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Abstract: The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives –
cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection
of infection among the public, the virus spread though almost all the countries in the world in a short
period of time. With humans as the carrier of the virus, the spreading process necessarily depends
on the their mobility after being infected. Not only in the primary spreading process, but also in the
subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics.
Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed,
by various countries both nationally and internationally. On the other hand, these restrictions have se-
vere fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised
on a global scale, with multiple changing variables. Here we review the techniques and their effects
on optimization or proposed optimizations of human mobility in different scales, carried out by data
driven, machine learning and model approaches.
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1. Introduction

In the lack of any known treatment protocol or that of a cure, one of earliest responses of the out-
break of SARS-CoV-2 or the COVID-19 disease [1] was to establish a boundary around the epicenter
of the outbreak (Hubei province in China)—a cordon sanitaire—on January 23, 2020 to prevent the in-
fection from spreading. It had, nevertheless, spread out, triggering similar responses from various other
countries at varying degree of duration and scale of restrictions (see e.g., [2]). Many such restrictions
exist till date, while some of it were lifted either for a short or a longer time.

Indeed, cordon sanitaire is an old technique of infectious disease containment. The use of the
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phrase goes back to 1821, when 30000 French troops were deployed by Duke de Richelieu apparently
to prevent yellow fever to spread from Barcelona to France [3], but its first documented use dates even
further back to 1523 in Malta [4]. With a varying degree of successes in the past, the scale of its
implementation has never been larger than the current one – affecting almost the entire population on
the planet. While it is still early to discuss the full impact of such restrictions on different spheres of
the society, it is possible to assess some of the impacts of the restrictions on spreading of the disease,
on early economic fallout and the burdens placed on the health infrastructures.

It is possible to place the question of imposition and lifting of the cordon sanitaire as an optimization
problem. The gains it makes in terms of containing the spreading of infection, the costs that need to
be paid in terms of higher infections within the contained community and the economic fallout due
to halting of businesses and finally the constraints that the corresponding health infrastructure is able
to bear the burden of the growing infections, are the parameters to be considered in the problem. We
outline here the above mentioned factors from the points of views of (a) early analysis of the data for
COVID-19 and past data of other epidemics, (b) study of compartmentalized models that capture the
qualitative picture in terms of few parameters, and (c) artificial intelligence (AI) and machine learning
(ML) approaches.

In the early stages of the spreading of COVID-19, data driven approaches were able to trace the
correlations of travel patterns and infection spreading (see e.g., [5]) in China. It has a more well
documented study for earlier epidemics (SARS [6], Ebola [7]) although in a much smaller scale. N-
evertheless, it is crucial to study these data driven approaches, given that the effects seen in the real
data for the imposed restrictions were later used as inputs for the various other approaches such as
compartmentalized models and also as training sets for ML approaches. Therefore, in Section 2 we
outline such studies that essentially correlate the infection spreading with human traffic. The clear pos-
itive correlation in the early stages and a subsequent anti-correlation [8] outlines the mechanisms of
primary and secondary stages of the infections, which are very useful insights for subsequent models.

The mathematical modeling of epidemic spreading also has a long history [9, 10]. It was the pi-
oneering physicist Daniel Bernoulli who first introduced the mathematical model approaches of epi-
demic spreading [11] in 1766. Since then, the most used model have been the Susceptible-Infected-
Removed (SIR) model [12] and its other variants, generally called compartmentalized models [13, 14]
– where the total population is divided into groups of populations and the dynamics of the model pro-
ceeds through movements of the populations between these compartments i.e., a susceptible individual
can get infected and then subsequently recover and so on. Extensions of this model include introduc-
tion of other plausible compartments e.g., exposed, representing individuals who came in contact with
infected population but not yet showing symptoms. Even further divisions depending on the severity
of the infections can estimate the load of patients needing extensive medical attention. The key param-
eters in these models are the rates at which the populations are relabeled from one compartment to the
other i.e., infection rate, recovery rate and so on. These parameters are sometimes estimated from the
data driven approaches mentioned above and in other cases these are estimated using a combination
of clinical evidences and available data (see e.g., [15]) to maintain the connection between the models
and the real world dynamics of the epidemic spreading. Also, the effects of imposed restrictions are
assumed to be mirrored in the variations in these parameters. The models with such estimated param-
eters and their variations are then used to estimate the spreading scale of the epidemic and the possible
effects of movement restrictions. Furthermore, given the correlation of the scale of epidemic spreading
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and the negative impact on economy (see e.g., [16]), it also gives an insight into the economic cost.
Therefore, a dynamical optimization of the imposed restrictions can be attempted. We outline these
efforts in Section 3.

Figure 1. The figure on the left (from [8] with permission from AAAS), depicts the rela-
tionship between the human mobility and the rate of infection in China, before and after the
imposition of cordon sanitaire. There is a clear positive correlation between the two quan-
tities before imposition of restrictions. On the right hand side figure, simulations of SIR
model with optimized mobility of individuals among different regions of varying degree of
risks (see [34]) are shown. For different duration of travel restrictions (indicated by the s-
tart and end dates), the fraction of infected individuals moved correlate strongly with total
infection fraction.

Finally, a multidimensional set of data with many attributes is something that can used for a sys-
tematic statistical trend analysis to gain insights that are not immediately apparent. This brings in the
machine learning approaches for the study of the real data for the pandemic. There are specific areas
in which the AI-ML approaches can help in advancing our understanding [19]. The early warning of
the outbreak, the predictions for total infections and/or end-time for the pandemic, implementations of
physical distancing are some such areas. The outstanding challenge in these approaches is the lack of
sufficient training data sets that are reliable for a stable prediction. In the case of COVID-19, data from
previous epidemics (SARS, Ebola, Zika virus) were used in some cases with suitable adjustments (see
e.g., [20, 21]), in some other cases synthetic data from optimized parameters of a simplified model [22]
were also used. The successes and limitations of these approaches are discussed in Section 4.

2. Data driven approaches to assess effects of travel restrictions

In drawing any conclusion on the effectiveness of a mitigation strategy for an epidemic, it is essential
to analyze its effect on the real data. It is often challenging task to have a reliable set of data – not only
due to the lack of testing or documentations, but also due to the noise accumulations in news outlets to
social media around a highlighted event [25].
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Figure 2. A schematic representation of compartmentalized models of epidemic spreading.
(a) The SIR model (see Eq (3.1)), representing the simplest variant that qualitatively repro-
duces the dynamics of the pandemic. (b) The SEIRD model (see e.g., [49, 35]) depicted here
divides the total population, which is assumed to be constant, in different groups and the
arrows indicate the directions in which the population can move from one compartment/state
to the other and x, y indicate the corresponding rates. The numerical values of x and y are
estimated depending on the context of the model application and the mean-field governing
equations are given in Eq (3.2).

Nevertheless, there have been many attempts to understand different aspects of the COVID-19 pan-
demic, such as estimation of reproduction rate [26], forecasting of end-time [27] to effectiveness of
protective drugs [28], from the analysis of the available data,

In terms of the movement restriction strategies, at the early stage of the spread of COVID-19,
it was possible to trace the correlation between the travel pattern from the Hubei province and the
detection of infected individuals outside the province. Indeed until end of January, 2020, 80% of
all cases were detected within the province [8] and only after that cases outside the province started
rising. Kraemer et al. [8] studied the human mobility pattern using the data from Baidu Inc. and
recorded the effects of imposing the cordon sanitaire from 23rd January, 2020. Their finding suggests
that the initial bias in the age group and gender in the detected cases were due to the travel history
of those individuals to the Hubei province. Indeed, following the imposition of the restrictions, those
biases eventually disappeared, suggesting that the cases after that time were due to the secondary
infections. Indeed, there was a very clear positive correlation between the COVID-19 growth rate and
other provinces in China and the human mobility from Wuhan, before the travel restriction was imposed
(see Figure 1). The correlation started decreasing after a week of the imposed restrictions and beyond
that it showed negative correlation. This implies that an early imposition of the travel restriction helps
in containing the infection, but such restrictions are less useful, at least in the context of [8], when
secondary infections started spreading outside a localized region. This was a key observation that
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formed the basis of the input parameters of the mathematical modeling approaches that we discuss in
the next section.

3. Compartmentalized models and movement optimization strategies

There are a myriads of factors that can influence a respiratory infection such as COVID-19. First,
the interaction patterns of humans, the carriers of the virus, is complex and highly heterogeneous and
to a large extent without much of accessible data. Second, especially during the first months of the
virus spreading, lack of testing facilities contributed to much of the fluctuations in the data. Such
fluctuations continue even till date, given that a substantial portion of the infected individuals are not
symptomatic [29] but can still be infected and thereby can infect others. Third, the effective virulence
of the infection is a dynamic quantity. This is because of the mutation of the virus itself [30] and also
because of the various restrictive measures imposed. Both of these factors vary with time and as well
as space. Therefore, the complexity of the system and the noise in the available data are both very
high.

Nevertheless, attempts to formulate a mathematical model based description of epidemics have been
made for over several centuries [11]. This is partly because models provide us with insights that are
otherwise inaccessible by simply studying the data. In complex systems, simplified model approaches
have been very useful in gaining critical insight into the system, even though the models in question
ignored many realistic features of the system under study. An outstanding example of success comes
from the study of magnetism phenomena through the Ising model [31, 32]. However, in modeling
epidemic dynamics, there are certain challenges regarding the choices of parameter values, on which
the main conclusions are dependent. These choices, therefore, need to be based on medical inputs and
also on data analysis.

While the above mentioned criticisms are applicable for epidemic spreading models, there are two
points to note before we proceed into the specific modeling approaches. First, the goals of epidemic
spreading models and that of (laboratory scale) physical systems can vary. With just a model alone,
without inputs from real data, no epidemic model attempts in making quantitative predictions. Second,
although a critical point does not exist in epidemic spreading models in itself, it has been shown
using spatial pattern of the spreading data for COVID-19 pandemic that it follows a fractal growth
[33]. Indeed, it was also shown recently [22] that if a simple model is to make predictions having
least errors with the real data, the parameters in the model is to be set in such a way as to have the
resulting spreading pattern in fractal form. Although not arising out of a criticality in the epidemic
model, there exist scale free characteristics in such fractal geometry. With this in mind, we discuss the
various models and the results of incorporating movement restrictions in those models for the case of
COVID-19 spreading.

3.1. SIR and related models

Bernoulli first proposed such an attempt in 1766 [11]. This class of models are sometimes termed
as compartmentalized models, since the basic idea involves dividing the total population into groups,
based on their exposure (or lack of it) to the virus. The most used and the most simple version of the
model involves dividing (at any instant of time t) the entire population into three groups: Susceptible
S (t), Infected I(t) and Removed R(t) (see Figure 2(a)). First proposed in 1927 [12], the model assumes
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that the total population S (t) + I(t) + R(t) = N is constant throughout the dynamics. At t = 0, of course,
N = S 0 + I0, where S 0 and I0 represent the initial infection and susceptible population respectively.
A susceptible individual, while coming in contact with an infected individual, can get infected with a
certain rate r, and an infected individual is removed (due to recovery or death) with a rate α. There is
no scope of re-infection in this model, although other variants exist [9, 10] where such scenarios are
considered.

A mean-field treatment of the model is straightforward, which involves writing down the differential
equations governing each of the three groups:

dS (t)
dt

= −rI(t)S (t)

dI(t)
dt

= rI(t)S (t) − αI(t)

dR(t)
dt

= αI(t). (3.1)

The temporal evolution of the infected number I(t) from this model in mean-field and in compact
lattices behaves in a way similar to a wave of infection in COVID-19 (and other epidemic) spreading.
In this form, the model does not give multiple peaks in infections. Indeed, it is easy to see that the
maximum value of the infection will be Imax = I0 + S 0 −

1
q (1 + ln(qS 0)), where q = r/α = R0/N,

where R0 is the reproduction rate. The quantity Imax is important because, this gives the estimate of the
maximum load the healthcare infrastructure needs to support. SIR models were used in studying effects
of optimal migrations (see e.g., [34]). Indeed, in more realistic variants of the model, this is quantity
that were estimated for various different countries in order to make the above mentioned load and also
to design optimization strategies of implementing mitigating responses, including travel restrictions.

The above mentioned variant is the simplest one that gives the qualitative features of the current
pandemic. However, there are multiple other variants of the model that includes more realistic fea-
tures. These still fall under the category of the compartmentalized models, since the basic feature of
dividing the population into different compartments/states still exists. Among these variants, one is the
SEIR model, where the additional state E(t) denotes the part of the population that are exposed to the
virus (see Figure 2). The exposed individuals can infect susceptible population. This is an important
extension, particularly when the maximum case load is to be estimated. In Xing et al. [35] effects of
migrations were explicitly included. The dynamics evolved following the equations:

dS
dt

= −
β1S E + β2S I

N
+ (a − b)S

dE
dt

=
β1S E + β2S I

N
− δE + (a − b)E

dI
dt

= δE − mI + (a − b)I

dQ
dt

= mI − γQ

dR
dt

= γQ, (3.2)

where Q denotes the confirmed cases, δ is the infection rate, γ is the recovery rate, m is the confirmation
rate, β1, β2 denote the transmission incidence rates from exposed individuals and infected individuals
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to susceptible individuals, respectively and a, b denote the immigration and emigration rates respec-
tively. The exposed individuals can infect the susceptible population, but they are pre-symptomatic,
as opposed to the infected population. If free mixing is allowed, then β1 = β2. They differ only when
exposed individuals are quarantined following a potential exposure. The model parameters can then be
estimated from actual data and effects of travel restrictions can be studied. In particular, a restriction
in travel would put the parameters a and b to zero, which can again be incorporated during the dy-
namics with the resumption of work. In other words, a dynamical variation of these parameter values
can reflect the changes in policies regarding travel restrictions and the subsequent changes in the total
infection rate.

Another variant of the compartmentalized model is the SIRD mode, where the final state refers
to death due to the disease. Other than these, there are more case specific variants that, for example,
consider various severity of health conditions following an infection (see e.g., [36]). Such details of the
model requires additional input from the real data, which are done for some specific countries/regions.

Apart from adding different states in the original SIR model, another direction of realistic extensions
have been to incorporate the effects of the model topology. The above mentioned mean-field nature of
the dynamics can prevail only under well homogeneous mixing of the population, which is certainly
not the case particularly when travel restrictions are imposed. Also, the overly restrictive fixed lattice
arrangements, where the infections can only spread through nearest or next nearest neighboring indi-
viduals, is unrealistic. For both of these limits (lattice models and mean-field), one way to reach the
intermediate realistic scale is to tune the infection rate. Another way to achieve the intermediate state
is to modify the topology in which the model is studied. This can involve pruning the fully connected
graph to, say, an Euclidean topology [37], or to introduce disorder in the lattice models, say, in terms
of site dilution [22]. In [23], for example, the above mentioned spatial patterns were explicitly taken
into account in a SEIR-like model. Particularly, the effects of presymptomatic infectious individual-
s were studied in a metacommunity model for a network of 107 nodes, representing provinces and
metropolitans in Italy with closely monitored population movements. The role of presymptomatic in-
fectious individuals in spreading the virus underlines the need of containment measures and restrictions
of population movements.

In all the above mentioned variants, the movement time for population is infinitesimally slow. How-
ever, a finite speed of spreading of the epidemic is more realistic version, which was considered in [24].
The hyperbolic partial differential equations considered there are reduced to the classical SIR model in
appropriate limits (zero relaxation time in each state and infinite propagation speed). Here also the role
of imposition of travel restrictions in the epidemic spreading is captured, particularly in the scenarios
where the reproduction ratio is higher then one.

3.2. Control strategies to reduce population mixing and its early lifting

As mentioned before, Tuite et al. [36] studies a SEIR type model for estimating health infrastruc-
ture load in Ontario, Canada. The model is structured in 5-year age group layers. The interactions
within the age groups [38], the presence of comorbidities (hypertension, heart diseases, asthma, stroke,
diabetes and cancer) were also considered in estimating the severity of the infection (e.g., required ICU
care). The dynamics was initiated with uniformly distributed initial infections and then the effects of
control strategies such as extensive testing and physical distancing measures were studied using a fixed
duration and also in a dynamically tuned manner depending on required ICU cares. It was found that
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dynamically introduced restriction measures were more effective than a fixed duration restriction, with
potentially shorter period of physical distancing.

The effect of heterogeneity, particularly in age-group structure plays a rather complex role in spread-
ing of COVID-19 (see e.g., [39, 40]). In [41], the authors pointed out the role of uncertainty in the
available data for an age-structured community. Age heterogeneity is also reflected in the social mix-
ing, which in turn can affect herd immunity [42]. An early lifting of restrictions, therefore, can trigger
increase in the total infection (see also [34]).

In the US also such compartmentalized model (SEAIR) approach was taken to find optimal control
in the outbreak [43]. The additional state A(t) represents the estimated 20–40% of the asymptomatic
cases, who can still be carriers of the infection. Here also it was concluded that the effect of inter-
ventions (testing, isolation, physical distancing) are more effective in the early stages of the dynamics
than at later stages, even if the measures are more drastic later on. Also, a periodic on-off strategy,
similar to [36], is found to be more effective in controlling the spreading and also conjectured to be
more palatable.

A similar approach was taken by Prem et al. [44] for the spreading of infection in Wuhan, China. As
in [43], a SEIR model with different age groups having different rates of infections were studied. The
effects of imposing continued restrictions, modeled by taking the corresponding interaction matrices
between different age groups, seen to lower the total infection rate. Also, an early lifting of such
restrictions leads to secondary peaks (see also [34]). With a similar SEIR type model, it was shown
in [45] that the effective reproduction index Rt decayed 2.35 on January 16 (one week before cordon
sanitaire) to 1.05 on January 31 (one week after cordon sanitaire). This also reinforce the benefit of
early imposition of restrictions.

3.3. Cordon sanitaire as an optimization problem

As discussed above, there is a general consensus regarding the benefit of early imposition of cordon
sanitaire in reducing the load on healthcare systems. A subsequent dynamical (on-off) interventions
(travel restrictions), rather than a prolonged period of restriction, also seem to work better in reduc-
ing the total spreading. However, the optimization needs to consider the relative rates in which the
cordoned-off and the remaining population gets affected. Also, while relaxing the restrictions, the
optimization function for an individual may not be the same as the global optimized state.

Espinozo et al. [46] noted that when unrestricted movements are allowed between two low risk
communities, the chances of secondary infections increase in those communities, but the overall epi-
demic size is reduced. On the other hand, imposition of cordon sanitaire around a high risk community
– the original practice of such type – reduces secondary infections, but increases the overall epidemic
size, since the infection greatly affects the high risk community. Therefore, it is not straightforward to
asses the benefits of such travel restrictions and also the time of removal of such restrictions. Indeed,
the overall process of implementing the mitigation strategies can be viewed from the point of view of
control theory [47] with a limit on the maximum active cases as a constraint that represent the load
on health care infrastructure. In the following section, we will discuss whether a machine learning
approach can optimize the restriction times, so as to limit the spreading of epidemic. Before that, how-
ever, it is also interesting to note that while the objective of the governments would be to optimize the
travel restrictions so as to minimize the epidemic size at a reduced economic fallout, from the point of
view of an individual, that objective may not match. Particularly, given a chance, an individual would
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Figure 3. Simulations of SIR model with optimized movements between communities of
different risks (see [34]). It is seen that the infected fraction in the high-risk region Ii(t)/N
shows a secondary peak once the travel restrictions are lifted early (time period indicated in
the figures). However, the overall (relative) size of the second-wave peak (Itot/N) is seen to
be larger (see also [46, 44]).

travel to a lower risk community rather than to stay in a higher risk community. But given that many
other individuals might also try the same, the said low risk community might not remain low risk due to
spreading of secondary infections. This situation can be viewed from a game theory perspective [34],
where the situation is that of a set of coupled minority games, played in parallel. The low-risk regions
play the role of a limited resource that the agents compete to obtain. If only two regions were consid-
ered, then it would be the classical minority game limit i.e., a less crowded (infected) region is more
beneficial. But as the number of regions is higher than two, and the agents can choose between any
two of those multiple regions, it still is a minority game problem from the perspective of a single agent,
but it is a couple minority game because the agents present in particular region at any instance might
have different regions as their other (second) choice. It was seen that a restriction on the number of
travel upon an individual is more effective than imposing a full stoppage of travel. But similar to what
is noted in [44], for example, an early lifting of the restrictions can bring a second wave of infections
(Figure 3). However, this is an idealized scenario from several aspects, especially the limited numbers
of regions considered, the homogeneity assumed in the population, the limited choices of movement
for each agent and so on.

4. Machine learning approaches

Here we aim to revisit the recent scientific contributions based on Artificial Intelligence (AI) to the
fight against COVID-19 pandemic. In recent past applications of AI in different aspects of epidemi-
ology is instrumental in policy and medical analysis measuring the cost of the pandemic in terms of
lives and economic damage (see e.g., [17, 18]) etc. The recent literature ranges from early warning,
tracking and prediction to social control which often influence the migration of the people to avoid
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the viral disease (see e.g., [19]). In January 2020 China imposed very strict lockdown to contain the
very first Covid-19 outbreak, which were in place till April 2020. During that period researchers were
speculative about the impact of these policies on virus spreading. The AI based techniques are pri-
marily used to predict the duration of social restrictions in different geographical regions as it helped
in reducing the number of infections significantly. In this direction Yang et al. [48] employed a mod-
ified susceptible-exposed-infected-removed (SEIR) epidemiological strategy to predict the epidemic
progression by including the peoples migration data prior to and after the January 2020 along with
the COVID-19 epidemiological at that point of time. The authors used the Long-Short-Term-Memory
(LSTM) model of recurrent neural network (RNN) to estimate the number of newly infected people
by processing various time-series problems. The 2003 SARS outbreak statistics is used to train the
devised model. The devised model fed with the COVID-19 spreading parameters, such as the rate of
spreading, infection probability, recovery rate etc. This SEIR based approach was useful in estimating
peaks and sizes of the COVID-19 epidemic. The model constrained by the inadequate data set which
results in relatively simple network configuration and may suffer from overfitting problem. In a similar
study Xing et al. [35] studied the impact of migration of people using Baidus migration data of Guang-
dong and Hunan provinces. As mentioned before, the author developed a three-stage dynamical model.
It uses SIER, where a time variant function is used for susceptible S(t), infected I(t), exposed E(t) and
removed R(t) individuals (see Figure 2). In the first stage i.e., early stage of the epidemic spreading the
model assumes that the confirmed individuals Q(t) are not migrating. And the COVID-19 transmission
dynamical modeling is represent using Eq (3.2). The model parameters were estimated using mobility
data from Baidu.

Further, very similar models were used for the remaining two stages to characterize the imposition
of the social curbs and resumption of the regular life respectively. Afterwards the mathematical analysis
of only first stage is carried out and reproduction rate is calculated. The other parameters values were
calculated from Baidus data and using the methodologies such as least-square method. The result
shows that scale of infection is low in the province which emigrated the population. However, the
province receives the population is exactly the opposite. And the authors predicted that the province
which emigrated the population in the first stage may suffer after the easing of the social curbs (see also
[34] in this context). However, this work suffers from many shortcomings such as limited and erroneous
data availability, not considering the asymptomatic population and spatial diffusion characteristics.

To study the health and economic impact Khadilkar et al. [49] devised an AI-based system. It
predicts the best possible lockdown policies to control Covid19 spreading and minimize its economic
impact. The reinforcement learning based approach learns from different policies which are represent-
ed as a function of disease and population parameters. The disease progression model is primarily
based on SIER as depicted in the Figure 2. Where S is susceptible, E represents exposed, IS repre-
sents infected, IA indicates asymptomatic, D is dead, and R indicates recovered individuals. Further
the number indicates the probabilities in the transitions from one state to another. The The approach
exposes the limitations of the imperfect lockdowns and it can be utilized to investigate various policies
by using tunable parameters. Further, the model may be useful to determine more fine-grained social
curbs to prevent the COVID-19 spreading.

In another reinforcement learning based approach by Ohi et al. [50] demonstrated how an agents
actions may have different possible outcome based on the spreading of the disease and economic con-
ditions. A virtual pandemic is similar to the COVID-19 is simulated to train the system. Afterwards
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the training the agent chooses the optimal strategy which reduces epidemic spreading in a financially
viable manner. The analysis of the results shows that, to reduce the first surge of infections the system
opted for a longer period of lockdown. Again, to curb the successive waves of infections the system
chooses a combination of recurrent lockdowns and shorter periods of lockdowns. Although, the model
is able to provide a middle ground between epidemic spreading and economic gains. However, a com-
parative study between humanitarian loss and economic gains when total lockdown is imposed and
when recurrent lockdown would have been interesting.

5. Discussion

The first response of the governments in most of the countries to the outbreak of COVID-19 have
been to impose restrictions on human mobility from high infected regions. Following the spreading
of the virus in most countries in the world, the subsequent response have been to quarantine the in-
fected population and also to impose local restrictions on human mobility. Those restrictions, while
helpful in limiting the maximum number of active cases, did have and will continue to have severe
societal and economic impacts. Here we reviewed the multiple facets of such restrictions on mobility
in different countries, based on the analysis of data, study of models and machine learning approaches.
The numerical results discussed here (see e.g., [34, 44, 47]) suggests that while an early imposition of
restrictions are useful, for the subsequent period, a periodic relaxations of the restrictions is perhaps a
more effective/palatable strategy than to have a prolonged imposition of restrictions.

The process of optimizing the restriction period is not straightforward and likely to differ among
different countries, based on their socio-economic activities and healthcare infrastructure. A major
challenge in finding such optimized strategy has been to gather noise-free data regarding the spreading
dynamics of the virus. Due to the complex nature of the human interactions, compartmentalized mod-
eling approaches are also hard to implement. However, we have discussed various efforts that address
these issues. For example, an age-based hierarchy in the models seem to help the optimization process,
given that the nature of interactions and required health-care vary among different age groups. Also,
in using data driven machine learning approaches, use of earlier epidemic data for training can be a
useful strategy.
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