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Abstract: In the paper, stability and bifurcation behaviors of the Bazykin’s predator-prey ecosystem
with Holling type II functional response are studied theoretically and numerically. Mathematical theory
works mainly give some critical threshold conditions to guarantee the existence and stability of all
possible equilibrium points, and the occurrence of Hopf bifurcation and Bogdanov-Takens bifurcation.
Numerical simulation works mainly display that the Bazykin’s predator-prey ecosystem has complex
dynamic behaviors, which also directly proves that the theoretical results are effective and feasible.
Furthermore, it is easy to see from numerical simulation results that some key parameters can seriously
affect the dynamic behavior evolution process of the Bazykin’s predator-prey ecosystem. Moreover,
limit cycle is proposed in view of the supercritical Hopf bifurcation. Finally, it is expected that these
results will contribute to the dynamical behaviors of predator-prey ecosystem.
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1. Introduction

As we all know, the classic Lotka-Volterra predator-prey system has been used to simulate predatory
phenomena in nature, and its impact on the researches of mathematical biology and ecology will be
roughly equivalent to the atomic bomb effect. In 1965, Holling proposed several different functional
responses to characterize the dynamic predator-prey relationship between populations, which could
describe the predator population how to transform the captured prey population into its own growth
ability. Generally speaking, functional responses in predator-prey systems mainly depend on many
internal and external key factors, such as the densities of prey and predator. On the other hand, prey-
dependent functional responses are an important role in mathematical ecology, especially the dynamics
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of predator-prey systems. In recent decades, many scholars have done a lot of research on the predator-
prey function response, and have made some excellent research results. Now, it is briefly summarized
to enrich the population dynamics modeling system.

(1) The Holling type I functional response [1] is

cx X< Xo,
D(x) = -
CXog X > Xp,

where c is a positive constant.
(i1) The Holling type II or the Michaelis-Menten functional response [1-5] is

ax ax
or O(x) = ,
a+x 1+wx

O(x) =

where «, a and w are positive constants.
(i11) The Holling type III or the p = 2 S-type functional response [1,4,5] is

2

ax
O(x) = m,
where « and (8 are positive constants. The generalized Holling type III or sigmoidal is ®(x) = MZT;; :

with b < =2 +/a, where m and a are positive constants, b is a constant. When b = 0, the function ®(x)
can reduce to above Holling type III functional response. The S-type functional response with index p
is ®(x) = Iéﬁ:‘;p , where a,  and p are positive constants.

(iv) The generalized Holling IV or the Monod-Haldane functional response [1,4-7] is

mx

O(x) = — =
(%) ax? +bx+1

- or®(x) =
atbx+ 2 *)
where m and a are all positive constants, but b is a constant. When b = 0, it is called the Holling type
IV functional response or the simplified Holling type IV functional response [8, 9].

(v) The Beddington-DeAngelis type functional response [4, 10-13] is

ax
O(x,y) =

a+bx+cy’
where a, a, b and c are positive constants, which is originally and independently introduced by Bed-
dington and DeAngelis [10,11]. At the same time, it is similar to the Holling type II functional response
incorporating an extra term cy in denominator, which can describe mutual interference among preda-
tors [12, 13]. This functional response has some same qualitative features as the ratio-dependent form,
but can avoid some singular behaviors of ratio-dependent models at low densities [12].

(vi) The Hassell-Varley type functional response [14—18] is

O(x,y) =

y€(0,1),

x+my7’

where A and m are positive constants, y is the Hassell-Varley constant. When y = 0 or y = 1, it can
be viewed as limiting cases mathematically. Specially, when y = 0, it is the Holling type II functional
response regardless of constants.
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(vil) The Crowley-Martin type functional response [19] is

ax
D(x,y) =

a+bx+cy+exy

where @, a, b, c and e are positive constants. It involves the interference among individual predator
engaged in searching and handling the preys. While in [20-22], the authors particularly take the
Crowley-Martin functional response in the new type of ®(x,y) = m, which is proposed by
Bazykin and is an immense breakthrough of the Holling type II and Beddington-DeAngelis functional
responses.

In this paper, we will continually concentrate on a detailed discussion in the well-known Bazykin’s
predator-prey ecosystem with the Holling type II functional response and interspecific density-
restricted effect on the predator, which is also a variation of Volterra’s classical predator-prey model

and is expressed in the form of following ordinary differential equations (ODEs) [23,24]:

. X axy

— 1— - _ 1.1

X = rx( Kl) L m (1.1a)
aex

5= 2 my —dy’, (1.1b)
a+ x

Here the functions x = x(¢) and y = y(¢) represent densities of the prey population and predator
population at time ¢, respectively. All positive parameters have practically biological meanings: r;
denotes the intrinsic growth rate of the prey population, K; represents the carrying capacity of the
environment, a is the half-saturation constant; « is the search efficiency of predator for prey, m; and
m, are the mortality rate of the prey and predator population, e is the biomass conversion, d is the
intra-specific competition coefficient. The specific growth term ryx(1 — Kil) governs the increase of the
prey in the lack of predator. The square non-linear term term dy?, denotes intrinsic decrease of the
predator, and represents interspecific density-restricted effect on the predator. Excluding the dy?, the
system (1.1) is based on the classical Gause type predator-prey system, which expresses the following
form [25]:

X = xg(x, k) — yp(x), (1.2a)
y = y(=d + cq(x)), (1.2b)

where g(x, k) is a continues function for x > 0, p(x) is a functional response of predators, which is
called Holling-type-II predator-prey model as well. Such ordinary differential system of predator-prey
populations is familiar to the Lotka-Volterra system, in which populations have the addition of damping
terms(or self inhabit). The positivity of solutions with respect to initial condition x(0) > 0 and y(0) > 0
is easy to prove and we omit its proof. This system with positive and bounded solutions is also well
behaved as we intuits from the biological significance.

Bazykin [24] wholly discussed the stability of equilibria, global existence of limit cycles, global
attractivity of such equilibria, Hopf and codimension 2 bifurcations. In [26], analytical description
and alteration of local stability were given. Here the authors investigated a familiar Lotka-Volterra
system, in which the populations have self-inhibit(the addition of damping term) for global stability
and existence of limit cycles [27]:

Xy

%= x(1 = kx —kox?) — o
ax

(1.3a)
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Xy

l+ax
where specific growth rate governs the growth of the prey in the absence of predator and it has an
increase (or decrease) intrinsic rate on the predator. They already proved the existence of two limit
cycles with the help of idea from the Poincare-Bendixson theory. Obviously, at special case k, = 0,
we note that the system (1.3) can reduce to above system (1.1), which was analyzed by [28] and [29]
for stability of equilibria, Hopf bifurcations, global attraction and codimension two bifurcations as
well. While in the respect of global behavior, the system (1.1) was investigated by [30]. In [31],
for a particular form of the system (1.1) with a modified Holling type II functional response %
incorporating a constant prey refuge m, the authors therein gave sufficient conditions to guarantee
the global stability of the positive equilibrium and uniqueness of a stable limit cycle. In [32], the
authors revealed a rich bifurcation structure, including supercritical and subcritical Bogdanov-Takens
bifurcation.

Based on classical biological manipulation theory, the Bazykin’s predator-prey ecosystem can be
used to explore the dynamic relationship between Microcystis aeruginosa and filter-feeding fish from
the perspective of population dynamics, where x(¢) and y(¢) represent respectively the density of Mi-
crocystis aeruginosa and filter-feeding fish (bighead carp and silver carp), the growth kinetics function
of Microcystis aeruginosa x is rjx(1 — Kil) with intrinsic growth rate r; and maximum environmental
capacity K. The grazing function of filter-feeding fish y is == with capture coefficient @ and density
restriction coefficient a. Furthermore, the parameter m; and m, are natural mortality of Microcystis
aeruginosa and filter-feeding fish, the parameter d and e are internal competition coefficient and en-
ergy conversion rate of filter feeding fish. In order to deeply explore the dynamic relationship between
Microcystis aeruginosa and filter-feeding fish, it is necessary to investigate some bifurcation dynamic
behaviors of the Bazykin’s predator-prey ecosystem, thus we mainly focus on the stability and bifur-
cation of the Bazykin’s predator-prey ecosystem in this paper. Firstly, we investigate the existence and
stability of hyperbolic equilibrium point and non-hyperbolic equilibrium point, and conveniently study
the cusp of condimension 3. Secondly, we explore Hopf bifurcation and Bogdanov-Takens bifurcation
in detail, and give some sufficient threshold conditions. Finally, for Hopf bifurcation dynamics, we
especially analyze the limit cycle via a perturbation procedure and canonical transformation. More-
over, we think that these mathematical analysis results can provide a theoretical basis for numerical
simulation, which can give some biological interpretation for Hopf bifurcation and Bogdanov-Takens
bifurcation, hence, we mainly study stability and bifurcation dynamics of the Bazykin’s predator-prey
ecosystem from the perspective of mathematical analysis, other biological significance issues will be
completed in the follow-up work.

— y(60 + 61Y), (1.3b)

2. Existence and stability analysis of equilibrium point

All solutions of the system (1.1) are non-negative and bounded with initial conditions x(0) > 0,
y(0) > 0, thus it is namely dissipative in the first quadrant R*?> of 2 dimensional space R?> and
well-defined on the closed domain R? = R*2. Furthermore, the system is uniformly bounded with
lim sup x(#) < My, limsupy(t) < M,, in which two positive constants M; and M, only depend on

t—+00 t—+o00

parameters ry, K, @, a, my, e, my and d [33]. In other words, the system (1.1) is confined in the domain

{(x,y)I0 < z< M + ¢, for any € > 0}, 2.1)
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with z = ex + y and a constant M > 0. Moreover, the system (1.1) is permanent if the value of all
parameters can satisfy

K M
w1 = = —my — T2 > 0,
r a
ae(l — Dw; >0 22)
—_— - m
a+e(l-ADw S

with 1 € (0, 1) [34].

2.1. Boundary equilibrium point

It is clear that the system (1.1) admits two biological boundary equilibria E, := (0,0) and E, :=
(x2,0)(f ry > my), where x, = K;(1 — ":—I‘). For the Jacobian matrix J(E() = diag{r, — my, —m,} at point
Ey, it shows that E is a hyperbolic asymptotically stable node(unstable node) when r; < m;(r; > my),
while it is a stable node(non-hyperbolic attractor) with only one zero eigenvalue if r; = m; (see the
Theorem 7.1 in [35]). The Jacobian matrix at point E; is

— _oexn

ml rl a+xp (2 3)
0 aexy ’ .

a+t+xy

J(Ey) =

then, the hyp()gbolic point E is an asymptotically stable node(unstable node) when {22 < my( 7732 >
2 —

my). When =2 = m,, E; is also a stable node(non-hyperbolic attractor) with characteristic direction

a+xy
tan(f) = % under the polar coordinate transformation.
Now, we use an example to verify the stability of the equilibrium point E, and E, with r; = 0.6,
a=15 a=05,e=0.6,K; =20and d = 0.1. It is easy to find from Figure 1(a) that E, is a stable
node with characteristic direction 8 = O when r; = m; and m, = 0.06. Furthermore, it is obvious to see

from Figure 1(b) that E; is a stable node with characteristic direction tan(f) = % e

and m; = 0.3.
0204 0.7
06
0.15
05
04
¥ o104 v
03
02
0.05
0.1
E, =0
0.1 02 03 04
(a) X (b)

Figure 1. (a) E is a stable node; (b) E, is a stable node.
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2.2. Interior equilibrium point
2.2.1. Hyperbolic equilibrium point

At first, an interior equilibrium E, = (x.,y.) of the system (1.1) always satisfies following algebraic
equations

1__ R A — :0’ 24
ri( K1) ™ (2.4a)
e my,—dy=0. (2.4b)
a+

Furthermore, from Sylvester’s resultants in polynomial Equation (2.4), components x, and y. must
3

be positive roots of third-order polynomial equations(cubic equations) p(x) = 3 a;x' = 0 and g(y) =
i=0

3

> by’ = 0, respectively. Here the coeflicients are listed as follows:
i=0

az =dry,ay = d(my — r)K; + 2adry,

a; = [2a(m; — r)d + a(ee — m)1K, + a*dry,
ag = [a(my — r))d — myalak,,

by = Kid*, by = 2K d(ae — my),

by = [(ae — my)? + ade(r; — m))K, + a*der,,

by = e[(m — r)(@e — my)K;| + amyri]a.
Then, we define these complicated expressions

aq 1 ay 2 ay) 1612 aq ap

x:____z’ x:__S__ ,Ax: %2 &3

P as 3(613) 9 27((13) 3613(13 as (2) +(3)
and b 1b 2 by . bbb

_b 1by 2 Days IDabr Do Ay Pyys

py=p 3= G 3ty AT ) )

which is a discriminant of above cubic equations p(x) = 0 and g(y) = O for later use respectively [26].
The Eq (2.4) also implies that such interior equilibrium E, does not exist when one of conditions
holds: (1) r; < my; (1) @e < my. The rest of our paper always assume the necessary existence condition

amy

r1 > my and ae > m,. If condition 0 < ="~ < x, holds, it is cleat that E, always exists.

ae—my

Thus we define the Jacobian matrix of the system (1.1) at an interior equilibrium E, = (x,,y.) as

AXsYs  _ F1Xe QX
JE) = U(Edpa = | “he, B 4% | (2.5)
(a+x.)? Vs

The trace, determinant and discriminant of the matrix J(E,) are denoted as A; = A|(E,) := tr[J(E,)],
Ay = Ay(E,) :=det[J(E,)] and A, = A.(E,) := Af —4A,, respectively. Then, by using the Perron’s the-
orems and the Routh-Hurwitz’s criteria, we have following local stability of a hyperbolic equilibrium
E. in general cases:

(a)If Ay <0Oand (al) A, > 0,A, > 0, then E, is an asymptotically stable node; (a2) A, > 0, A, <0,
then E, is an asymptotically stable focus; (a3) A, < 0, then E. is a saddle point;
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(b)If Ay =0 and (bl) A, > 0, then E. is a center or a focus; (b2) A, < 0, then E. is a saddle point;

(c) If A; > 0, then E, is unstable and (c1) A, = 0, then E, is a node; (c2) A, < 0, then E, is a focus;
(c3) A, > 0and A, > 0, then E, is a node; (c4) A, > 0 and A, < 0, then E, is a saddle point.

A non-hyperbolic point E, is a stable(unstable) node if A; < 0(A; > 0) and A, = 0. The nilpotent E,
is probable a cusp of codimension at least 2, which can ensure potential Bogdanov-Takens bifurcation
when A; = A, = 0.

Obviously, when r; < m, the equilibrium point Ej is globally asymptotically stable, which can be
proved by using a Lyapunov function V = ex + y. Similarly, when r; > m; and @e < m,, the point E
is unstable and E. does not exist, thus E, is globally asymptotically stable. For equilibrium point E.,
we define a positive definite Lyapunov function

a—+ X,

V= V(x,y)z(x—x*—x*lnxi)+ V=Y — Vs ny—) (2.6)

Now, along solutions of the system (1.1), differentiate V with regard to time ¢ to obtain

dV_x—x*dx+a+x*y—y*dy
dt x dt ae y dt

Substituting the value of and from the system (1.1), we can get

av ay. a+ x,

dr (a+ x)(a+ x,) B —)(x x)’ - d(y y*
ay: N 2
ala + x,) )(x %)’ )

Thus, it is obvious that if a(a o 1r<_11’ then % < 0. This equality holds if and only if (x,y) = E,, i.e.,
the equilibrium point E, is globally asymptotically stable.

Under a generalized condition % < K , the hyperbolic point E, is a locally asymptotically
stable focus or node since A; < 0 and A, > 0. Hence we assume y, = % with the introducing
of a control variable p € (0, 1], components of the corresponding equilibrium point E, = (x,,y.) and

restricted parameter d are

_ (=ap + K)ri — m K, _ [(r1 — m)K, +ari (1 —p)lpa
* rl b * aKl b

2.7)

—aK[((—ae + m)K; + (epa — my(p — 1))a)r) + Kymy(ae — mz)].

d =
ap[(=K; + (p — Da)ry + m K12

Thus, we can obtain Theorem 2.1, which can guarantee that the equilibrium point E. is globally
asymptotically stable.

Theorem 2.1. If the system (1.1) has a unique interior equilibrium point £, with —=

(a+x.)

equilibrium point E, is globally asymptotically stable (hyperbolic focus or node).

I
<z then the
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At the same time, by using the Bendixson-Dulac criteria and a proper Dulac function B(x,y) = x—ly
or B(x,y) = ﬁ with a positive constant ¢ > 0, then theorem 2.2 can also guarantee that a unique
equilibrium point E, is globally asymptotically stable on account of the non-existence of closed orbits

and limit cycles.

Theorem 2.2. If the system (1.1) has a unique interior equilibrium E,, and 0 < QZ%;Z < x; < a, then
the equilibrium E, is globally asymptotically stable.

In order to verify feasibility of Theorem 2.1 and 2.2, we will give some numerical simulations.
If we take r; = 0.6, m; = 0.2, m, = 0.1, @ = 05,a = 1.5, K; = 20, e = 0.6 and p = 0.9, the
calculation shows that the values of these parameters can satisfy with the condition of Theorem 2.1,
the equilibrium point E, is a globally asymptotically stable node, which can be seen in Figure 2(a). If
we take r; = 0.6, m; =0.2,my, = 0.1, =0.5,a=1.5,e =0.6,d = 0.05 and x, = ap(p = 0.9), then
Theorem 2.2 is true, thus the equilibrium point E, is a globally asymptotically stable point, which can
be found from Figure 2(b). In a word, the equilibrium point E, is globally asymptotically stable under
certain conditions.

b2

star
star

(a) X (b) X
Figure 2. (a) Phase diagram of a globally asymptotically stable node E.; (b) Phase diagram
of a globally asymptotically stable point E.,.

2.2.2. Non-hyperbolic equilibrium point: case (C1)

In this section, we mainly consider existence and stability of interior equilibrium in special cases,
which can ensure the occurrence of Hopf bifurcation and Bogdanov-Takens bifurcation. In order to
simplify A, as zero or get potential Hopf bifurcation, we take some parameters in a special case as

my =ae(d—1)+r,m = Adae, K| = lﬂ, (2.8)
e
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where 4 € (0,1) and u = /1 + 84 > 1 are two control variables for later use to scale parameters.
Then the parameter d is constrained by d = W, where auxiliary functions are

a a(d.p1)
(A, ) = (u+3DA=p+ Lgg(A,p) = (u+3)A—u—1.

It is quite clear that we can derive a little complicated expressions of a required interior equilibrium

point £ = (&) with &7 = Ja(u - 1),y = ~FEFYa(A, ), AiED) = 0 and ANE?) =
2,2

@ (), in which ¢, (1,0) = (=17 +(A= DA+ S + (152 + 104~ D+ 922 ~61+5

is also an auxiliary function.
Obviously, the expressions of yiz) and positive parameter d indicate that ¢,(4, 1) < 0 and ¥ 4(4, u) <

0,1.e., >y, = 31”_31. The unique positive root(stationary point) of the following equation

0
36 ) =31 =D +2A = D(TA+5)u+ 152 +104 -1 =0,
u

which can satisfy above condition, is u® = % W_ Substituting it into ¢, (4, ), we have

@, (L u?) = & 59, oW, where g (1) = (2 + 104+ 7)3 = A% = 152% + 604 + 10 is an auxiliary

function of A. Letting d%(p (1) = 0, we have a unique negative root 4 = =5 — % V2. Combining

o0 =10+7 V7 and 90 o
1ncreas1ng and has a pos1t1ve mlnlmum 0

(2)

( ) =79, we know that the function ¢, (1) must be monotonically

(2)
o (0) on the interval [0, 1], or thls function is always positive
wApy

on (0, 1), while function ¢ 4 (4, /Jiz)) is always negative on (0, 1). The second order partial derivative

with respect to u at the point uf) is

62
5290 ) =41 - ) VA2 +101+7 >0,
I

which can ensure that the function ¢, (4, 1) owns a negative local minimum at the p01nt ,u(z).

At this time, combining ¢, (4, ,um) = 321
when u > u,, and 1 € (0, 1):

(1) When g,, < p < 1), the function ¢ 4, (4, 1) 1s monotonically decreasing and negative with respect
to variable p.

(i1) When u > ,uf), the function ¢, (4, u) is monotonically increasing with respect to variable p.

(A4, p)

(i11)) When u = ,uf), the function @, (4, ) has a negative (local) minimum.

With the positive coefficient of leading order term x* in polynomial ¢ 4, (4, 1) at hand, we have a
positive value of variable u, which is also sufficiently large and is larger than ,usz), such that ¢, (4, ) >
0. The zero theorem implies that the equation ¢, (4, ) = 0 must have a unique positive root, which is
denoted as y; and on the right hand side of the point #(2) .

All in all, we can confirm the classification of the interior equilibrium point E®:

(i) When w,, < u < uy, we have ¢ " (A4, n) < 0and Az(Eiz)) > 0, thus the equilibrium point E?isa
focus or center;

(i) When p = p15, namely ¢, (4, ) = 0 or u satisfies the following cubic equation

A=+ A= DAA+ 5> + (152 +101 = D+ 922 - 61+ 5 =0, (2.9)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.
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we have a degenerate interior equilibrium E® with Al(Eff)) = Az(Eiz)) =0;

(iif) When p > p1y, we have ¢, (4, 1) > 0 and A>(E®) < 0, thus the equilibrium point E is a saddle
point.

Based on these analysis, we summarize two cases for consideration of stability and type of the
interior equilibrium point E®.

Casel: u,, <u<py
When u € (w,, 1), making a linear transformation (I): x = u + xiz),y =v+ yiz), we can transfer the
equilibrium point E to the origin 0. Then we can construct a transformation (II): u = —dy'PX + BY,

y = —(Zjifz()z;X to obtain the Jordan form of the system (1.1), thus the new system is
3
X =Y+ > ayX'¥V + O(X, YI*), (2.10a)
i+j=2
3
Y =BX + Z bi XY + O(X, YI"), (2.10b)
i+j=2

where S = 1/A2(Efk2)) > 0. Following Perko’s book [36] or [37], the first Lyapunov number of the
system (2.10) under the condition (2.8) is

3 3
T 28
_ 384maa’ie’ (u— DA, oA, 1)
T @B+ 1+ 3, (L

where the auxiliary function is ¢, (1, i) = (1 — 1)%u® + (A1 — 1)(94 — Dp® + (274% — 184 + 15)(u + 1).
The partial derivative of function ¢, (4, u) with respect to variable u is

1
o {3(aso + bp3) + (aip + byy) — 5[2(0201920 — amnby) — aj(ap + axy) + b11(by + by)l}

(2.11)

0
6—%@#) =31 = D% +2(A = D92 = D + 274 = 184 + 15,
v
which is always positive since its discriminant A(%go(,) = 1441 - 1)*(1 - %) < 0. The special value
(A, ) = % > 0 can ensure that ¢, (4, u) 1s a positive function in this case, i.e., o < 0 or the

equilibrium point % is a stable multiple focus with multiplicity one.

Case Il: u =y
When y = u;, we will show that the nilpotent(double-zero eigenvalue) E? is a BT cusp of codi-

mension 2. Firstly, by using transformations (I): x = X + xg), y=Y+ yiz) and

_a(u + DA, p)u Y= ae@q(A, p)u + (1 +3)v

n:X = =
4 + 3)a(A, i) M1 +3
in original system
81
i =l - —2 e = D+ lx - 22 (2.122)
ar (12 - 1) a+x
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daf(A - Dy + 32+ 1w, + 1)y?

g = aexy _ daey - a(( M 1 + 1y ’ (2.12b)
a+x a(u; + 3)*[(1— Dy +32-1]
we can derive a new system
3 . .
i=v+ D agu'v + Ol v, (2.13a)
i+j=2
3
b= by’ + O(u, vI*). (2.13b)
i+j=2
With the help of the Lemma 1 in [38], such system (2.13) is equivalent to system

x=y, (2.14a)
y=dix* + dyxy + O(x, y1), (2.14b)

where the discriminants are

A = D + BA = D]pa(A, 1) @a(A, 11)
a(d = 1)1 = Dy + 3)Ma(A, p1)
8eda? (A, p11)@a, (A, 111)
a(Ad = D)(uy — Dy + 339a(A, 1)’

and @ , (4, 1) = (A= DA+ T)* + (64> + 164 + 2)u + (94° — 64 + 5) is an auxiliary function.
From the equations ¢, (4, u) = 0 and ¢4, (2, 1) = 0, the Sylvester’s resultant with respect to variable
uis

dl :b20 =

<0,

dz = b]] + 26120 =

A=12  (A=1DTA1+5) 152+10A-1 92-61+5 0

0 A=12  A=1)T1+5) 152+101—-1 92 -64+5
RA¢,.0)=| (A= D@A+T) 68 +161+2 9 -61+5 0 0
0 A=DA+7) 62+161+2 92 —-61+5 0

0 0 A=-DA+7) 62+161+2 92 —-61+5

= 2048A(1 — 1)*(92% = 61+ 5) > 0,

which implies d> # 0. On the other hand, for the quadratic function ¢, (4, 1), which is also an down-
ward opening parabola since the negative coefficient (4 — 1)(4 + 7) is in the highest order term, its
discriminant is A(gg,) = 65642 — 2244 + 144 > 0, and the symmetry axis u = % is between
the longitudinal axis u = 0 and the vertical line u = p,,. By using the special values ¢4,(4,0) > 0 and
Ca, (A, ) = % < 0, we have ¢4,(4, 1) < 0 and d, > 0. Therefore it completes the non-degeneracy
condition dyd, # 0 (actually d,d, < 0) and the classification work of codimension 2 cusps in this paper,
which is meaningful to Bogdanov-Takens bifurcation analysis of codimension 2.

Now, we will continually use transformations (IID): u = p + appqg, v = q — axp?; AV): p = w,
qg=z—cpwzand (V):w = x; + % fozx%, Z = y1 + foox1y1 to derive a standard form with discriminants
d, and dy:

X1 =y + O(x1, 1),

. (2.15)
yi = dixt + doxyyr + O(lxy, yil),
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hence it also support above conclusions and we can obtain the Theorem 2.3.

Theorem 2.3. As we take the value of parameters under the condition (2.8), the system (1.1) admits
an interior equilibrium point E'” with zero trace.
(i) When p,, < ut < pt1, the equilibrium point E* is a stable multiple focus with multiplicity one.
(i1) When u = u;, the equilibrium point E?isa cusp of codimension 2 (BT bifurcation point).
(ii1)) When u > p;, the equilibrium point E? is a saddle point.

Here we can take the value A = % to get some interesting result, the first positive(meaningful) root
of BEq (2.9) is 1 = 2 := 12 +3 V17 ~ 24.369317 and y,, = 9 by using identities

cos[larctan( \/_)]—508\/12 (9\/_+7)

3 1162
1
51n[§arctan(ll62\/_)] 508\/12 73 V51 = 7V3).

Solving out the Eq (2.4), we have three possible interior equilibrium point E, @ = (xg’), yi’)) (i=1,2,3),

where some components are

(13) _ _
2 32(# Ta gyl ~ O — 4 = 29) £ @)

13 _ ae(u + 3)
YT 2@ - D -9)

[ = D = 3)(u + 15) + D],

and auxiliary functions are ®(u) = \/(,u — D(u = 3)(u — 9es(u) and @,(u) = p* — 13u* — 153u — 603.
With the techniques in Calculus, we know:

(i) when gt € (. pr}), it = 12215
decreasing.

(i1) when u = u?, the function ¢(u) owns a negative (local) minimum.

(iii) when ¢ > pf, the function ¢g(u) is monotonically increasing and has a unique positive root,
which is denoted as u,, where

~ 12.687, the function ¢y (u) is negative and monotonically

1 13
Hs = 535574822 =36 V5997)(2411 + 18 V5997)* + (2411 +18V5997)7 + 3

~ 21.445494 € (u*, ).

Case 1. When pu;, < p < py or g > py, that is @ (u) > 0, the system (1.1) has three interior

equilibrium point Eff) = (xf(), y4)) (i =1,2,3) due to the following inequalities

(1 — 9 (u? — 4u — 29)* — Dy(u)* = 128(u — 9)(u® + Su*> — 251 — 45) > 0,
(= 1% = 3)*(u + 15)* = D(u)* = 48(u — 1)(u + 3)(u — 3)(u* — 33) > 0.

Here the equilibrium point E( ) is a stable multiple focus with multiplicity one when u < puy, while it
becomes a saddle point when o> .

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.
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Case 2. When u = 1, there exist two interior equilibrium points, including an asymptotically stable
node E\” = (x{",y\") = (a(11 + 3V17), 3ae) since

AED) = 5VIT - 21)ae < 0,

1
AyEY) = 5(895 =217 V17))a?e* > 0,
14
A(EY) = 5 (30173 Vi7)ale* > 0.
The second degenerate interior equilibrium point Ef) = (xf), yf)) = (%xil), %(1 + V17)ae) is a cusp

of codimension 2. Furthermore, it is worth noting that the two equilibrium point Ef) and Ef) can
coincide with each other.

Case 3. When u = u; or @ () = 0, there exist two interior equilibria, that is to say, above two
interior equilibrium point Eil) and Ef) can coincide with each other (but we still denote it as Ejl)),
where

a _ Gus+2Na oy (s + 3)(u; + 4y + 27)ae
X)) == Y = :
$ T T me (-2 - 1)
@ _ ae(,uf -9

x‘”zla(us—l),y = :
4 Ty 4T 12(uy + 1)

_ 128ae(55u2+3241,+981)
(s =9) (3~ 1)(u3-9)
Az(Eil)) = 0. Seeing [35] in detail, the interior equilibrium Ef) is still a stable multiple focus with

multiplicity one.

It 1s quite clear that this point Eftl) is a stable node when Al(Efl])) = < 0 and

Case 4. When yu,, < u < u, or @y(u) < 0, there exists a unique stable multiple focus Ef) with
multiplicity one.

In order to verify the feasibility of theoretical derivation, we take r; = 0.6 @ = 0.5, a = 1.5 and
e = 0.6, then some numerical simulations are implemented. Figure 3 depicts the curves of functions
®,, (A, 1), a(A, ) and ¢4(A, 1), which can show the existence of key values. When u = 20 <y, the
unique equilibrium point Ef) is a stable multiple focus with multiplicity one(see Figure 4(a)). When
u =25 > uy, there exist three interior equilibrium points including a stable node E\", a saddle point Ef)
and an unstable node Ef) (see Figure 4(b)). When u = u;, a cusp of codimension 2 Ef) and a stable
node Eil) will occur (see Figure 4(c)). When u = pu;, there exist two equilibrium points including
a stable multiple focus Ef) with multiplicity one and a stable node Eftl) (see Figure 5(a)). When
u = 21.5, there exist three equilibrium points including a stable multiple focus Ef) with multiplicity
one, a saddle point Ef) and a stable node Eil) (see Figure 5(b)). In a word, there are several kinds of
internal equilibrium points with different characteristics in the system (1.1).

2.2.3. Non-hyperbolic equilibrium point: Case (C2)

This subsection will show the existence and stability of interior equilibrium point in another special
case, which can also ensure potential Hopf bifurcation and Bogdanov-Takens bifurcation. As we take
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200

1004 m ‘1—?.
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Figure 3. Curves of functions @, (A, p)(red), ¢ (A, p)(blue) and ¥, (4, u) (green).

my = ry — ae — 3my, my = Aae and K; = 7= with dimensionless “control variables” A € (0, 1), u > 1
and s = +/u? — 1 > O for later use, then an interior equilibrium point E,, the determinant A,(E,) and

the confined positive parameter d are listed as follows:

1 ae
E* = (X*’y*)’x* = Za(s -1 +/")’y* = 4_‘10)’*(/1’,“),
s (2.16)
a’e(s — 1+ ) 2a504(A, 1) '
A2 = - B ()DAz(/lalJ)ad e ————
s(s+u+3) ayq(A, 1)

where the mentioned auxiliary functions ¢, = ¢, (4, 1), 0a = ©a(A, 1), Ya = Ya(A, 1), ©a, = Pa, (4, @)
are:

@y, = [(u+DA+p+3ls+[(u—DA+p+1]u-1)>0,
Ca=A=-1Ds+@u+3)1—u+1,

Ya=[A+ D + @A+ 3+ 1A+ 4]s + [(A+ Dp* + GA+ D+ 22+ 3)(u - 1) > 0,
@i, = [(— DA+ (-2u = 1A+ pu =55+ (W + 8u + DA = 2(u — 1)’ + 4 — 1.

The inequality d > 0 or ¢, < 0 deduces a lower bound 1, = % The generalized expression of
the first positive root p; = u;(4) in equation @y, (4, 1) = 0 is

A
() = P - 2.17)
331+ 5)(34 + 1)(A — 12M(A)}

where

0, (D) =(=392% + 822% + 721 + 13)M(A)* + 182° — 14642° — 3360.°
+ 27082 + 556817 + 354422 + 10561 + 2M(2)5 + 122,
5 1 39 3
M(2) =108(2 + 3) V31— DA+ §)(a4 + 8% + 712 +100+2)

V86 — 96,5 + 43144 — 16843 — 33422 — 1041 — 9
+272"% + 18901 + 13176.2° + 4231% — 9878417 — 144532.2°
+ 1173602 + 2307931* + 1166402° + 238744 + 13681 — 91.

Mathematical Biosciences and Engineering

Volume 18, Issue 6, 7877-7918.



7891

k2
L
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() x

Figure 4. Phase diagrams in the case (C1). (a) Phase diagram and a unique stable multiple
focus Ef) when u = 20; (b) Phase diagrams and three equilibrium points when ¢ = 25; (¢)
Phase diagrams and two equilibrium points when u = y;.

To reveal complexity in this special case, taking a fascinating value A = % with identities

1 3346155 1
sin[= arctan(————— V51 V113)] = ————(61 V1921 — 2159) V17 V39 V29531,

3 947278522 26105404 (2.18)

1 3346155 1 '

—arctan(—————— V51 V113)] = ———(183 V1921 + 2159) V17 V13 V29531
cos[3arcan(947278522 5 3)] 26105404( 83 V1921 + 2159) 3v29531,

and denoting this case as (C2), we have a threshold u; = His = % + 26710 V1921 from equation
goAz(g, w) = 0. Therefore, we conversely discuss following two cases and the above mentioned interior

equilibrium point E,.(denoted as Egz)) could be a multiple focus or center with multiplicity one when
u € (U, ). Following the Eq (2.11) and steps in above subsection, the first Lyapunov coefficient is

_ 819207 (u — 1)*ea’ o, (1)
7= 27a2B(u + 1)(s — 1 + p)[4u2 + (45 + 95)u — 2655 + 11(s + pu + 38y ()"’

(2.19)

where Y, (1) = 14 +(14s+47)u? +(47s—24)u+915-37 > 0, and all coeflicients in auxiliary function
o (u) is listed in the Appendix for completeness. If u < u,(> u,) or o < 0(> 0), the equilibrium

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.
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(1)
3) E_q

%

0 (b) 10 \—20 30

Figure 5. (a) Phase diagrams and two equilibrium points when u = yu;; (b) Phase diagrams
and three equilibrium points when u = 21.5.

; (2
point E

is a stable(unstable) multiple focus with multiplicity one, the system (1.1) undergoes a non-
degenerate supercritical(subcritical) Hopf bifurcation around Egz), and limit cycles generated by this
critical point are stable(unstable). On occasion, there may exist some parameter values such that o = 0
or the system (1.1) may undergoes a degenerate Hopf bifurcation for some values of parameters [36].
Accompanying with the Calculus, Figure 6(a) is the curve of function ¢, (i), which is used to guess

the unique positive root of equation ¢, (1) = 0:

2V36%4 + V6 \/—293/2 + 27814578 V0 + 12362089428 V3 + 64746'/*

288001/4
~ 9.276513, (2.20)

1 782076303
6 = 80 V2 V2565425987 cos [§ arctan( V6V 1441915345)| + 4635763.

Ho

168750157010324

At u = u,, by using successor function method, the second focal(Lyapunov) quantity gs =~

_o.oooo:;w < 0 ensures that the equilibrium point E?) is a stable weak focus of order 2 [36]. The

Bautin bifurcation(generalized Hopf bifurcation) may occur.

When pu = R the system (1.1) owns two separate interior equilibrium points Egl) =
((151+920\/01921)a’ 4(56+ \/4;921)ae) and Egz) _ ((39+ \/81921)51’ (709+178\/11921)ae). The equilibrium point Egl) is an un-

stable node since

(3481 V1921 — 143239)ae

AlEY) = >0,
7290
2(2524 — 57521 V1921)a?e?
32805
288481 — 12 V1921)a?e?
A*(Eg])) _ (553828848 5878879 V1921)a“e >0
26572050
-36X _ —V1921+31

Now we construct a linear transformation (II): u = eX +Y, then the system

(Vioal-1ha’ ¥ = Vioai-11

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.
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(1.1) is apparently equivalent to a new system in the standard form of Eq (2.14) with discriminants

(12471 V1921 — 547081)e’a’

i = b == 233284 0
(2.21)
Sea®(~14825 + 343 1921)
dy = by +2ay = # 0.
5832a

The equilibrium point Egz) is just a cusp of codimension 2 due to the non-degeneracy condition
did, # 0. Hence we can obtain Theorem 2.4.

Theorem 2.4. Under the conditions of case (C2), (i) when p € (up, y;, g)\{,ug}, the equilibrium point
Egz) is a multiply stable(unstable) focus with multiplicity one if u < u,(> u.); (il) when u = u,, the
equilibrium point Egz) is a stable weak focus of order 2; (iii) when u = M the equilibrium point Ef)

is a cusp of codimension 2, and the point Egl) is an unstable node; (iv) when p >y 5 the equilibrium

()
5

point E.” is a saddle point; (v) the equilibrium point Egl) is just an unstable node.

In order to verify the feasibility of theoretical derivation, we will give some numerical simulations.
Figure 6(b) is the curves of functions ¢,,(red) and ¢,(blue) with A = g, which mainly displays the
threshold value of control parameters. And then, we take r; = 1,a = 1.5, @ = 0.5 and e = 0.6, the
system (1.1) exists a multiple stable focus with multiplicity one (see Figure 7(a)), a unique multiple
unstable focus with multiplicity one and a limit cycle (see Figure 7(b)), a cusp of codimension 2 and
an unstable node (see Figure 7(c) ), a unique stable weak focus of order 2 (see Figure 7(d)). In a word,
the system (1.1) has different internal equilibrium points with the value change of key parameters.

3.% 10°H o (1)

2. x 10°%

1% 107
T
a

o ,
4 5 6 TS
(a) n

Figure 6. (a) Curves of functions ¢4, (red) and ¢ (blue) with A = g; (b) Curve of function
¢, (u) and critical value y,,.
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Figure 7. (a) A unique multiple stable focus with multiplicity one when u = 8; (b) A
unique multiple unstable focus with multiplicity one and a limit cycle when u = 15; (¢) A

codimension 2 cusp Egz) and an unstable node Egl) when y = i35 (d) A unique stable weak
focus of order 2 when u = .

2.3. Cusp of codimension 3

In the following, we will investigate a cusp of codimension 3 in the system (1.1). First of all,
translating the equilibrium point E, = (x.,y.) to the origin O via a transformation (I): x = X + x,,
y =Y +y,, we obtain

X=F(XY) = fX+x.,Y+y),

. (2.22)
Y=G(X,Y)=gX+x.,Y +y.).
Next, following the technique in above subsection and making a linear transformation (II):
aqay; 2rl X aaey;,
=Yv= —r)+ Y+ , 2.23
u=Yv=I[m—-nr) @ K ] @+ ) (2.23)
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the above system can be rewritten as the form

iu=Fwv)=v+ Z aijuivj + O(|u, v|3),

S (2.24)
b= Gou,v) = ) by’ + O(lu, vP),
i+j=2
From the Lemma 1 in [38], the system (2.24) is equivalent to the system in standard form
x=y,9=dx* +daxy + O(lx, yI) (2.25)

after some nonsingular transformations in the neighborhood of O, where d; = by, d, = by + 2ay

L. . iy . 0 2 ..
are discriminates. Solving out an degenerate equilibrium E; = (“(Q‘Zi—z’”, %fnfz) from the condition

d, = 0, which also satisfies A = 0, A, =0and p, = A, = p, = A, = 0, thus we have parameters r;, K,
and d (suppose they are positive) with restrictions

2(ae — my)(Bae + my) + 3mLae + my)
| = ,
32ae + my)
al2(ae — my)(8ae + my) + 3mLae + my)]
2(ae — my)? ’

_ (ae + my)(ae —my)

(2.26)

K1:

d
18¢%aa

These restrictions (2.26) can deduce another discriminate d, = % # 0, i.e., the degener-

acy condition d,d, = 0, which also yields that the equilibrium point E3 is a cusp of codimension at least
3. Indeed, the degenerate equilibrium point E3 is a codimension 3 Bogdanov-Takens singularity(focus
or center) after some nonsingular transformations. Finally, the existence of the equilibrium point E;
can be seen from Figure 8 in details with parameters a = 1.5, @ = 0.5, m; = 0.6, my = 0.06 and
e = 0.6. At the same time, we can obtain the Theorem 2.5.

Theorem 2.5. The the degenerate equilibrium point E; with conditions 2.26 is a codimension 3
Bogdanov-Takens singularity(focus or center).

74

Figure 8. A codimension 3 Bogdanov-Takens singularity(focus) E;.
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3. Bifurcations analysis

In this section, for the interior equilibrium point Ef) and Egz), we mainly concentrate on Hopf
bifurcation curve when u € (u,,u;) and codimension 2 Bogdanov-Takens bifurcation when yu =

uy.respectively.

3.1. Hopf bifurcation

In the case of (C1), we firstly discuss the existence of Hopf bifurcation curve when u,, < u <
M2 We will choose m, and d as Hopf bifurcation controlling parameters and consider the following
perturbed system

16xae 1 axy

x:rlx[l—m]—(rl—gcxe)x—a_'_x, (313)
,_aexy_% _4a/(y—9)(,u+1) )
Y= (3ae+51)y [a(p—3)(;1+3)2 +021y%, (3.1b)

where 6 = (01, 0>) is a sufficiently small parameter vector in a neighbourhood of the origin O = (0, 0)
in the parameter plane. Letting 6 # (0,0), we suppose the equilibrium point E, as (x,,y.), where

Xy = xf) + w, w is a sufficiently small variable and component

3 e(au® —a—16x,)(a + x,)

. =

3a(u? + 1)
Substituting it into A; and A,, we have the solution d; = 6;(w), 6, = d,(w), where
3 64wea(au + 2w)
"7 3a(? = Dl(u+ 3)a + 4w)]’

B —16aw [
Cal(u + 3)a + AwP[(u? — 4u + 3)a — 16w](u + 3)%(u — 3)
+ 81y + 135)a® + 4w(u* — 124 + 90 + 204y — 27)a — 64w*(u + 1)(u — 9)].

(3.2)

5, (W = 9u* + 467 + 2587

At this time, the approximation of the required Hopf bifurcation curve Hp in a small neighbourhood
of the origin is a straight line with slope

o = lim 6a(w) _ 3+ Dpr(p)
Hp =050 8,(w) daeu(u® — 9)?

<0, (3.3)

where @ (1) = u* — 1243 + 82u® + 12u + 45. Noticing that

dei(u)

=4 (u—9) + 164u + 12 > 0,
du

so the function ¢ (1) is monotonically increasing and positive when u > p,,, or kg, < 0. Hence we can
@2 [a(u—1)+4w]

rewrite the determinant as Ay = —g— @D @ 3arin?

¢,, (1, w), where an auxiliary function is

., (o w) = = 290 + 1107 + T4u® — 111 — 45)a® + dw(u + 1)’ — 33> + 271 — 111)a?
— 256(u* — 12u — 5)aw? + 4096w”.
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Thus, the bifurcation curve Hp of the system (3.1) at the equilibrium point Ef) is analytically
defined by the solution (3.2), the variables u and w can ensure the existence of the equilibrium point
Ef) and A, > 0, and we can obtain the Theorem 3.1.

Theorem 3.1. (Hopf bifurcation curve) For the equilibrium point Ef) with w, < p <y %(Al =0
and A, > 0), when parameter ¢ varies in a small neighbourhood of the origin in parameter plane, the
Hopf bifurcation curve of the system (3.1) is defined by (3.2) (notice the range of parameter w) and
the approximation is a straight line with slope k in a small neighbourhood of the origin. Furthermore,
the curve divides a small neighbourhood of the origin in the parameter plane into two regions I and II,
in which dynamical behaviors of the system (3.1) can be exhibited.

4e(b6as—5x,)(a+x,)
9as :

For (C2), starting from a perturbed system (3.1) with u € (w,,, M3 N\ us} and y, =
Solution 6; = 6;(w), 6, = 0,(w) are
80saw(au + 2w)e
- 9a(u? — 1)(au + as + 3a + 4w)’
8, =[16(844° — 84u’s + 251u* — 467us + 676p — 3135 + 509)war
(444a*u* + 444a% 183 s + 263a° 1> + 2423 1% s + 480ap’w
+ 1056au*sw + 3155a°u® — 619a*us + 2660auw + 4220ausw
— 480p°w? + 4537a°u — 22484’ s + 9120auw + 2464asw + 1000uw?
+1201a* + 6940aw + 1480w™)]/[(u + Da(14a’ 1’ + 14a’u*s
+ 473317 + 47d°us + 36 1Pw + 36a*usw — 24a’u + 91a’s
— 100a’uw + 188a*sw — 120auw” + T2asw? — 37a° — 96a*w
—200aw?* — 160w*)(12u — 37)(168u + 193)(3u + 5)*].

1

(3.4)

Therefore, the slope kg, (1) of the approximate straight line of the Hopf bifurcation curve Hp at O is

18(888 52 + 8884° — 1277 s + 376312 — 25155 + 37971 + 672)(u + 1)
Sae(14sp? + 143 + 61su + 612 + 37s + 138u + 91)(168u + 193)u

At the same time ,we can obtain the Theorem 3.2.

kip(u) = -

(3.5)

Theorem 3.2. (Hopf bifurcation curve) For the equilibrium point £ with u € (i, f11.)\kto ), when
parameter ¢ varies in a small neighbourhood of the origin in parameter plane, the Hopf bifurcation
curve of the system (3.1) is defined by (3.4) (notice the range of parameter w) and the approximation
is a straight line with slope k in a small neighbourhood of the origin. Furthermore, the curve divides a
small neighbourhood of the origin in the parameter plane into two regions I and I, in which dynamical
behaviors of the system (3.1) can be exhibited.

In order to verify the feasibility of the Theorems 3.1 and 3.2, we will give some numerical simula-
tions. For the equilibrium point E\” with r; = 0.6 @ = 0.5,a = 1.5, ¢ = 0.6 and u = 10, the Hopf
bifurcation curve with w in parameter plane is

0.172391w(w + 7.5) 5 ~ 0.012398w(w + 3.300890)(w — 80.116231)

H = (5 5 ~ B ~ s
p=1ola 30 + 8w 2 (w + 4.875)2(w — 5.90625)
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and the straight line of the approximate representation of bifurcation curve Hp is 6, = —0.7045756;.
Figure 9(a) depicts the Hopf bifurcation curve, Figure 10(a),(b) depict phase diagrams of asymptoti-
cally stable focus and unstable focus(with a limit cycle) corresponding to ; = d, = 0.001 (in region I)
and 0, = ¢, = —0.001(in region II) respectively. For the equilibrium point Egz) withr; = 0.6 @ = 0.5,
a=1.5,e =0.6and u = 8 in the case (C2), the bifurcation curve Hp is analytically formulated by such
solutions of the system (3.1), i.e., H, = {0 | ¢ satisfies (3.1)}, which can be seen from Figure 9(b), and
a Hopf bifurcation curve Hp(red) is defined by

28.221347(w + 6)w

1789.570497 + 252w’
52(w) (0.010129(w + 5.546478))(w — 98.756256)w
2 ~ =

(w+7.101470)(w + 7.101470)(w — 8.685587)

d1(w) ~

(3.6)

and accompanied by its corresponding slope kp,(dashed blue line) at O. Furthermore, we will note

1
(w + 7.101470)>(w — 8.685587)
+ 15.609444w?* + 561.932800w° + 169.930141w* + 14.098895w°

— 1.303023w° — 0.278897w’ — 0.012542w®),

Ary(w) = (—3045.413083 — 2842.498683w

(3.7)

then the curve Hp divides a parameter plane into separate two regions. Figure 11(a),(b) present phase
diagrams of a stable node and an unstable focus with respect to ; = 0.0001, 6, = 0.00001 and
01 = —0.0001, 6, = —0.00001 when u = 8, respectively. Figure 11(c),(d) present phase diagrams with
same values of parameters d; and 6, when u = 10. In a word, it is obvious to see from the numerical
simulation works that the Hopf bifurcation can occur for the equilibrium point Ef) and Egz), which also
indirectly proves the validity of the theoretical derivation.

82 a8
s ~
% M
\\ “
b \\ I
N I \
N
N 5
81 ]
0
Y
\\ 7 M
17 \\ k \\ka
\Hp Ny

(a) Hp\ N (b) H

Figure 9. Hopf bifurcation curve (red) and its approximate straight line with slope (dashed
blue) in: (a) the equilibrium point Ef) with 4 = 10; (b) the equilibrium point Eéz) with 4 = 8.
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Figure 10. (a) Phase diagram of a stable focus; (b) Phase diagram of an unstable focus.

3.2. Bogdanov-Takens bifurcation of codimension 2

We firstly recall the system (1.1) with a cusp Ef) of codimension 2 when parameter conditions
A= % and u = M2 hold, in other words, we can start with an unfolding system

2xae 1 axy
X =nrx[1- —(rh —=ae)x — , (3.8a)
@79V 3 a+x
) 2 5- V17
j= XY (24 syy - S VD, (3.8b)
a+x 3 9a

by introducing bifurcation parameters e and m,. Naturally, a parameter vector 6 = (d;,0) is in a
sufficiently small neighbourhood of the origin O in the parameter plane. By using the transformation
D:x=X+ xf), y=Y+ yf) and expanding such system in a power series around the origin, it can be
rewritten as

2

X=F(XY)= Z ai XY + 0(X, YP), (3.92)
i+j=1
2
Y =GiX,Y) = ) bi(®X'Y + 00X, YP), (3.9b)
i+j=0

where byy(0,0) = 0. Secondly, we will use a transformation (II): u = X, v = F(X, Y), the system (3.9)
can be reduced to a new system

iw=F(uv) =v, (3.10a)
2
b =Galuv) = ) dig(@u'v’ + O(lu, vP), (3.10b)
i+j=0

where d;;(0) can be expressed by coefficients a;; and b;;(6), d;;(0,0) = 0 (i + j < 1). Thirdly, making a

transformation (II1): p = u + Z‘::gi, q = vsince d;1(0,0) = (5\/?% # 0, we have
p="Fp.q =q, (3.11a)
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Figure 11. (a) A stable node with §; = 0.0001, 6, = 0.00001 (region I) when i = 8; (b) An
unstable focus and a limit cycle with 6; = —0.0001, 6, = —0.00001 (region II) when u = 8;
(c) A stable node with 6; = 0.0001, 6, = 0.00001 when ¢ = 10; (d) An unstable focus and a
limit cycle with 6; = —0.0001, 6, = —0.00001 when u = 10.

2
i=Gs(p.g) = ), £i®OP'q + Ollp, P, (3.11b)

i+j=0

where f;;(6) can be expressed by d;;(6), but we will omit them here. At the same tome, there exist

Jfo1(6) = 0 and f50(0,0) = W > 0. Then we will construct a transformation (IV): w = p,

z=(1- fo(0)p)g, dt = (1 — fp2(6)p)dT, one can rewrite above system as(the symbol 7 is denoted as ¢)

w=Fsw,z) =2z, (3.12a)
7= GaW, 2) = hoo(8) + hio(O)W + hao(S)W* + hy1(O)wz + O(w, z°). (3.12b)

Similarly, we omit the expressions of coeflicients £;;(6) although they are expressed iteratively by
£ij(6), and hy0(0,0) = f50(0,0) > 0, 711(0,0) = d,,(0,0) < 0. That is to say, there is a small neighbour-

hood of the origin such that /,¢(9) is positive and /;;(9) is negative when ¢ falls in this neighbourhood.
hi1(6)? _ h11(5)3z dt = h11(9)

hao@) V> TV = (o2 F20(6)

Finally, the transformation (V): m = dt converts from above system to a
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generic normal form of Bogdanov-Takens bifurcation

m=Fs(m,n) =n, (3.13a)
it = Gs(m, n) = loy(8) + L1o(8)m + m* + mn + O(lm, nl), (3.13b)

where the symbol 7 is still denoted as ¢, and two discriminants are

81(1483 + 365 V17) 243(2361 + 559 V17)

_ _ _ 2
dy = di(0) = ly(0) = 21970 o)+ 3776800 0z + O(|01, 62),
3(1133 + 283 V17 9(3927 + 961 V17
ds = d(6) = 1o() = D s, - 2 1D s, + 0061, o).
256¢ 2048ae

This system (3.8) is indeed a generic family unfolding at the codimension 2 cusp Eff) according to the
rank of a Jacobian matrix or the nonzero Jacobian determinant

adi )| _ 2187(176337 + 42583 V17 )
001, 02) ls= 83886082

Therefore we obtain local approximated representations of saddle-node (SN), Hopf (H) and homo-

clinic (HL) bifurcation curves up to second-order with slope kgr = @ ~ 0.853851@ > 0 around
the origin for the system (3.8) [39]. These bifurcation curves can divide the parameter plane into
several regions, which can exhibit separately dynamical behaviors.

(i) The saddle-node bifurcation curve is formulated by

1
SN:{cSIdl:Zd%}

6| 81(1483 + 365 V17) 5 4 243(2361 + 559 «/ﬁ)é 27(1292261 + 318563 x/ﬁ)é2
= - 1

8192¢ 32768ae 2 131072¢2 !
81(2696527 + 641161 V17 1), 5.6 243(20428527 + 5081065 V17) 2
262144qe? 2 8388608a2¢>
+ 0(|61,651) = 0}.
(3.14)
(i1) The Hopf bifurcation curve is formulated by
H:{6|d1 :0,d2<0}
_ (5| 8101483 + 365 x/ﬁ)(S , 243(2361 + 559 \/ﬁ)6 9(1277091 + 317525 «/_)62
B 8192¢ : 32768ae 2 65536¢> (3.15)
27(11642831 + 2746889 x/_) 5.6 81(11431247 + 2867337 V17) .
524288a¢> 2 2097152a2¢?

+0(161,6,°) = 0}.
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(ii1) The homoclinic bifurcation curve is formulated by

6
HL={6|d, = ——d?,d, < 0}

25
|- 81(1483 + 365 x/ﬁ)é1 , 2432361 + 559 x/ﬁ)é2 _ 9(16056063 + 4090457 V17) 5
8192¢ 32768ae 163840062 !
27(182198831 + 42270377 V17) 55, _ 81192417617 + 49040343 x/ﬁ)é2
131072002 e 52428800a2¢2 2

+0(61,6) = 0).
(3.16)

Thus, we can obtain the Theorem 3.3.

Theorem 3.3. (Bogdanov-Takens bifurcation of codimension 2). For the unfolding system (3.8) with
bifurcation parameters e and m,, in a small neighbourhood of the equilibrium point Ef), the system
undergoes an attracting Bogdanov-Takens bifurcation of codimension 2 when the value of parameter
¢ varies in such sufficiently small neighbourhood of the origin. Furthermore, this system is a generic
family unfolding at the cusp Ef) of codimension 2.

Here we will take r; = 0.6, a = 1.5, @ = 0.5 and e = 0.6, then Figure 12 depicts the saddle-node,
Hopf and homoclinic bifurcation curves in different colors, which can show the existence of critical
thresholds.

(i) When 6; = 6, = 0, it is evident from the Theorem 2.3 that there exist two interior equilibrium
pozi>nts, including an asymptotically stable node Eft]) and a Bogdanov-Takens cusp of codimension 2
EY.

(i) When 6; = 0.01, 6, = 0 (¢ lies in positive d; axis) or ¢ falls in region I (the region between
saddle-node bifurcation curve S N, and homoclinic bifurcation curve), there exist three interior equi-
librium points, where two interior equilibrium points are bifurcated from a stable node in (viii), which
can be seen from Figure 13(a),(b).

(iii) When (61, 6,) ~ (0.01,4.265486 x 1073) or ¢ lies in homoclinic bifurcation curve, there exist
three interior equilibrium points and a homoclinic loop.

(iv) When (61, 6,) = (0.01,4.267370 x 107?) or ¢ falls in region II(the region between homoclinic
bifurcation curve and Hopf bifurcation curve), there exist three interior equilibrium points, including
an unstable focus, a saddle point and a stable node, which can be seen from Figure 14(a),(b).

(v) When (6,,6,) ~ (0.01,4.269255 x 107%) or ¢ lies in Hopf bifurcation curve, there exist three
interior equilibrium points, including a saddle point and a stable node.

(vi) When (61, 6,) = (0.01,4.271301 x 107%) or ¢ falls in region IlI(the region between Hopf bi-
furcation curve and saddle-node bifurcation curve S N), there exist three interior equilibrium points,
including a stable focus which is unstable in case (iv), which can be seen from Figure 15(a). However,
by combining the case (iv), it can ensure the potential Hopf bifurcation, but the homoclinic loop is
broken.

(vii) When (01, 0,) lies in saddle-node bifurcation curve, there exist two interior equilibrium points.

(viii) When (61, 5) =~ (0.01, 8.546695 x 1073) or ¢ falls in region IV(the region on the left hand side
of saddle-node bifurcation curve), there exists a unique stable node, which can be seen from Figure
15(b).
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Figure 13. (a) Phase diagrams in the case (ii); (b) Enlarged phase diagram around an
unstable focus.

However, if we choose m; and d as Bogdanov-Takens bifurcation parameters and rewrite the original
system in the unfolding form (3.1) with u = y; 2

2 1
x=rx[l- rae |- (r — zae)x — @ ; (3.17a)
3ar (37 + 9V17) 3 a+x
2 - V17
y = ey _ (zae+0y)y — [u + 52])’2, (3.17b)
a+x 3 9a

where 0, and ¢, are sufficiently small parameters and the vector 6 = (1, d») is in a small neighbourhood
of the origin O as well. Following the procedures above and the values of parameters, the unfolding
system (3.1) is also a generic family unfolding at the codimension 2 Bogdanov-Takens cusp Ef) ac-
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Figure 14. (a) Phase diagrams in the case (iv); (b) Enlarged phase diagrams around an
unstable focus.

cording to the nonzero Jacobian:

1 O dy)|  _9Q73+23V17)

55y, 0) lseo 1024ae
96>

0.

and we have representations of saddle-node, Hopf and homoclinic bifurcation curves with slope kgr =
1_6;/(3ﬁ ~ —920818 < 0 around the origin. Furthermore, it should be noticed that the slope k can be
viewed as the limiting case of the slope (3.3) when u — u 12 At the same time, when ¢ lies on the

Hopf bifurcation curve H, for instance, (d1,0,) = (1 X 107>, —5.783264 x 107), the Hopf bifurcation
can not undergo; when ¢ lies on the homoclinic bifurcation curve HL, for instance, (61,0,) ~ (1 X
1073, -5.783278 x 107%), the homoclinic loop does not exist. Moreover, it should be noticed more that
these two cases both occur owing to d, > 0 or the minus of (3.2). While the saddle-node bifurcation
curve up to second-order can be formulated by

243(2361 + 559VIT) . 729(1483 + 365 V17
SN =g | 232301+ ‘/_)51+ (1483 + 365 V17)a

2

32768ae 32768«
243(20428527 + 5081065 V17) 52 729(13636927 + 3239449 \/ﬁ)aé 5 (3.18)
8388608a2e2 ! 4194304a2e 172
2187(9087263 + 2237753 V1T)a? _, .
B 838860802 62+ 0(161,021") = O}

For the saddle-node bifurcation curve, when ¢ lies on the region I (the left hande side of the SN
curve), there exist three interior equilibrium points. When ¢ lies on the region II (the right hand side
of the SN curve), there exists a unique interior equilibrium point. When ¢ lies on the saddle-node
bifurcation curve S Nj, there exist three interior equilibrium points. When ¢ lies on the saddle-node
bifurcation curve SN, there exists a unique interior equilibrium point. All the detailed results can
be seen in the Figure 16 for saddle-node bifurcation curve in this novel phenomenon with r; = 0.6,
a=15,¢a=05and e =0.6.
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Figure 15. (a) Enlarged phase diagram around a stable focus in the case (vi); (b) Phase
diagrams in the case (viii).

SN, 62

Figure 16. Saddle-node bifurcation curve (red) A = %

Similarly, for the case (C2) with 1 = g and Bogdanov-Takens bifurcation parameters m, and d,
according to a Jacobian matrix with rank 2 and

_ 1 Odydy)| _ 33692028871 +832074361 V92T _ (3.19)
21" (61,62 lo-o 1622400000 ’ '
2

local approximated representations of saddle-node (SN), Hopf (H) and homoclinic (HL) bifurcation

curves up to second order with slope kg = 2=17VI92L () at O are obtained rapidly. It is also the

A ] 648ae
limitation lim kg, (u).
KoM 5
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(i) The saddle-node bifurcation curve is formulated by

1
SN ={5|d,(6) = Zd2(5)2}
63629496759076709 + 1454440861891419 V1921 5

=lol- 63273600000000cze !
_ (23152747107243364241 + 52822500399633003 1 \/1921)616
1281290400000000 2

, 2134120285730918153666651 + 48639881902310601690341 «/19_2
131609088000000000000a2¢
, (63753096761031669666816023 + 1454616053502361391140393 \/19_2 Da
74030112000000000000a2e 172
, (7652528762384382093375762493 + 174598709679460634819116163 V1921 )a
749554884000000000000a2 Z

+ 0(|6,, 62%) = 0},
(3.20)

where the half curves S Ni(S N,) is the “right” (“left”) part of curve S N in the forth(second) quadrant,
respectively.

(i1) The Hopf bifurcation curve is formulated by

H=1{6]d(6) =0,d,(6) <0}

63629496759076709 + 1454440861891419 W
63273600000000e o
(23152747107243364241 + 52822500399633003 1 \/W)a(S
- 1281290400000000a ?
, 178349298417656661730271 + 4064858239867885041761 W
10967424000000000000a2¢>
, (21199900878564120150636217 + 483705350254750228637447 \/19—2 )a5 5
24676704000000000000a2¢ 2
, (852219601234168435593786269 + 19444087865263472653017379 V1921 )a
8328387600000000000002 %

={0]-

(3.21)

+0(61,6,) = 0}.
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(ii1) The homoclinic bifurcation curve is formulated by

6
HL =1{6]d\(0) = ——d2(5)2,d2(5) <0}
63629496759076709 + 1454440861891419 V1921

=0l- 63273600000000ce gl
(23152747107243364241 + 52822500399633003 1 \/1921)a5
1281290400000000a 2

5329(838970735785952358313 +19121465556184117783 V1921) &
274185600000000000000%¢>
(176256789653796176682215483 + 4021544578154623358037253 \/19—2)a
205639200000000000000a%¢
(64056051282347703285280481599 + 1461491238758045401440625409 \/19—2)a
6246290700000000000000a> %

6162

+ 0(|61,6) = 0}.
(3.22)

Thus, we can obtain the Theorem 3.4.

Theorem 3.4. (Bogdanov-Takens bifurcation of codimension 2) From the unfolding system (3.17) with
bifurcation parameters m, and d in the case (C2), this system undergoes an Bogdanov-Takens bifurca-
tion of codimension 2 when ¢ varies in a sufficiently small neighbourhood of the origin. Furthermore,
the system is a generic family unfolding at the cusp E(Sz) of codimension 2 as well.

For numerical simulation, we take r; = 1, @« = 0.5, a = 1.5 and e = 0.6, then Figure 17 depicts
saddle-node (red), Hopf (green) and homoclinic (blue) bifurcation curves in different colors, which can
show the existence of critical thresholds..

(1) When 6, = 6, = 0, it is evident that there exist two interior equilibrium points, including an
unstable node Egl) and a codimension 2 cusp E?).

(ii) When (61, ,) ~ (0.001, —-3.095598 x 10~°) or ¢ falls in region I (the region below saddle-node
bifurcation curve SN), there exists a unique unstable node.

(iii) When (61, 8,) ~ (0.001,-6.188787 x 107) or ¢ falls in region II (the region between Hopf
bifurcation curve and saddle-node bifurcation curve S N;), there exist three interior equilibrium points,
including an unstable node, a saddle point and an unstable focus.

(iv) When ¢ lies in Hopf bifurcation curve, there exist three interior equilibrium points, including
an unstable node, a saddle point, and a non-hyperbolic equilibrium (focus or center) with zero trace
and positive determinant, which can ensure potential Hopf bifurcation.

(v) When (61, ,) = (0.001, —6.184072x107°) or ¢ falls in region III (the region between homoclinic
bifurcation curve and Hopf bifurcation curve), there exist three interior equilibrium points, including a
stable focus which is unstable in case (iii).

(vi) When ¢ lies in homoclinic bifurcation curve, there exist three interior equilibrium points and a
homoclinic loop, including an unstable node, a saddle point and a stable focus.

(vii) When (61, 6,) = (0.001, —3.090882 x 1073) or ¢ falls in region IV (the region between saddle-
node bifurcation curve S N, and homoclinic bifurcation curve), there still exist three interior equilib-
rium points, including an unstable node, a saddle point and a stable focus.
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(viii) When (91, 6,) lies in saddle-node bifurcation curve S N, there exists a unique unstable node.
(ix) When (61, 9,) lies in saddle-node bifurcation curve S N, there exist three interior equilibrium
points.

SN.

v

Hopf

SN}

Figure 17. Curves of saddle-node (red), Hopf (green) and homoclinic (blue) bifurcations.

4. Limit cycles via perturbation procedure

Now we especially study the limit cycle generated by Hopf bifurcation, they showed the efficiency
of the perturbation method by using a topological polynomial version of the classical Rosenzweig-
MacArthur (R-M) predator-prey model in the paper [40]. In this section, we focus on the approximate
calculation of limit cycles in the original predator-prey system (3.1) via a perturbation procedure and
canonical transformation, which can be used to determine the limit cycles and their associated fre-
quencies in general two-dimensional systems. Comparing it with the Lindstedt-Poincare (LP) method,
the method can give accurate results, while the LP method is limited to weakly nonlinear systems,
although it is simple and is frequently used as an algorithm to approximate steady-state periodic so-
lutions in nonlinear oscillators [41]. Recalling an unfolding system mentioned in Subsection 3.1 with
u < (W, M3 ), o < 0 and a sufficiently small parameter vector (41, d,) in a neighbourhood of the origin
O in the parameter plane:

=l = =) = 2~y = Plx,y),
K; a+x
aexy ) 4.1
y= —(my +61)y — (d + 62)y” := 0(x,y),
a—+ x

when u = 8, the equilibrium points E, is a multiple stable focus with multiplicity one, and the cor-
responding non-degenerate Hopf bifurcation is supercritical. According to the Figure 10(b), a limit
cycle exists when sufficiently small (6}, 6,) falls in region II. In this perturbation procedure, we firstly
transfer the equilibrium point E, to the origin O by using a linear transformation (I): x = X + x,,
y = Y +y, and obtain a new system. Secondly, we construct a nonsingular transformation (II): X = n,
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\/—Jfl 2011 In=4Td — T =(Ti=Jo)n

Y= 270

such that the system (3.1) has its real Jordan’s form:

&= AL - B+ P& 1),

_ 4.2)
n =85+ An+ Q1€ n),

where A = 341, B = 3V-A,, Pi(&,n) = Z ;€' and Q1(&,n) = Z b/ are analytical func-

i+j=2 i+j=2
tions. Obviously, the limit cycle is enclosing an unstable hyperbolic focus or non-hyperbolic node.

Introducing a dimensionless time scale transformation T = wt with frequency w of a limit cycle, above
system can be written as a canonical system:

d
% = o+ PaE),
d; (4.3)
Q= = &+ 01+ Qal€. ).
-

where Q = 2,0 = %, P, =72 and 0, = Q' . Now we suppose that there exist series

—1+Z6"Q —1_62[1+Ze”y,,],§ Zefn, —Ze"nn,

n=1

09
1+0Q; *

in the right hand side, we recursively derive following coupled first-order differential equations of &,
and 7, in all orders of e:

in which € =

Substituting them into Eq (4.3) and noticing the series expansions of functions

d d
=0T g =0 (4.4)
dr
dé& _ _ _ 2 _
2+ 1 — agny — anéin — axél =0, .5)
dnz - & = by, — bumér — byé; = 0;
dés dé, &
=t E Y + 13 — M — doarf, — anmé) — aumé
— azé; — 2apmn — anmés — aniné) — 2axé1é: =0
3
€ :
d (4.6)
% +y—— — &+ & — — — bosn) — bmé — bamé;
- b30§1 - 21702771772 - b11771§2 = bumé — 2byé1é =0
and so on, where all involved coefficients are defined by a;; = 1@, bij = 5bi;.
To illustrate the procedure process, we mainly concentrate on the values of parameters from Figure
10 with small parameters 6; = —0.0001 and 8, = 0. The steady-state solutions in order €' are & =
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—Asin(t), 1 = A cos(t), where A is a constant to be determined. Then the straightforward solutions of
& and n, are

A? 1 1 ) 3
&= ?[(011 + =byy — zbao) cos(27) + (ap2 — ax — Ebll) sin(27) — 5(1902 + byo)]

2 2
AZ
~— 1 737072 2 739942597 sin(271) — 475084764
3000000000000[ 00897370720 cos(21) + 53739942597 sin(27) 50847643001, wn
5 .
1 = F[(—aoz + az + 2b11) cos(27) + (a11 + 2bgy — 2byo) Sin(27) + 3(apz + az)]
AZ
~— —110557181337 cos(2 75982135020 sin(27) — 49774994529].
6000000000000[ 0557181337 cos(271) + 575982135020 sin(27) — 49774994529]

From the Eq (4.4), we have a second-order differential equation of 7;:

d2
a’_n; + 173 = C31 cos(T) + S 31 sin(1) + C33 cos(37) + § 33 sin(37), (4.8)
T
where C31, S31, Ca3, S 33 are some constants. Letting C3; = S3; = 0 or eliminating the secular terms in
this equation, we know y, ~ —0.011293A2 — 1, Q; ~ 2%303%_ Hence we accordingly derive solutions

A’ 3 2
&~ — 3000000000000 [33323257806 cos(7)” + 2832036878 cos(1)” sin(7)
— 52858138173 cos(t) + 59719753369 sin(7)], 4.9)
3
s~ — 200000000000 [8217691556 cos(37) + 3753250989 sin(37)].

Similarly, based on the previous process, we obtain a second-order differential equation of 74 in the
form of

2
% + 14 = Cy1 c08(T) + Cy cOS(27) + S 42 SIN(2T) 4+ Cyq cOS(4T) + S 44 SIN(47). (4.10)
T

Here the coefficient Cy; yields y; = 0, thus the solutions of 74 and &, read

AZ
~ 299979339450A° sin(2 27) — 250523414758A2 cos(27)?
4~ 100000000000000 2227933 sin(27) cos(27) cos(27)
+ 4635786086042 sin(27) — 383390712843A2 cos(27) — 1000 sin(27)
+ 2000 cos(271)],
A2 4.11)
~ - 10532770568A* * — 13522443784A% 3 si
T4 = 1500000000000 - 107327705684 cos(r)” — 135224437844 cos(7)” sin(7)

— 7811903244A2 cos(1)* + 6097955141A2 cos(t) sin(r) — 2135810211A°
— 10 cos(7)? + 35].

Repeating above mentioned steps, we iteratively and formally derive required constants A =
4.202827, y4 = 0.206668, ys = 0, y¢ ~ —0.014240, y; = 0, --- from coeflicients Cs;, Ss1, Ce1,
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C71, Cgy, - -+ and solutions &,(7), n,(t)(n = 5,6,7,8), which are listed in the Appendix. A generalized
second-order ODE of 7, reads
i + ZHZ[C () cos(kt) + S, 4(7) sin(kT)] 4.12
= k(T T ak(T 7)1, )
g2 T k k 4.12)

k=0

and the corresponding formal solutions via Leonhard Euler’s method is

n

£,(1) = Y [Coul1) cos(kr) + S ,4(7) sin(kr)],
0 (4.13)

n

M(T) = D [Coi(1) cOSKT) + 5,,(7) sin(k7)].

k=0

Here C,x(7), S ,.x(7), 5n,k(r), :S'vn,k(‘l'), En,k(T) 251(1 §n,k(7)_are undetermined polynomials of variable 7
Wlth C}’l,k(o) = Cn,k’ Sl’l,k(o) = Sl’l,k’ Sn,O(T) = Sl’l,O(T) = Sn,O(T) = O; n= 0’ 15 29 Y k = Oa 1727 Tt 7n'
Finally, a N-order approximate solution to the limit cycle of the Eq (3.1) is

x(t) ~ xV(1) = x, + ™M),

—J3 + 2000 = 4o = T3, Jo— ] (4.14)
l‘z(N)t:*+\/ (N)t_ll 22(N)t
y() y () y 2]12 é’-‘ () _2J12 n ()
where
N N
M) = 6BV (1) = > &, (B,
n=1 n=1

Furthermore, up to eight-order approximation of solutions &(¢) and 7(¢), for comparison, Figure
18(a),(b) depict limit cycles via the Runge-Kutta 45 method(red) and perturbation procedure(blue) with
values u = 8, 6; = —0.0001, 6, =0 and u = 5, 6; = —0.001, 6, = 0, respectively. In the first figure, the
red and blue curves almost coincide with each other. For the latter option, some main invariants are
calculated as A ~ 10.010405, Q; ~ 0.5067015052, v, ~ —3.031960310, y3 = 0, y4 ~ —6.244350476,
vs = 0, y6 & —29.58780360, y; ~ 183.5476191, ys ~ 159.9270824.

5. Conclusions

Within the framework of predator-prey ecological dynamics, this paper mainly discusses the dy-
namic properties of the Bazykin’s predator-prey ecosystem with Holling type II functional response
and interspecific density-restricted effects on the predators, including the existence and stability of all
possible equilibrium points, Hopf bifurcation and Bogdanov-Takens bifurcation.

Aiming at all possible equilibrium points of the Bazykin’s predator-prey ecosystem, mathematical
theory works mainly investigate the existence and stability of boundary equilibrium point, hyperbolic
equilibrium point, non-hyperbolic equilibrium point and cusp of condimension 3, and then give some
corresponding threshold conditions of some key parameters, for example, by introducing control vari-
ables A and p, the stability analysis and type of the interior equilibrium point EP(x = 4,5) are ascer-
tainable and clear in detail, and this equilibrium point E'* is a multiple focus with multiplicity one(or
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(a)

Figure 18. Limit cycles via the Runge-Kutta 45 method(red) and perturbation proce-
dure(blue) with parameters (a) u = 8, 6; = —0.0001, 6, = 0 and (b) u = 5, 6; = —0.001,
0, =0.

cusp of codimension 2 or saddle point) when y,, < u < py(or g = py or u > py). At the same time,
it is easy to find from numerical simulation works that all the equilibrium points derived from theo-
retical derivation always exist and have corresponding stability states, which indirectly prove that the
Bazykin’s predator-prey ecosystem has different intrinsic dynamic properties with the value change of
critical parameters, which also represents that predator population and prey population have different
coexistence modes.

For Hopf bifurcation and Bogdanov-Takens bifurcation, mathematical theory works mainly investi-
gate Hopf bifurcation and Bogdanov-Takens bifurcation about the equilibrium point Ef) and Egz), and
give some threshold conditions of some key parameters to ensure the occurrence of Hopf bifurcation
and Bogdanov-Takens bifurcation. With the help of numerical simulation, the formulated Hopf bifur-
cation curve when yu,, < u < p; and Bogdanov-Takens bifurcation of codimension 2 when u = u
are both presented, which can directly verify the validity and feasibility of theoretical derivation, and
indirectly explain that the Bazykin’s predator-prey ecosystem has complex bifurcation dynamic evolu-
tion process with the value change of critical parameters, such as saddle-node, Hopf and homoclinic
bifurcation. Furthermore, it is obvious to find that the Bazykin’s predator-prey ecosystem can exhibit
different dynamical behaviours when parameter vector (i, ;) varies in different regions in a small
neighbourhood of the origin O in the parameter plane. However, it is also worth noting that the Hopf
and homoclinic bifurcations do not exist if we choose m, and d as bifurcation parameters in (C1).
Moreover, we specifically investigate the limit problem by comparing the Runge-Kutta 45 method
with perturbation procedure.

In the follow-up research works, based on the research results of this paper and biological manip-
ulation theory, we will further explore the dynamic relationship between Microcystis aeruginosa and
filter-feeding fish by using bifurcation dynamic analysis and explain the biological significance of the
Bazykin’s predator-prey ecosystem. At the same time, due to the difference of nutrient load, biological
composition and hydrodynamic conditions in different water bodies, the dynamic relationship between
filter feeding fish and Microcystis aeruginosa on the basic of the Bazykin’s predator-prey ecosystem
still needs to be further studied in the experiment.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.
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In summary, all results in this paper further show that the system (1.1) proposed by the paper [24]
has more abundant dynamic behavior, and vigorously develop the dynamic properties of the Bazykin’s
predator-prey ecosystem. Furthermore, the results of bifurcation and stability can be helpful to better
understand the interaction mechanism between prey population and predator population in natural real
ecosystem.
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Appendix

26
All coefficients in function ¢ (1) = 3, a;u' are:

i=0

ap = —901216986993425953s — 690735397062449054,

a; = —7430425914068984147s — 6884009442270443996,

a; = —25039469856001943868s — 33960715029169842122,

as — 36327625126218808192s — 106006380987337770808,

ay = 23813243876181697922s — 219774736835924252504,

as = 231701500305529576998 s — 283770759189235628296,
as = 562654839813783725532s — 133880117821863988900,
ay; = 821527882365809257148s + 298839475213006129920,
ag = 758628501725909295927 s + 819668812399890357890,
ag = 307714350506545891573s + 1059484475867702695300,
ayp = —313891529367115361240s + 801581088827681437262,
ay = =775475240462416420740s + 195928837969850670808,
ap = —894079031015008419680s — 382000374175148440524,
a3 = —726734929150839367680s — 654885975454974356416,
ais = —454979042514059201280s — 610000421153971812768,
—226162103453499020928s — 409066946025551638656,

ais

a1 = —90030584187038049792s — 211714542563663790336,
a7 = —28563209827168347648s — 86464340655657245952,
aiz = —7090481890045417472s — 27900627105898709248,

—1322666437445936128s — 7006358180280438784,
—168472574582366208s — 1317635181526709248,
az; = —10128944271982592s — 168919737461608448,
ax = 888031307333632s — 10261691075915776,

axs = 265257481617408s + 875442405031936,

axs = 25177804603392s + 264785229119488,

azs = 944504995840 + 25177804603392,

aze = 944504995840.

aig

ano

The required approximate expression of solutions &,(7), 17,(7)(n = 5,6, 7, 8) in Section 4 are:
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&(1) =

81331761349 838460289307

62500000000 1500000000000
581704662659 . 11421181943

~ 1500000000000 *™ ™ T 12500000000
295303209583 . 2744456679

~ 300000000000 > T 3125000000 <

sin(t) cos(7)* — cos(t)? sin(1)

cos(t)’

(1),

Volume 18, Issue 6, 7877-7918.



7917

Mathematical Biosciences and Engineering

3769447573 s 561294899

~ 1500000000 " * 187500000

34071366367 o 519200543 o
- e i
120000000000~ ™ 200000000 < ST

368324585101 2981700599

* 280000000000 “**™ ~ 60000000000
8220478037 14232508519
E6(T) ~ — sin(27) cos(27)* —

80000000000 800000000000

_ 1631279222594274463 sin(27) + 6712247987 cos(27)’
20000000000000000000 7 31250000000 !

3085037141 463631171328423253

" 32000000000 ~2000000000000000000
3085037141

~ 64000000000°
1280110517 , 4106798671

1875000000 <> ~ 8750000000
417464197 ., 30862991533

—————c0s(7) +
93750000 13125000000
461024269 590986371

218750000 156250000
2777136307

* 15000000000’
361599192063 1874076938759
E(T) ~ — sin(t) cos(1)® +

175000000000 875000000000
3536273794451 > . 388832982971
cos(7)” sin(7) —

~10500000000000 5250000000000
133764712573 ;19467384277

~ 175000000000 < 15625000000
78535734073782509 . 22208685833

~ 100000000000000000 “**™" * 50000000000 <
301975471 L 42627281

187500000 “°*" T 9375000
850629111 . 6337748273
s(1)” +

250000000 ° 1500000000
2168077847 . 6875283

~ 1000000000 “ > T 31250000
45629687777 2303045919

* 120000000000 “***™ ~ 3000000000 *™

15(7) sin(t) cos(7)*

sin(7);

sin(27) cos(27)

cos(27)? cos(27)

ne(T) = sin(7) cos(T)
cos(7)? sin(1)
cos(1)®

sin(t) cos(7)’ +

sin(t) cos(1)*

sin(7)

cos(t)’

(1);
177(1) = sin(t) cos(7)°

sin(7) cos(7)*

cos(7)? sin(7)
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37555522949 1
cos(27)* +

67~ = 250000000000 480000000000000000000

[25608968881440000000 sin(27) — 36609693930465966080] cos(27)?
1

+ s [16558606704080000000 sin(2r)
1

2
+ 72468445012762533198] cos(27)” + 130000000000000000000

[35806451743685700900 sin(27) + 25512157348987112880] cos(27)
31220582443484317 3064748661033755533

_ in(27) —
5400000000000000000 * "7 ~ T60000000000000000000°
(o SIS, 820013930311
B~ T 106875000000 <0 T 3150000000000
_ OTBIO0OISL 1413892642759
45000000000 393750000000
L AOBA00DL 206333009
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_SOABR0T09 g FTIM03
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©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

A@UMS AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7877-7918.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Existence and stability analysis of equilibrium point
	Boundary equilibrium point
	Interior equilibrium point
	 Hyperbolic equilibrium point
	Non-hyperbolic equilibrium point: case (C1)
	Non-hyperbolic equilibrium point: Case (C2)

	Cusp of codimension 3

	Bifurcations analysis
	Hopf bifurcation
	Bogdanov-Takens bifurcation of codimension 2

	Limit cycles via perturbation procedure
	Conclusions

