like an unwanted configuration change, deletion or 
modification of system files, or an unwanted sequence of system calls. If any of these activity occurs, 
it sends an alert to the administrator [3]. The main limitation in HIDS is that it cannot analyze the 
network behaviors. Next the Intrusion Detection System (IDS) uses three different detection 
mechanisms to detect the attacks and each detection method is further classified accordingly. Figure 1 
shows the different detection mechanisms to detect the intrusions. 

 

Figure 1. Types of detection mechanism. 
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1.1. Signature-based/misuse detection mechanism 

Signature-based IDS uses the set of rules or predefined signatures for detecting the known 
attacks [3]. Misuse detection techniques are based on knowledge or based on Machine Learning (ML) 
methods. In a knowledge-based strategy, the network stream of traffic or host audit data is analyzed 
and compared with the predefined set of rules. There are three ways of applying the knowledge-based 
approach: signature matching, rule-based expert system, and state transition analysis [3]. The signature 
matching compares the incoming network traffic with the predefined attack signatures for intrusion. A 
rule-based expert system finds out the intrusion by comparing the traffic with the predetermined rules. 
Finally, state transition analysis maintains the state transition model for each known suspicious activity. 
Machine Learning (ML) based IDS offers learning based on model to detect the normal behavior from 
attack behavior. The ML model generates the representation for the known models. It uses supervised 
machine learning techniques such as SVM, Decision Tree to detect the known attacks more efficiently.  

The significant drawback of Signature-based Detection is that it needs to update the signatures 
regularly for new attacks for which signatures are not there in the database. As a result, it generates 
more false alarms. It has to maintain a large signature database. 

1.2. Anomaly-based detection mechanism 

Anomaly-based detection uses a hypothesis to detect novel, unknown intrusion if any deviation 
or behaviour change occurs [3]. Anomaly-based detection comprises statistical techniques, Finite State 
Machine (FSM) and machine learning techniques. FSM generates the behaviour model that contains 
states, actions and transitions. Semi-Supervised and Unsupervised ML techniques such as clustering 
algorithms, one class SVM are mainly used for anomaly detection. The anomaly-based detection can 
detect both known and unknown attacks. The prime limitation is that anomaly-based detection suffers 
from high false positives [3]. 

1.3. Hybrid detection mechanism 

Hybrid detection mechanism combines signature and anomaly-based detection to detect the 
intrusion [3]. 

1.4. Limitations of current IDS 

Current IDS can detect more accurately and precisely the known attacks, which leaves the system 
more vulnerable to novel malicious attacks where predefined signatures are not available [4]. 

High False positives-The current IDS suffers from high false positives. False positives are the 
incorrect classification of a normal event as malicious events.  The main aim of an IDS is to minimize 
the false positives as far as possible [4]. 

High False-negatives-The current IDS suffers from high false negatives. False negatives are the 
incorrect classification of malicious events as normal events. The main aim of an IDS is to reduce the 
false negatives as minimum as possible [4]. 

Data Overload-Millions of data are generated every day depending on the company's size and 
the IDS tools used, which leads to a data overload [4]. 
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1.5. DataStream mining 

DataStream mining is the continuous well-ordered sequence of data that arrives in a timely 
fashion [5]. Data streams are a constant flow of unlimited data with high speed, and data changes with 
time compared to the traditional databases [6]. The primary requirement of the stream data is to inspect 
each instance only once. Therefore, it should use a limited amount of memory and should give the 
outcome in a less amount of time. Data streams are of two types, namely streams that are static and 
streams that are evolving. The bulk arrival of data that won’t change with time is called static stream. 
The data that arrives continuously and changes with time is called evolving data streams [6]. 

The paper is organized as follows: Section 2 presents the earlier work on various machine learning 
and feature selection techniques. Section 3 discusses the methodology used for preprocessing, feature 
selection and classification. Section 4 discusses the experimental setup, dataset details and the 
performance evaluation metrics used. Section 5 presents the result outcomes and its performance 
comparison with the state of art methods and finally Section 6 summarizes the research work 
undergone and future scope. 

2. Related works 

There has been quite a lot of research on intrusion detection using machine learning and deep 
learning techniques and the hybrid approaches. The related work (Table 1) presents the latest 
techniques used and its relevant advantages and disadvantages. 

3. Methodology 

The proposed work uses the NSL_KDD benchmark dataset for intrusion analysis. The first phase 
focuses on feature selection using Darwinian Particle Swarm Optimization and selects key features 
that contribute to intrusion. The second phase emphasises applying the proposed Stacked Encoding 
Hoeffding Tree technique to classify the data based on performance metrics like accuracy, specificity, 
sensitivity, false-positive rate, false-negative rate and F1 score.  

The benchmark NSL_KDD dataset is taken for the analysis. The dataset which we have taken is 
standalone dataset in order to incorporate stream data, the dataset is streamed using the techniques in 
Matlab tool. The system object technique simplifies the streaming process in Matlab. The data is now 
continuous and it possess the characteristics of streaming data. The attacks are detected using the 
proposed Stacked Autoencoder Hoeffding Tree (SAE-HT) classification approach. The bio-inspired 
technique called Darwinian Particle Swarm Optimization (DPSO) enhances the performance of the 
SAE-HT classification technique. The distracting variance is removed from the data using the DPSO 
feature selection technique that enables the classifier to perform better, especially when dealing with 
the high dimensional features. Figure 2 shows the flow diagram of SAE-HT classification technique. 
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Table 1. Related works. 

Authors Algorithms Used  Computational Methods Pros Cons 

X. Li et al. (2021) 

[7] 

CMPSO, ACO, KH, IKH, 

LNNLS-KH 

The NSL_KDD dataset is taken for 

intrusion detection. The proposed 

LNNLS-KH is compared with CMPSO, 

ACO, KH, and IKH algorithms and best 

features are selected. Then KNN 

technique is applied for further 

classification. 

Good convergence speed. Lower false 

positive rate. 

LNNLS-KH gives an accuracy of 96.12%

Attack with fewer 

samples, an adversarial 

learning method can be 

used to create similar 

attacks. 

X. K. Zhou et al. 

(2021) [8] 

AdaBoost, LSTM, CNN 

LSTM, VLSTM 

The authors proposed a variational long 

short-term memory technique that 

detects intrusion anomalies efficiently 

based on feature reconstruction. 

The loss function helps to reconstruct the 

hidden variable into meaningful form. 

Proposed VLSTM gives the accuracy of 

89.5%. 

Imbalanced data is still a 

challenge in anomaly 

detection. 

T. H. Hai et al. 

(2020) [9] 

Novel architecture of storage 

tools and distributed log 

processing 

The Novel storage with HBase or 

Apache Spark enhances NIDS data 

processing.  

Processing time is reduced. Takes more query time. 

S. N. Mighan et al. 

(2020) [10] 

SVM, SAE-SVM Hybrid scheme that uses deep learning 

and machine learning method together 

(SAE-SVM) can detect intrusion attacks 

more precisely. 

SAE-SVM shows higher accuracy of 

95.98%. 

Computational time taken 

is more. 

T. Vaiyapuri et al. 

(2020) [11] 

Stacked Autoencoder, Sparse 

Autoencoder, Denoising 

Autoencoder, Contractive 

Autoencoder, Convolution 

Autoencoder 

All the methods mentioned are compared 

with contractive autoencoder. The 

contractive autoencoder gives 87.98% 

intrusion detection accuracy. 

SAE 85.23%, SAAE 86.02% DAE 

86.92% ContAE 87.98% CAE 81.07% 

Reduced reconstruction 

ability further needs to be 

improved 

C. F. Tang et al. 

(2020) [12] 

Stacked Autoencoder Deep 

Neural Network (SAE-

DNN), SAAE-DNN 

SAAE selects the needed features from 

the intrusion dataset and initializes 

weight to DNN thus improves the 

intrusion detection accuracy. 

SAE-DNN gives 82.23% accuracy. The 

proposed SAAE-DNN shows higher 

accuracy of 87.74% when compared to 

SAE-DNN. 

The accuracy achieved can 

be improved further.  

  Continued on next page 
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Authors Algorithms Used  Computational Methods Pros Cons 

A. D. Jadhav et al. 

(2019) [13] 

SVM, KNN, Decision Tree, 

Naïve Bayes classifier 

machine learning techniques 

to detect the attacks. 

Proposed a distributed and 

parallel approach. 

The proposed distributed and parallel 

approach enhances the efficiency of 

detecting the intrusions faster. 

Faster detection of intrusion. Not applied in real time 

environment. 

A. Muallem et al. 

(2017) [14] 

Hoeffding Tree Restricted, 

Hoeffding Trees AUE2 with 

Buffer AUE2 without Buffer 

Hoeffding Adaptive Trees 

with DDM and ADWIN 

The survey talks about the flexibility of 

the methods when used in different 

domains of streaming data. 

Combinations of technique solves the 

intrusion anomaly detection problem. 

All the techniques surveyed gives good 

accuracy. Hoeffding Tree 93% Restricted 

Hoeffding Trees 92.15% AUE2 with 

Buffer 94.07% AUE2 without Buffer 

94.06% Hoeffding Adaptive Trees with 

DDM and ADWIN 92%. 

Improvement in accuracy 

is needed. 

G. Kim et al. 

(2014) [15] 

Hybrid approach combines C 

4.5 algorithm and one class 

SVM approach 

C 4.5 is used to build the misuse 

detection model and decompose the 

training data into smaller subsets. 

Multiple one class SVM models are built 

to enhance intrusion detection accuracy 

Good detection accuracy for both known 

and unknown attacks. Low false positive. 

Processing time is more 

for the proposed 

technique. 

H. K. Sok et al. 

(2013) [16] 

ADT algorithm The alternating decision tree algorithm is 

used for knowledge discovery and 

effective selection of features. 

Classification process simplifies.  Evaluation speed needs to 

be improved. 

S. J. Horng et al. 

(2011) [17] 

BIRCH hierarchical 

clustering technique, SVM 

It combines BIRCH hierarchical 

clustering technique and SVM which 

gives good detection accuracy. 

The training time is reduced and gives a 

good detection accuracy of 95.72%. It 

mainly detects DOS or Probe attacks. 

It cannot detect U2L and 

R2L attacks. 

Tavallaee et al. 

(2009) [18] 

KDD CUP 99 dataset Analysis on KDD CUP 99 dataset is 

made.  

Good for signature-based detection. Poor detection when used 

for anomaly detection. 

Contains many duplicate 

values leads to 

performance degradation.  
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Figure 2. Flow diagram of SAE-HT classification technique. 

3.1. Data Preprocessing 

Data preprocessing is a vital step in machine learning. The raw data collected is made ready to be 
used by machine learning techniques to extract meaningful insights from the data. The NSL_KDD 
dataset taken from Canadian Institute for Cybersecurity is analyzed. If the downloaded dataset is in gz 
or Tcpdump format, convert that to CSV file format and load the dataset into the environment. The 
proposed classification technique supports only the numeric data. Since most machine learning (ML) 
techniques use mathematical equations that only support the usage of numeric data, the conversion of 
categorical data into numerical data using data conversion functions should occur. The one-hot 
encoding technique converts the categorical data to numerical data, thus making it convenient to apply 
machine learning techniques to the dataset. 

3.2. One-hot encoding technique 

The one-hot encoding technique is the most effective encoding technology to deal with the 
conversion of numeric to categorical features [19]. It can convert the categorical features to a binary 
vector. The vector holds Zeroes, and One’s as values. The vector holds only one element with the value 
one and other values corresponding to Zero. An element with value one indicates the occurrence of the 
possible values against the categorical features. The NSL_KDD dataset contains three categorical 
features such as protocol_type, service and flag. For example, the protocol_type consists of three 
attributes: ICMP, TCP, UDP. Using one hot encoding technique, ICMP can be encoded as (1,0,0), TCP 
can be encoded as (0,1,0), UDP can be encoded as (0,0,1). Similarly, categorical features service and 
flag are also encoded into one-hot encoding vectors. 

3.3. Feature selection 

Feature selection mainly reduces the features by removing the insignificant or less significant ones. 
There are many feature selection techniques. This paper uses the Bio-Inspired feature selection 
technique called Darwinian Particle Swarm Optimization (DPSO) to select optimal features. The main 
goal of the DPSO is to find the non-redundant and highly correlated features, thus eliminates the least 
correlated features [20]. DPSO is the extension of the PSO technique with the basic principle of 
survival of the fittest. The major drawback of PSO and other bio-inspired feature selection techniques 



8031 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8024–8044. 

is that it gets trapped in the local optimum. No long-term memory effect leads to premature 
convergence to the local optimum DPSO overcomes the above drawback. DPSO consists of multiple 
swarms in which each swarm performs like an individual PSO. All the swarms run simultaneously 
towards the local optimum, and each swarm is compared. The best swarm gets the extended life, and 
the stagnated or insufficient swarm got deleted.  

DPSO is an effective evolutionary algorithm that searches the population of individuals for local 
optimum. The population represents the “swarm”, and individuals represent the “particles”. 
Throughout the evolutionary process, every particle updates its moving direction according to the 
position. There are two positions, namely local best and global best position [21]. The local best 
position (pbest) is the particle's position among all the particles that are visited so far. The global best 
position (gbest) is the best fitness achieved among all the visited particles so far. In each iteration, the 
particle updates its velocity and position, which is given by Eqs (1) and (2) [22]. 

𝑉௝ሺ𝑡 ൅ 1ሻ ൌ 𝜔𝑉௝ሺ𝑡ሻ ൅ 𝑐ଵ𝑟ଵ ቀ𝑃௝ െ 𝑌௝ሺ𝑡ሻቁ ൅ 𝑐ଶ𝑟ଶ ቀ𝑃௚ െ 𝑌௝ሺ𝑡ሻቁ (1)

𝑌௝ሺ𝑡 ൅ 1ሻ ൌ 𝑌௝ሺ𝑡ሻ ൅ 𝑉௝ሺ𝑡 ൅ 1ሻ (2)

𝑌௝ ൌ ሺ𝑌௝
ଵ,  𝑌௝

ଶ, … . ,  𝑌௝
஽ሻ  denotes the particle position at generation j in a D-dimensional search 

space. Vj (t + 1) is the velocity produced at time t + 1. Pj is the best position of the particles found so 
far (pbest). It denotes the cognitive component of Eq (1). Pg is the best global position found so far 
(gbest). It represents the social component of Eq (1). ω signifies the inertia weight, c signifies a 
constant called local and global weight, r signifies random variable which ranges between (0,1). The 
searching process keeps on going until the predefined threshold reaches. DPSO is more efficient than 
the original PSO and thus prevents premature convergence to a local optimum. Rearrange the velocity 
function in Eq (1), and it is given by Eq (3) [22]. 

𝑉௝ሺ𝑡 ൅ 1ሻ ൌ 𝛼𝑉௝ሺ𝑡ሻ ൅
𝛼
2

𝑉௝ሺ𝑡 െ 1ሻ ൅
𝛼ሺ1 െ 𝛼ሻ

6
𝑉௝ሺ𝑡 െ 2ሻ 

൅
𝛼ሺ1 െ 𝛼ሻሺ2 െ 𝛼ሻ

24
𝑉௝ሺ𝑡 െ 3ሻ ൅ 𝑐ଵ𝑟ଵ ቀ𝑃௝ െ 𝑌௝ሺ𝑡ሻቁ ൅ 𝑐ଶ𝑟ଶሺ𝑃௚ െ 𝑌௝ሺ𝑡ሻሻ (3)

The left side of Eq (3) gives a discrete version of the derivative of velocity D𝛼[V𝑡 + 1] with 
order α = 1. Finally, the Grunwald-Letnikov derivative expresses the discrete-time implementation 
using Eq (4) [22]. 

𝐷ఈሾ𝑉௧ାଵሿ ൌ
1

𝑇ఈ ෍
ሺെ1ሻ௞Γሺ𝛼 ൅ 1ሻ𝑣ሺ𝑡 െ 𝑘𝑇ሻ

Γሺ𝑘 ൅ 1ሻΓሺ𝛼 െ 𝑘 ൅ 1ሻ

௥

௞ୀ଴

 (4)

Here T represents a sample period, and r represents the truncate order. Repeat Eq (3) to update 
every particle velocity. The different values generated to control the convergence speed of the 
optimization process. 

3.4. Proposed classification algorithm (SAE-HT) 

Classification is the supervised machine learning technique that divides the set of data into 
different classes. As the data generation is continuous, it is impossible to store a massive amount of 
data. So, the data needs to be analyzed as it comes in. The classification techniques are very much 
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helpful in classifying the streaming data [23]. This paper proposes a classification technique for stream 
data mining called the Stacked Autoencoder Hoeffding Tree approach. Even though stacked 
autoencoder gives good accuracy on its own but in order to improve it further we applied hoeffding 
tree approach. The stacked autoencoder is an unsupervised learning technique that maintains three 
layers: input, output, and hidden layers [24]. An encoder takes the input and maps it to the hidden 
representation. Finally, the decoder reconstructs the input. Equation (5) gives the encoder process [24]. 

h୬ ൌ fሺWଵx୬ ൅ bଵሻ (5)

where hn represents the encoder, vector determined from xn. Encoding function f, weight matrix of the 
encoder W1, and bias vector b1.  

Equation 6 represents the decoder process. Where g denotes decoding function, W2 denotes the 
decoders weight matrix, and b2 denotes the bias vector [24]. 

X୬෢ ൌ gሺWଶh୬ ൅ bଶሻ (6)

When the decoder reconstructs the input data, there is a possibility that it results in reconstruction 
error. Equation (7) minimizes the reconstruction error [24]. 

ϕሺΘሻ ൌ
arg min

θ, θᇱ

1
n

෍ LሺX୧

୬

୧ୀଵ

, X෡୧ሻ (7)

where L denotes the loss function, and 𝐿൫𝑋, 𝑋෠൯ ൌ∥ 𝑋 െ 𝑋෠ ∥ଶ represents the loss function.  
Now Hoeffeding tree is used to classify the class labels. The Hoeffding tree is a kind of decision 

tree that consists of a root node, test node and leaf node. The leaf node holds the class prediction. The 
main requirement in streaming data is to classify the data in a single pass. The data represented as a 
tree structure using the Hoeffding tree technique when the model built incrementally. The main 
disadvantage in Hoeffding tree classification is that it fails to classify the data into a tree when a tie 
occurs. Equation (8) gives the formula for Hoeffding bound calculation [25]. 

∈ൌ ඨቀ𝑅ଶ log ቀ
1
𝛿ቁቁ

2𝑛
 (8)

where R denotes the range of random variable, δ denotes the desired probability not within ε of the 
expected value, N denotes the number of instances collected at the node. 

Algorithm: Stacked Autoencoder Hoeffding Tree Approach 

Input: NSL_KDD benchmark dataset 
Output: Classification results: Accuracy, Sensitivity, Specificity, False Alarm Rate, False Negative 
Rate and F1 Score. 

Procedure 
1. Load the network intrusion benchmark dataset (NSL_KDD dataset) 
2. Data preprocessing  
3. Apply bio-inspired feature selection technique (DPSO) to select the significant features 
4. Partition the dataset into training and testing data  
5. Input data to the encoder and maps it to the hidden representation to obtain a learned feature 

vector. 
6. The feature vector from the previous layer is the input to the next layer. This process repeats 
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till the training ends. 
7. The decoder reconstructs the input from the hidden representation. Thus, Eq (7) minimizes 

the reconstruction error.  
8. for entire training data, do 
9. Use the Hoeffding tree technique and sort the instances to 𝑓 leaf  
10. Update the necessary statistics in 𝑓 
11. Increment 𝑚௙, for all the instances at 𝑓 
12. if 𝑚௙ mod 𝑚௠௜௡  ൌ  0 and instances at 𝑓 are of a different class, then  
13. Calculate 𝐺௙𝑘ሺ𝑖ሻ for each feature  
14. The feature with the highest 𝐺௙ value represents 𝑘௤ 
15. The feature with the second-highest 𝐺௙ value represents 𝑘௤  
16. Calculate Hoeffding Tree Bound using Eq (8) 
17. If 𝑘௤≠ 𝑘∅ and (𝐺௙ሺ𝑘௣ሻ - 𝐺௙ሺ𝑘௤ሻ > ∈ or ∈ < τ) then 
18. Replace 𝑓 with an internal node that splits on 𝑘௣  
19. for entire branches, do  
20. Add and initialize a new leaf with sufficient statistics  
21. End  
22. Returns the classification result. 

The pseudocode of the stacked autoencoder hoeffdding tree explains the following: Line 1 loads 
and streams the NSL_KDD dataset using Matlab platform. Line 2 performs the preprocessing of the 
dataset. The categorical data in the dataset is converted to numeric data using the one-hot encoding 
technique. In line 3, the DPSO feature selection algorithm is applied, and the important features are 
selected based on the selection score generated by the algorithm. Line 4 the data is divided into test 
and train sets. Lines 5–7 explains the stacked autoencoder process where the input data to the encoder 
is mapped to the hidden representations to obtain the learned features. The learned feature vector is 
given as an input to the next layer. This process continues till the training ends. The decoder 
reconstructs the hidden representations. The reconstruction error is minimized by calculating the loss 
function. Lines 8–21 explains the procedure of the hoeffding tree. The output generated by the stacked 
autoencoder is fed as an input to the hoeffding tree technique. The input is taken and the root node is 
decided and initialized. The tree is constructed incrementally for each training data until suitable leaf 
arrives. Each node has enough information to make a decision. It uses information gain to make the 
attribute split. The best attribute is found at each node and test is performed to decide whether the 
attribute yields better results based on Hoeffding bound. The test is applied on the attributes to find out 
which attribute gives better results and split the node for the growth of the tree. Line 22 returns the 
classification results. 

4. Experimental setup 

The experiment was conducted with the proposed technique in MATLAB R2021a on Windows 10 
64-bit operating system with Ryzen 7 processor and 16 GB RAM. The experiment uses a stream-
oriented offline database for querying the network traffic data. It enables a natural data analysis within 
the IDS. The streaming architecture is used across multiple sites to process attack data to increase the 
performance in large scale systems because the data is processed during the natural flow and stored 
only for a limited amount of time for analysis. In the research work, we have applied a hybrid 
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classification technique. The proposed hybrid classification technique’s performance was analyzed by 
applying various performance evaluation metrics. 

4.1. Intrusion dataset 

The NSL_KDD dataset is used for experimentation of the proposed work. The KDD CUP’99 
dataset is the popular benchmark dataset used for network intrusion detection system. The main 
limitation of the KDD CUP’99 dataset is that it contains a high number of redundant records that affect 
the effectiveness of the evaluated system [26]. The improved version of KDD CUP’99 is the 
NSL_KDD dataset in which the redundant records are removed. NSL_KDD dataset have 
approximately 125,973 training data and 22,544 testing data [27]. Similar to KDD CUP’99, the records 
in NSL KDD dataset are unique and labelled as normal and anomaly. It has 41 features that address 
four different categories of attacks. Table 2 shows the NSL KDD features [27]. 

Table 2. NSL_KDD dataset features. 

No NSL_KDD Feature Names No NSL_KDD Feature Names 

1 duration 21 _is_host_login 

2 protocols_types 22 _is_guests_login 

3 services 23 _counts 

4 flag 24 src_counts 

5 source_bytes 25 srcerror_rate 

6 dstn_bytes 26 srcs_error_rate 

7 lang 27 rerrors_rate 

8 wrong_fragments 28 src_rerrors_rate 

9 urgent 29 simlr_srcs_rate 

10 hot 30 diff_srcs_rate 

11 numbr_failed_login 31 src_diffs_host_rate 

12 usr_login 32 dstv_host_counts 

13 numbr_compromises 33 dstn_host_src_count 

14 numbr_root_shell 34 dstn_simlr_src_rate 

15 numbr_attempts 35 dstn_diffs_srce_rate 

16 numbr_of_roots 36 dstn_hosts_sim_srce_port_rates 

17 numbr_files_creation 37 dstn_hosts_src_diffr_host_rates 

18 numbr_offshell 38 dstn_hosts_srcerror_rate 

19 numbr_access_usrfiles 39 dstn_hosts_srce_srerror_rate 

20 numbr_outbounds_cmd 40 dstn_hosts_error_rates 

  41 dstn_hosts_srce_error_rates 

4.2. Performance evaluation 

The study was conducted to measure the performance and compare the results based on the 
performance metrics such as accuracy, sensitivity, specificity, False Positive Rate (FPR), False 
Negative Rate (FNR). The feature selection technique selects the important features that play a 
significant role in the intrusion. Then the proposed classifier performance is determined with the help 
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of performance evaluation metrics. Accuracy is the most common performance evaluation technique. 
Accuracy is the total number of instances correctly predicted as an attack from the ratio of all predictions 
made from the given dataset. Equation (9) shows the way of accuracy (ACC) calculation [28]. 

𝐴CC ൌ  
TP ൅ TN

TP ൅ TN ൅ FP ൅ FN
 (9)

The confusion matrix in Table 3 defines the TP, TN, FP, FN 
TN (True Negative): The actual and predicted instances both are classified as normal. 
FP (False Positive): The actual normal instance is predicted as an anomaly by the IDS. 
FN (False Negative): The actual anomaly instance is predicted as normal by the IDS. 
TP (True Positive): The actual anomaly instance is predicted as an anomaly by the IDS. 

Table 3. Confusion matrix for IDS. 

Actual Instance Predicted Instance 

Normal Anomaly 

Normal True Negative (TN) False Positive (FP) 

Anomaly False Negative (FN) True Positive (TP) 

Sensitivity (S) is the probability to identify an attack instance as an attack accurately. Recall or True 
Positive Rate (TPR) are the other names for sensitivity. Sensitivity can be calculated as in Eq (10) [29]. 

S ൌ
TP

TP ൅ FN
 (10)

Specificity (SP) is the probability to identify a normal instance as normal correctly. Specificity can 
be named as True Negative Rate (TNR). Equation (11) shows the specificity calculation formula [29]. 

SP ൌ
TN

TN ൅ FP
 (11)

FPR is the chance that the normal instance incorrectly classified as an attack. FPR is also known 
as False Alarm Rate (FAR). FPR calculation is given by Eq (12) [30]. 

FPR ൌ
FP

FP ൅ TN
 (12)

FNR is the chance that the attack instance incorrectly classified as normal. It is also named Miss 
Rate. FNR calculation is given in Eq (13) [30]. 

FNR ൌ
FN

FN ൅ TP
 (13)

F1 Score is the harmonic mean of precision and recall. F1 Score serves as the derived effectiveness 
measurement. F1 Score calculation is given by Eq (14) [30]. 

FଵScore ൌ 2 ∗  ୔୰ୣୡ୧ୱ୧୭୬∗ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
                           (14) 

We designed an overall system architecture for supporting the properties of Network IDS with 
the help of machine learning techniques. Figure 2 shows the flow diagram of system architecture 
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consisting of network benchmark dataset, feature selection, proposed classifier, evaluation parameters 
and analysis of results. 

5. Results and discussion 

In this experimental analysis, the feature selection technique selects the optimal subset of 
informative features from the given dataset. We take the optimal subset of features for analyzing the 
impact of the proposed technique on how accurately it classifies the network traffic into normal or 
anomaly. 

A comprehensive study was conducted to validate the impact of the proposed technique, such as 
performance metrics, feature selection analysis which is helpful in the prediction of anomalies in the 
network traffic. The main objective of this experimental study is that. 

 To identify the optimal subset of informative features that contributes to intrusion from the 
intrusion dataset. Though the DPSO feature selection technique is not new, the main 
advantage of DPSO is that it won't get trapped in the local optimum that helps us select the 
best features for evaluation. 

 To enhance the efficiency of intrusion detection using a hybrid classification technique, which 
is novel and is used to evaluate the performance and detection capabilities.  

 To evaluate the proposed classification technique on the NSL_KDD dataset. 
 To study the performance evaluation of the proposed classification technique by applying 

various performance measures such as accuracy, sensitivity, specificity, FPR and FNR. 
 To compare the efficiency of the proposed technique with state-of-art methods. 

5.1. Feature selection techniques analysis 

A comprehensive study was performed between five different bio-inspired feature section 
techniques in terms of accuracy, detection rate and FPR. The proposed feature selection technique 
achieved a considerable performance improvement compared to other feature selection techniques. 
The results achieved after applying the feature selection and proposed classification technique to the 
NSL_KDD dataset is depicted in Table 4. It compares classification accuracy, classifiers detection rate 
and false positive rate of the proposed technique with the state-of-art techniques. In the compared 
feature selection techniques LHHLS-KH feature selection technique has given the best accuracy of 
96.12%, detection rate of 96.48% and false positive rate of 4%. Now the performance of the proposed 
technique combined with feature selection gives an accuracy of 97.70 %, detection rate of 97% and 
false positive rate of 1.25 % which is 0.52, 1.58 and 2.75% higher than LHHLS-KH technique. 

To visualize the difference between classification accuracy, DR and FPR are shown in Figure 3. 
For the NSL_KDD dataset, the false positive rate of DPSO with the proposed classification technique 
is 1.25%. It reduces by 23.45, 18.05, 11.63, 6.09 and 2.75%, respectively, compared with Cross 
Mutation Particle Swarm Optimization (CMPSO), Ant Colony Optimization (ACO), Krill Herd (KH), 
Improved Krill Herd (IKH) and Linear Nearest Neighbor Lasso Step-Krill Herd (LHHLS-KH). 
Similarly, the detection rate of the DPSO with the proposed classification technique is 97% which is 
13.99, 9.85, 7.54, 5.25, 0.52% higher than CMPSO, ACO, KH, IKH and LHHLS-KH. Similarly, the 
accuracy of DPSO with the proposed classification technique is 97.70% which is 16.79, 13.67, 9.49, 
6.48 and 1.58% higher than CMPSO, ACO, KH, IKH and LHHLS-KH. In conclusion, the proposed 
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classification technique with DPSO proves that it has higher detection accuracy, lower false positive 
rate and higher detection rate. 

Table 4. Classification accuracy, DR and FPR of various feature selection techniques 
(NSL_KDD dataset). 

Feature 

Selection 

Number of 

Features 

Selected features Accuracy 

(%) 

Detection 

Rate (DR) 

(%) 

False Positive 

Rate (FPR) 

(%) 

CMPSO [7] 33 2,3,4,5,6,7,8,9,10,11,12,13,14, 

17,18,19,20,21,22,23,25,26,27, 

30,32,33,34,35,37,40,41 

80.91 83.01 24.70 

ACO [7] 31 1,3,4,6,7,8,12,14,15,16,17,19,20,2

1,23,24,25,27,28,29,30,33,34, 

35,36,37,38, 39,40,41 

84.03 87.15 19.30 

KH [7] 26 2,3,4,5,6,7,8,9,10,12,13,14,15,18,

19,21,22,23,24,26,28,30,31,32, 

40,41 

88.21 89.46 12.88 

IKH [7] 25 2,3,4,5,6,8,10,11,12,14,17,18,20,2

1,22,27,28,29,30,31,34,35,36, 

39,41 

91.22 91.75 7.34 

LHHLS-KH 

[7] 

19 2,3,4,6,8,10,11,15,17,19,20,21, 

29,30,33,34,36,37,40 

96.12 96.48 4 

DPSO 28 2,3,4,6,7,8,11,12,13,15,16,17,18,1

9,21,23,24,25,26,28,29,30,33, 

34,35,36,37,40 

97.70 97 1.25 

 

Figure 3. Comparison of classification accuracy, DR and FPR with FS techniques 
(NSL_KDD dataset). 
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5.2. Detection time analysis 

The detection time was compared for further evaluation. Table 5 shows the detection time when 
applied to different techniques. The detection time represents the time taken from inputting the optimal 
subset of features into the classifier till the end of detection.  

Table 5. Detection time of different feature selection techniques (NSL_KDD dataset). 

Feature Selection Techniques Detection Time (Sec) 

CMPSO [20] 41.36 

ACO [20] 41.39 

KH [20] 37.78 

IKH [20] 36.99 

LNNLS-KH [20] 34.40 

DPSO 41.56 

Table 5 shows the time taken to detect the intrusion when different bio-inspired feature selection 
techniques are applied. The features selected by CMPSO, ACO, KH, IKH and LHHLS-KH are inputted 
to the individual classifier. In the existing systems compared, ACO feature selection took the highest 
detection time of 41.39 seconds with the accuracy of 84.03%, detection rate of 87.15% and false 
positive rate of 19.30%. Now the selected features with DPSO feature selection technique when given 
to a proposed hybrid classifier it took 41.56 seconds to detect the intrusion which is 0.41% higher than 
ACO feature selection technique. Even though it took slightly longer detection time there is a 
considerable increase in the performance. The DPSO detection accuracy is 97.7%, detection rate is 97% 
and false positive rate is 1.25% which when compared to ACO yields 13.67, 9.85% increase in 
accuracy, detection rate and 18.05% decrease in false positive rate. 

5.3. Performance analysis of proposed classifier 

The experimental study was conducted using the proposed stacked autoencoder hoeffding tree 
approach with and without feature selection. The proposed technique performance evaluation was 
based on accuracy, sensitivity, specificity, false-positive rate and false-negative rate. The results 
achieved with and without the feature selection of the proposed classification technique is given in 
Table 6. 

Table 6. Performance comparison of the proposed technique with and without feature selection. 

Performance Metrics (%) SAE-HT without FS (41 

Features)  

SAE-HT with FS (28 Features)

Accuracy  55.93 97.7 

Sensitivity (TPR)  100 97 

Specificity (TNR)  28.57 98.75 

False Positive Rate (FPR) 71.43 1.25 

False Negative Rate (FNR) 0 3 

F1 Score 37.6 98 
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Figure 4. Performance comparison of the proposed technique with and without feature 
selection. 

The proposed SAE-HT was employed on the NSL_KDD dataset. Figure 4 demonstrates the 
performance comparison of proposed technique with and without FS. First, the proposed classifier was 
applied to all the 41 features of the dataset and found that the detection accuracy was only 55.93%. 
Moreover, the false positive rate was 71.43% and false negative rate was almost 0%. Our aim was to 
reduce the false positive rate to a greater extent and increase the accuracy as far as possible.  Then 
the study was made and found that less relevant and unimportant features affect the performance of 
the proposed classifier. Second, the bio-inspired DPSO feature selection technique was applied and 28 
important features that contributes to intrusion were selected. The selected features were given to the 
stacked autoencoder to learn the features so as to yield good performance and the output from the 
stacked autoencoder was given to hoeffding tree and found that the accuracy increased to 97.7%, false 
positive rate decreased to 1.25% which is 43.77% higher than SAE-HT without FS. Same way the 
false positive rate decreased by 70.18% when SAE-HT with FS was applied. Likewise, specificity was 
97% and sensitivity rate was 98.75% when SEA-HT with FS was applied. Therefore, it proves that the 
proposed classifier with feature selection provides a good detection accuracy with less FPR and FNR. 

 

Figure 5. Performance comparison: SAE Vs SAE-HT. 
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The exact process is carried out for 29 features, and the accuracy is 97.3%. When applied to 30 
features, the accuracy is 97.1%. From this, we conclude that the accuracy reaches saturation. There is 
no drastic improvement in accuracy when we include more features. As we increase the number of 
features once again, the accuracy starts decreasing. Therefore 28 features are the optimal features that 
contribute to intrusion. As the accuracy increases the false positive rate started decreasing. 

Figure 5 depicts the performance of Stacked Autoencoder (SAE) and Stacked Autoencoder 
Hoeffding Tree (SAE-HT). The stacked autoencoder by itself gives a good accuracy, detection rate of 
85.23%, 85.13% and reduced false alarm rate of 14.62% but achieves much better results in terms of 
accuracy, detection rate and false alarm rate when combined with the hoeffding tree. SAE-HT 
technique when applied it gave the accuracy of 97.7%, Detection Rate of 97% which is 12.47, 11.87% 
higher than SAE and false alarm rate of 1.25% which is decreased by 13.37% when compared to SAE. 

5.4. Comparison with state-of-art techniques 

The proposed technique was compared with the state-of-Art techniques to prove its efficiency. 
Table 7 show the comparison of proposed with other state-of-art techniques. We have compared 
different conventional classification methods and deep leaning methods with our proposed technique. 

Table 7. Comparison of proposed technique with state-of-art techniques. 

Prediction Techniques Accuracy (%) 

VLSTM [8] 89.5 

AdaBoost [8] 84.8 

LSTM [8] 85.1 

CNN LSTM [8] 83.3 

SAE-SVM [10] 95.98 

SAE [11] 85.23 

SSAE [11] 86.02 

DAE [11] 86.92 

ContAE [11] 87.98 

CAE [11] 81.07 

SAE-DNN [12] 82.23 

SAAE-DNN [12] 87.74 

Hoeffding Tree [14] 93 

Restricted Hoeffding Trees [14] 92.15 

AUE2 with Buffer [14] 94.07 

AUE2 without Buffer [14] 94.06 

HAT + DDM + ADWIN [14] 92 

Hierarchical Clustering and SVM [17] 95.72 

Proposed SAE-HT  97.7 
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The SAE-HT classifier with feature selection gives the overall detection accuracy of 97.7 % which 
increases by 8.2, 12.9, 12.6, 14.4, 1.72, 12.47, 11.68, 10.78, 9.72, 16.7, 15.47, 9.96, 4.7, 5.55, 3.63, 
3.64, 5.7 and 1.98% when compared to VLSTM, AdaBoost, LSTM, CNN LSTM, SAE-SVM, SAE, 
SAAE, DAE, Cont AE, CAE, SAE-DNN, SAAE-DNN, Hoeffding tree, Restricted hoeffding tree, 
AUE2 with buffer, AUE2 without buffer, HAT+DDM+ADWIN, Hierarchical Clustering and SVM. 

Compared with the state-of-the-art techniques in the related work, the proposed SAE-HT 
classifier performs better in terms of accuracy, detection rate, and false alarm rate. Thus, proving that 
it has met the significant challenges by giving high accuracy of 97.7% and detection rate of 97% and 
well reduced false alarm rate of 1.25%.  

6. Conclusions 

An effective intrusion detection system was developed using the stacked autoencoder hoeffding 
tree technique for classification and the Darwinian particle swarm optimization method for feature 
selection. Using DPSO feature selection, the optimal subset of features contributing to intrusions are 
selected from the given intrusion dataset. The training and testing of data are given to our proposed 
classification technique to classify the network attacks. The main goal of the stacked autoencoder 
hoeffding tree technique is to increase the accuracy and reduce the false alarm rate. Moreover, we 
evaluated our proposed work on the NSL_KDD intrusion dataset. The dataset is streamed in a Matlab 
environment. Our proposed technique is applied and measures the classification performance using 
accuracy, specificity, sensitivity, detection rate, false alarm rate, false-negative rate. This classification 
performance is compared with other states of the art methods. The main challenge with the current 
intrusion detection is that it cannot detect the new unknown attacks. We proved that our proposed 
technique shows a robust significant amount of performance improvement in detection accuracy, thus 
reducing the false alarm rate to a greater extent. The supervised learning technique mainly depends on 
the predefined attack signatures that make new attacks goes undetected. The proposed stacked 
autoencoder hoeffding tree detects known attacks and, at the same time, detects unknown attacks to a 
greater extent. Results are compared with the state-of-art techniques and found that the SAE-HT 
technique gives higher accuracy of 97.7%, which increases by 8, 12.9, 12.6, 14.4%, 1.72, 12.47, 11.68, 
10.78, 9.72, 16.7, 15.47, 9.96, 4.7, 5.55, 3.63, 3.64, 5.7 and 1.98% when compared to VLSTM, 
AdaBoost, LSTM, CNN LSTM, SAE-SVM, SAE, SAAE, DAE, Cont AE, CAE, SAE-DNN, SAAE-
DNN, Hoeffding tree, Restricted hoeffding tree, AUE2 with buffer, AUE2 without buffer, HAT + DDM 
+ ADWIN, Hierarchical Clustering and SVM and higher detection rate of 97%. Thus, reducing the 
false alarm rate to 1.25%. Further work can incorporate a study on a more effective method to improve 
the IDS. For the attack with fewer samples, an adversarial learning method can be used to create similar 
attacks, thus increasing the diversity of training examples that improve the detection accuracy. 
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