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Abstract: Hybrid EEG-fNIRS brain-computer interface (HBCI) is widely employed to enhance BCI 

performance. EEG and fNIRS signals are combined to increase the dimensionality of the information. 

Time windows are used to select EEG and fNIRS singles synchronously. However, it ignores that 

specific modal signals have their own characteristics, when the task is stimulated, the information 

between the modalities will mismatch at the moment, which has a significant impact on the 

classification performance. Here we propose a novel crossing time windows optimization for mental 

arithmetic (MA) based BCI. The EEG and fNIRS signals were segmented separately by sliding time 

windows. Then crossing time windows (CTW) were combined with each one segment from EEG and 

fNIRS selected independently. Furthermore, EEG and fNIRS features were extracted using Filter Bank 

Common Spatial Pattern (FBCSP) and statistical methods from each sample. Mutual information was 

calculated for FBCSP and statistical features to characterize the discrimination of crossing time 

windows, and the optimal window would be selected based on the largest mutual information. Finally, 

a sparse structured framework of Fisher Lasso feature selection (FLFS) was designed to select the joint 

features, and conventional Linear Discriminant Analysis (LDA) was employed to perform 

classification. We used proposed method for a MA dataset. The classification accuracy of the proposed 

method is 92.52 ± 5.38% and higher than other methods, which shows the rationality and superiority 

of the proposed method. 
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1. Introduction  

Brain-computer interface (BCI) is a significant way of direct communication between the human 

central nervous system and the computer. It means, without the use of limbs, sounds, or any movements 

that require muscle activity, BCI can analyze brain induction signals which are related to the expected 

tasks. So BCI can generate commands to control external devices [1–3]. BCI systems also consist of 

signal acquisition, pre-processing, feature extraction, classification, external communication with the 

device, and feedback stages. 

Electroencephalogram (EEG) [4,5], Electrocardiogram (ECoG) [6], Functional near-infrared 

spectroscopy(fNIRS) [7–9], Functional magnetic resonance imaging(fMRI) [10,11] and 

Magnetoencephalography (MEG) [12] are common signal acquisition modality in BCI systems. EEG 

is a bioelectrical imaging method that uses scalp electrodes to measure the voltage fluctuation caused 

by the electrical activity of cortical neurons. EEG stands out because of its high time resolution, 

frequency-domain characteristics, convenience, and safety [13,14]. Due to volume conduction effect 

in the cerebral cortex, it is difficult to determine whether EEG signal is generated near the surface of 

the cerebral cortex or in deeper areas. The spatial resolution of EEG is relatively low and it is 

susceptible to electrical noise and motion artifacts [15,16]. Hence, the classification accuracy of EEG 

is seriously damaged. fNIRS is an optical imaging modality that evaluates the hemodynamic activity 

in the brain. fNIRS can be used to measure the concentration changes of deoxyhemoglobin (HBR) and 

oxyhemoglobin (HBO) [17–21]. fNIRS stands out because of its non-invasive, portability, safety, and 

relatively high spatial resolution [22,23]. However, due to the slow response of blood oxygen 

concentration, the temporal resolution of fNIRS is low. 

In the past few years, researchers have proposed hybrid BCI systems to overcome the limitations 

of single-mode systems [24–27]. It is feasible and reliable to use EEG and fNIRS as hybrid BCI to 

detect physiological signals of the specific subject. And hybrid BCI is widely applied in many 

cognitive rehabilitation fields [28–30]. Since EEG and fNIRS are specific time domain information 

rich, many researchers analyze the time domain of EEG and fNIRS [31,32]. Previous approaches were 

to segment synchronous EEG and fNIRS data to analyze the physiological state of the brain in different 

periods of the task [33,34]. And different time windows of signal have a significant impact on 

classification performance [35]. However, it ignores that the specific modal signals have various 

physiological characteristics. There are different matching degrees of time-domain information between 

EEG and fNIRS in the acquisition process. EEG signals reflect electrical activity originating as a result 

of neuronal firing when each task or activity is performed [36]. On the other hand, hemodynamic activity 

appears in the form of blood flow changes that result from neuronal firing [37,38]. Therefore, the 

electrical signal represented by EEG and the blood oxygen signal represented by fNIRS will not be 

activated at the same time when the subjects are stimulated by the task. 

To solve the above problems, a crossing time windows optimal method based on Fisher Lasso 

feature selection (FLFS) algorithm for hybrid BCI is proposed. Firstly, the proposed method consists 

of multi-time segmenting and temporal band-pass filtering. Secondly, EEG and fNIRS time windows 

are crossed and combined. Thirdly, FBCSP and statistical methods are used to extract EEG and fNIRS 

features respectively. To select optimal time window, all features in each time window are sorted based 

on mutual information (MI). Finally, the features are put into FLFS and LDA for feature selection and 

classification. 
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Parts of this paper are arranged as follows: The second section describes the preprocessing method; 

the third section describes the dataset and experimental results; the fourth section discusses the 

experimental results; and the last part summarizes this full paper. 

2. Methods 

As shown in Figure 1, it is a crossing time optimal combination method based on sparse feature 

selection for hybrid BCI. This method mainly includes the multi-time segmenting of EEG and fNIRS 

data; then FBCSP and statistical method are the hybrid feature extraction method; Finally, feature 

selection and classification are executed. 

 

Figure 1. The flow chart of hybrid temporal combination pattern optimization method. 

2.1. Data segmenting and band-pass filtering 

In the first part, EEG raw signals are decomposed to a total of I time segments. The time segments 

are 𝑇𝑖 = [𝐿 × 𝑖, 𝐿 × 𝑖 + 𝑤], 0 ≤ 𝑖 ≤ 𝐼 , where the unit is second and 𝐿  denotes step size of the 

window, 𝑤 denotes length of the window. In the fNIRS system, the fluctuating concentration of HBO 

and HBR are converted from the measured light intensity by the modified Beer-Lambert law [39,40]. 

And they are not obvious in frequency but have good time characteristics. Therefore, this part only 

segments the time of the fNIRS signal, and the time segmenting is the same as EEG. 𝐹𝑠 ∈ 𝑅𝑐×𝑘 means 

the fNIRS signal in the 𝑠th  time segment, where k is the sampling point and 𝑘 = 1,2, . . . , 𝐾 , c 

represents the number of channels. 
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2.2. Feature extraction 

2.2.1. EEG Feature extraction 

CSP is a spatial filtering algorithm for two classes of tasks, which can extract the spatial 

distribution components of each class from multi-channel EEG data. 𝑋1 and 𝑋2 are signal matrices 

for two classes of tasks respectively [41]. The covariance of the signal matrix is calculated and 

normalized: 

  

𝑅1 =
𝑋1𝑋1

𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋1,𝑋1
𝑇)

𝑅2 =
𝑋2𝑋2

𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋2,𝑋2
𝑇)

 (1) 

where 𝑡𝑟𝑎𝑐𝑒(⋅) is the trace of the matrix. Then find the covariance matrix 𝑅 of the mixed space and 

decompose eigenvalue: 

  𝑅 = 𝑅
−

1 + 𝑅
−

2 = 𝑈𝛬𝑈𝑇 (2) 

where 𝑅
−

𝑖 is the covariance matrix of two classes of task and 𝑖 = 1,2. 𝑈 is eigenvectors of matrix R, 

𝛬 is eigenvalue matrix. So the whitening matrix 𝑃 can be obtained: 

 𝑃 = √𝛬−1𝑈𝑇 (3) 

Then matrix 𝑅1 and 𝑅2 whiten and used by principal component analysis(PCA): 

 
𝑆1 = 𝑃𝑅1𝑃𝑇 = 𝐵1𝛬1𝐵1

𝑇

𝑆2 = 𝑃𝑅2𝑃𝑇 = 𝐵2𝛬2𝐵2
𝑇 (4) 

where 𝐵1, 𝐵2 are the eigenvectors of a matrix 𝑆1, 𝑆2 and 𝐵1 = 𝐵2. 𝛬1 + 𝛬2 = 𝐼, where 𝐼 is the 

identity matrix. The sum of the eigenvalues is 1. When the eigenvalue of one class is the largest and 

the other is the smallest. It is the reason that the optimal spatial filter 𝑊 can distinguish two-class 

samples. 

 𝑊 = 𝐵𝑇𝑃 (5) 

where 𝑊 ∈ 𝑅𝑐×2𝑚. Finally, the feature vector 𝑓 with high ability of discrimination is obtained. 

 𝑓𝑖𝑗 = 𝑙𝑜𝑔( 𝑣𝑎𝑟( 𝑊𝑇𝐸𝑖𝑗)) (6) 

where 𝑓𝑖𝑗 ∈ 𝑅1×2𝑚 represents the feature vector extracted by CSP from the EEG signal in the 𝑗th 

frequency band and the 𝑖th time segment. 

Since the performance of the spatial filter in the CSP algorithm depends on the frequency band 

of the EEG, FBCSP is to first pass the EEG signal through a bandpass filter to form multiple bands 

and then extract the CSP features from these sub-bands [42]. Therefore, the segmenting data is put into 

the third-order Butterworth band-pass filter to divide the multi-band.  

2.2.2. fNIRS feature extraction  

The statistical features of fNIRS were employed by signal mean [43], signal slope [44], signal 
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variance [45], signal peak [45,46], signal kurtosis and signal skewness. Signal mean and the signal 

peak will be applied in this part [47]. 

Signal mean 

The average concentration of HBO and HBR is calculated according to the Eq 7: 

 𝑀𝑠 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1  (7) 

where N is the number of sampling point and X is the HBO or HBR data. 𝑀 is the mean feature vector 

and s denotes the fNIRS data samples in the 𝑠𝑡ℎ time segment. 

Signal peak 

The signal peak is the maximum value of the signal in the time window. 

 𝑃𝑠 = 𝑚𝑎𝑥 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑁 (8) 

where 𝑋𝑖 is the signal value corresponding to sampling points. 𝑃 is the peak feature vector. 

2.2.3. Normalization 

Min-max normalization was applied to the feature set by using Eq 9. And the features will be 

between 0 and 1. 

 𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 (9) 

where x represents the original eigenvalue and x' represents eigenvalue after normalization. The 

normalized EEG and fNIRS features are 𝐹𝑖𝑗
𝐸𝐸𝐺and 𝐹𝑠

𝑓𝑁𝐼𝑅𝑆
. 

2.2.4. Hybrid feature fusion 

The former feature fusion of hybrid only merges the EEG and fNIRS feature matrix. And the 

segmenting time tends to be consistent in hybrid: 𝑇𝑖
𝐸𝐸𝐺 = 𝑇𝑖

𝑓𝑁𝐼𝑅𝑆
. This method can decode the data 

classification performance at different time in the trial. However, the EEG signal collected is the 

electrical signal of the human brain, and the fNIRS signal is collected in the hemodynamic signal. 

There is a significant difference between the two devices in the way of physiological collection. In 

addition to exploring more dimensions of brain signals, there will also be some problems. Such as 

there is information delay between the two acquisition ways when the brain receives stimulation. It is 

means, the activation time of EEG and fNIRS signal does not match after brain activation. To explore 

that the segmenting time combination of EEG and fNIRS can affect the decoding task ability, we 

combine hybrid features in different segments. 

 𝐹𝑖𝑠 = [𝐹𝑖1
𝐸𝐸𝐺 , 𝐹𝑖2

𝐸𝐸𝐺 ,⋅⋅⋅, 𝐹𝑖𝐽
𝐸𝐸𝐺 , 𝐹𝑠

𝑓𝑁𝐼𝑅𝑆
],0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑠 ≤ 𝑆 (10) 

where 𝐹𝑖𝑠 represents the fusion of CSP features in the 𝑖𝑡ℎ time segment and statistical features in the 

𝑠𝑡ℎ time segment. 
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2.3. Feature selection and classification 

2.3.1. Selection of crossing time windows 

Mutual information (MI) is an index of interdependence between two random variables, which 

quantifies the amount of information contained in one random variable about the other. It can 

effectively express the nonlinear correlation between random variables, and it can be applied to rank 

features in feature selection [48]. The target of the MI method is to retain the features with the most 

discriminative and the less redundant information Feature F and label y are two random variables, The 

joint distribution functions of two random variables (F, y) are p(f, y); The marginal distribution 

functions are p(f) and p(y) respectively and the MI of random variables is 𝐼(𝐹, 𝑌). 

 𝐼(𝐹, 𝑌) = ∑ ∑ 𝑝(𝑓, 𝑦)𝑓∈𝐹𝑦∈𝑌 𝑙𝑜𝑔(
𝑝(𝑓,𝑦)

𝑝(𝑓)𝑝(𝑦)
) (11) 

where F and Y have the more shared information when 𝐼(𝐹, 𝑌) is larger, and vice versa. 

Since EEG segments and fNIRS segments are recombined into crossing time windows, where F 

is extracted. Specifically, the crossing time windows can build 𝐼 × 𝑆 feature matrix. By calculating 

the MI value of feature matrix, the two-dimensional MI matrix 𝐿 ∈ 𝑅𝐼×𝑆 is obtained. The crossing 

time windows corresponding to the largest MI represent the optimal crossing time window. The 

optimal crossing time window is selected for feature selection and classification in the next part. 

2.3.2. Feature selection and classification 

Fisher criterion is a kind of statistic parameter that projects high-dimensional parameters into one 

dimension to measure class discriminant attributes. Fisher value represents the discrimination of 

samples. The discrimination is advanced with the increase of Fisher value [49]. The correlation 

coefficient is defined as follows: 

 𝑠𝑐𝑜𝑟𝑒𝐹(𝑋) =
(𝑚𝑒𝑎𝑛(𝑋−)−𝑚𝑒𝑎𝑛(𝑋+))

2

𝑣𝑎𝑟(𝑋−)+𝑣𝑎𝑟(𝑋+)
 (12) 

where 𝑋− and 𝑋+ represents the samples of two class, 𝑚𝑒𝑎𝑛(⋅)is mean, 𝑣𝑎𝑟(⋅)is variance. 

Lasso was first proposed by Robert Tibshirani in 1996, which is a compression estimation 

method [50]. A more accurate model is obtained by constructing a penalty function to compress some 

regression coefficients. That means if the absolute values of the mandatory coefficients are less than 

the threshold and some regression coefficients will be set to zero [51]. The objective function of Lasso 

is as follows: 

 𝛽
−

= argmin
𝛽

(‖𝑦 − 𝐹𝛽‖2
2 + 𝜆‖𝛽‖1) (13) 

where f is feature vector, 𝐹 = [𝑓1
𝑇 , 𝑓2

𝑇 , . . . , 𝑓𝑛
𝑇], y is label, 𝛽 is regression coefficient of feature, 𝛽

−

 

is sparse regression coefficient of feature, 𝜆  is penalty coefficient, the 𝜆  larger is, the more 

regression coefficient will be set to zero in 𝛽
−

. Finally, we save the feature that is not zero in 𝛽
−

 and it 

is the sparse feature 𝐹
−

. 
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The current sparse model and many L1 regularization models assume that the features are 

independent and ignore the inherent structural information in the feature set, such as linear and 

complex nonlinear relationships [52]. In addition, although some filter or wrapper methods can capture 

the non-linear relationship between features and response variables, they may not able to identify 

optimal features in the feature selection. In order to balance the linear and non-linear relationships 

between features and response variables, we propose a new feature selection framework named FLFS, 

which combined Fisher and Lasso into the framework to help identify the optimal feature set and 

improve the performance.  

The steps of FLFS shown in Figure 2: Firstly, we calculate the Fisher value between each feature 

and label, denotes as 𝐼𝑚; Secondly, according to the absolute 𝐼𝑚, we rank all features. the features 

with higher coefficients have higher priority, and the first k features after sorting are extracted; Thirdly, 

the rest of features are sparse by Lasso, and the number of sparse feature sets is n. Finally, we fuse the 

first k feature sets selected based on MI and the feature sets after Lasso. Then the optimal feature set 

will be put in the classifier.  

It is worth noting that 𝑘, 𝜆 is the two hyperparameters in FLFS, where k means that select the 

first k features sorted 𝜆 represents the penalty coefficient. When 𝑘 = 0, FLFS is considered as Lasso；

When 𝜆 = 0, FLFS is considered as Fisher. By setting 𝑘, 𝜆, the optimal feature set can be selected, 

that is, the subset with the highest accuracy. The linear discriminant analysis (LDA) is adopted in this 

work since it has broad applications in classification. Plenty of hybrid BCI researches reported 

outstanding performance using LDA for classification. LDA also has the characteristics of simple 

principle and low computation. Deep learning is effective, but one of its limitations is that it requires 

numerous samples, so it may not work well on our dataset. 

 

Figure 2. Flow chart of feature optimization using FLFS based feature selection method. 
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3. Experimental 

3.1. Description of the datasets 

In this paper, we use the public data set established by the Berlin Institute of Technology [53] to 

verify the proposed method. The distribution map of EEG electrodeposition and fNIRS photodiode 

position were shown in Figure 3. The dataset contains the mental arithmetic (MA) dataset. 

 

Figure 3. The distribution map of EEG electrodeposition and fNIRS photodiode position. The 

green electrode is the position of the EEG electrode, the red spot is the position of the light source, 

and the blue spot is the position of the detector. 

The MA dataset included MA and baseline tasks and each subject performed 60 trials. Figure 4 

shows the specific process of a trial, including two seconds of visual introduction, 10 seconds of task 

time, and 14–16 seconds of rest time. During the MA task, subjects were asked to subtract “one digit 

from” the “three digits” (for instance, 123-9) and repeatedly subtract “one digit” from the previous 

subtraction results until the task was completed. In MA tasks, baseline tasks were performed with rest. 
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Figure 4. Time axis of trail task. 

3.2. Data preprocessing 

EEG data was filtered by a sixth-order zero-phase Butterworth filter and passbands were selected 

in the range of 4–35 Hz to eliminate interference and noise. In the fNIRS system, the single was filtered 

by a sixth-order zero-phase Butterworth filter with a passband of 0.01–0.1 Hz. Baseline correction was 

performed using the mean values of the concentration data of HBR and HBO 5 seconds before the trial. 

Setting of the time parameters for EEG and fNIRS: 𝐿 = 1, 𝑤 = 3. We employed a filter bank that 

bandpass filters the EEG into 4–18 Hz, 14–28 Hz and 24–35 Hz bands. 

3.3. Overall framework 

In this part, we used 10 × 5  fold cross-validation method to increase the reliability of 

classification results. The Fisher value of each crossing time window was summed through the training 

set and the optimal crossing time window was selected for FLFS feature optimization. Parameters 

𝑘, 𝜆 were determined by cross-validation. The testing set used the determined 𝑘, 𝜆 to select optimal 

feature subset and LDA classification. The overall framework is shown in Figure 5. 

 

Figure 5. Overall framework. 



7928 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7919-7935. 

4. Experimental results 

For the above data set, before using the proposed method this paper, we use the Synchronization time 

windows (STW) to segment hybrid time data. The details of the segmentation are as follows: 0–3 s, 1–4 s, 

2–5 s, 3–6 s, 4–7 s, 5–8 s, 6–9 s, 7–10 s. And the frequency band of EEG is divided into three sub-bands 

of 4–18 Hz,14–28 Hz and 24–35 Hz. Table 1 shows the average accuracy of the MA task classification in 

the three modalities and different time segments for 10 subjects. The result shows that hybrid has a stronger 

classification accuracy in the three modes of EEG, fNIRS and hybrid. In addition, the classification 

accuracy of different periods is also significantly different. EEG, fNIRS and hybrid achieved the highest 

accuracy in 1–4 s (78.90 ± 1.47%), 7–10 s (76.44 ± 6.77%), and 7–10 s (83.33 ± 4.07%), respectively. 

To demonstrate the advantages of the crossing time windows (CTW) to segment hybrid time data, 

we compare the STW and CTW for MA experiment. Table 2 shows the hybrid classification accuracy 

of 10 subjects under the CTW and STW. The result shows that the hybrid classification accuracy of 10 

subjects using the CTW is better than the STW. And the average accuracy of STW and CTW is 

87.72 ± 6.95% and 89.83 ± 6.48%. 

Table 1. Accuracy (%) of each modal in different time segments under the STW method. 

TIME(s) Modality Type  

EEG fNIRS 

0–3 78.9 67.2 

1–4 80.3 69.1 

2–5 78.1 72.0 

3–6 79.2 75.0 

4–7 79.4 78.0 

5–8 80.2 80.9 

6–9 79.4 83.4 

7–10 75.7 85.9 

Mean ± std 78.90 ± 1.47 76.44 ± 6.77 

Table 2. Hybrid accuracy (%) of 10 subjects under CTW and STW methods. 

Subject 

 

Methods  

STW CTW 

S1 88.2 92.5 

S2 88.0 86.3 

S3 92.5 91.8 

S4 76.2 79.7 

S5 78.0 80.2 

S6 91.5 92.7 

S7 85.2 92.5 

S8 93.3 96.3 

S9 85.3 86.8 

S10 99.0 99.5 

Mean ± std 87.72±6.95 89.83±6.48 
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Table 3. Accuracy (%) of three feature optimization methods using CTW. 

Subject 

 

Methods   

Fisher LASSO FLFS  

S1 93.2 92.6 93.3 

S2 89.6 87.7 90.2 

S3 92.3 95.5 95.7 

S4 84.3 83.2 85.8 

S5 81.0 80.3 83.3 

S6 93.3 95.7 95.9 

S7 92.5 92.3 93.2 

S8 98.2 97.0 98.5 

S9 85.8 88.7 89.3 

S10 100.0 100.0 100.0 

Mean ± std 91.02 ± 5.97 91.30 ± 6.27 92.52 ± 5.38 

Finally, to indicate the advantages of FLFS using the CTW, we employ three methods based on 

feature optimization: Fisher, LASSO, and FLFS. Table 3 shows the accuracy comparison of three 

different feature optimization methods (Fisher, LASSO, and FLFS) applied to 10 subjects on the MA 

dataset. The result shows that, compared with no feature optimization, using Fisher, LASSO, and FLFS 

feature optimization can all improve the accuracy of MA task classification. Specifically, the average 

accuracy rates of 10 subjects were 91.02 ± 5.97% (Fisher), 91.30 ± 6.27% (LASSO), and 92.52 ± 5.38% 

(FLFS). 

5. Discussion 

As we all known, the hybrid acquisition method increases the dimensionality of the signal and 

improves the performance of the traditional single-mode method. However, there is no thought to 

consider the way of hybrid time combination in the task. Although the time for the subject to perform 

the task is determined, time associated between brain activity and task is undetermined. It means, we 

learn the time when the participant completes the task, but we do not know the time when the signal 

will active. Therefore, using a fixed single time for data interception and pattern recognition cannot 

achieve the optimal classification performance. It can be displayed from Table 1 that in different 

segmenting times, the classification accuracy of different modalities will fluctuate significantly. That 

also reflects the importance of the proposed CTW method in this paper. Table 2 shows the comparison 

between CTW and STW. The CTW combines multi-modal time windows plays an important role in 

proposed algorithm and improves the MA classification performance up to 2.11%. 

In the experiment, this paper employs CTW and a sparse feature learning model to research the 

EEG and fNIRS data on the MA dataset. And we discuss that whether choosing the hybrid cross time 

windows can improve the accuracy of the classification task. The hybrid signals collected by 10 

subjects are divided by the CTW. Following feature extraction and feature selection with FLFS, the 

LDA achieved the highest classification accuracy of 92.52 ± 5.38% in Table 3. The feature set which 

composed of the CSP feature and the statistical feature has a higher recognition ability. Figure 6 

histogram displays that HBO features are mainly distributed in the Prefrontal area and HBR features 

are mainly distributed in the central area. This is consistent with the conclusion drawn by Shin et 
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al. [53]. After feature selection, the optimized main features are distributed in the 4–28 Hz frequency 

band. In addition, only minority of EEG features are sparse, which displays that the features after EEG 

frequency division are of significance. 

 

Figure 6. The orientation of each subject is S2 (upper left), S4 (upper right), S5 (lower 

left), S6 (lower right). The y-axis is the EEG time window, the x-axis is the fNIRS time 

window. And the chromaticity bar is the MI value after normalization. The black square 

represents the selected hybrid time window. 

Considering the redundancy between signals and the computational time complexity, it is difficult 

to classify all crossing time windows. Therefore, we use mutual information to select the optimal 

crossing time window. Mutual information represents the discrimination of features, the greater the 

mutual information the greater the classification ability. Take subjects 2, 4, 5, and 6 as an instance, 

Figure 6 shows the calculation of mutual information correlation for the divided two-dimensional 

windows in the CTW experiment, Chroma is deepened with the increase of mutual information. We 

select the optimal crossing time windows with the largest mutual information value. Figure 7 shows 

that subject 2, 5, and 6 selects the first EEG time window (0–3 s), and the 8th fNIRS time window (7–

10 s); subjects 4 select the first EEG to time window (5–8 s), and the 8th fNIRS time window (7–10 s). 

The phenomenon can be ranged into two principal situations. For majority of subjects, selecting the 

EEG time window precedes the selecting fNIRS time window and the time interval is large; but there 

are also a minority of subjects, although the selected EEG time window is also before the fNIRS time 
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window, the time interval is near. The first situation appears it may be caused by the EEG and fNIRS 

achieve higher accuracy separately. The feature shows better classification performance, which means 

that the mutual information value corresponding to the EGG and fNIRS features are higher; The second 

situation appears it may be due to the inconsistency in the selection of hybrid time windows caused by 

individual differences. 

In the extended feature set, the FLFS model can be used to collect the feature subset with the 

optimal classification accuracy. Taking subject 6 as an instance, a subset that provided the highest 

classification accuracy was identified by FLFS in the LDA model. This subset of features, shown in 

Figure 7, comprises peak and mean statistical features and CSP features. The pie chart shows that the 

initial proportions of EEG and fNIRS feature numbers were 92% and 8% of all feature set. However, 

under the feature selection, about 38% of the features number are sparse which can reduce the model 

calculation. After sparseness, the proportions of EEG and fNIRS features account for 55% and 6%, 

respectively. Compared with the proportion of features before feature selection, the feature proportion 

of the two modalities tend to be similar after feature selection.  

 

Figure 7. The histogram is the analysis diagram of the optimal feature subset after FLFS in 

subject 6; Boxes 1, 2, and 3 represent respectively prefrontal, central, and occipital area; The y-

axis is the Fisher value of the feature, and the x-axis is the feature index number. There is a total 

of 156 features, 0–144 serial numbers represent fNIRS features and 145–156 serial numbers 

represent EEG features. The pie chart shows the distribution of EEG, fNIRS and sparse features 

before and after FLFS. 
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6. Conclusions 

In this paper, a crossing time windows based FLFS optimization method for hybrid BCI systems 

is proposed. In our method, hybrid time segments were obtained from each time segmenting sample. 

After crossing and recombining each time window, the features were extracted using CSP and 

statistical method from each time window, which were combined to form a new feature vector. At last, 

feature selection algorithm and classification are applied to evaluate the effectiveness of the proposed 

method. Compared with the traditional synchronous selection time segment, the experimental results 

show that the method can increase accuracy rate of 4.8%. It also found that when the MI selects an 

optimal crossing time window, most subjects prefer the time windows that EEG and fNIRS are both 

activated at the same time. The proposed method has practical application prospects in HBCI. In the 

future, we will continue to undertake more investigations on this method using more datasets. 
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