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Abstract: Cardiovascular and cerebrovascular diseases are leading causes of death worldwide,
accounting for more than 40% of all deaths in China. Acute myocardial infarction (AMI) is a common
cardiovascular disease and traditionally divided into ST-segment (STEMI) and non-ST-segment
elevation myocardial infarction (NSTEMI), which are known with different prognoses and treatment
strategies. However, key regulatory genes and pathways involved in AMI that may be used as potential
biomarker for prognosis are unknown. In this study, we employed both bulk and single-cell RNA-seq
to construct gene regulatory networks and cell-cell communication networks. We first constructed
weighted gene co-expression networks for differential expressed genes between STEMI and NSTEMI
patients based on whole-blood RNA-seq transcriptomics. Network topological attributes (e.g., node
degree, betweenness) were analyzed to identify key genes involved in different functional network
modules. Furthermore, we used single-cell RNA-seq data to construct multilayer signaling network to
infer regulatory mechanisms of the above key genes. PLAUR (receptor for urokinase plasminogen
activator) was found to play a vital role in transducing inter-cellular signals from endothelial cells and
fibroblast cells to intra-cellular pathways of myocardial cells, leading to gene expression involved in
cellular response to hypoxia. Our study sheds lights on identifying molecular biomarkers for diagnosis
and prognosis of AMI, and provides candidate key regulatory genes for further experimental validation.
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1. Introduction

The morbidity and mortality of acute myocardial infarction (AMI) is still substantial worldwide
despite the widespread access to reperfusion therapy [1]. In 2017, about 10.6 million cases of
myocardial infarction were reported worldwide contributing to hospitalization and mortality [2].

AMI is divided into ST elevation myocardial infarction (STEMI) and non-ST segment elevation
myocardial infarction (NSTEMI). The clinical manifestations of acute myocardial infarction are chest
tightness, chest pain, and dyspnea. The pathophysiological process of acute myocardial infarction
involves lipid deposition, vascular endothelial dysfunction, plaque formation, arterial stenosis, plaque
rupture, and thrombosis [3]. Major risk factors for atherosclerosis included age, hypertension,
hyperlipidemia, diabetes, obesity, and lack of exercise. The acute myocardial infarction is a multi-stage
and multi-step disease, and patients with AMI are of significant heterogeneity, which make it difficult
for clinicians to identify biomarkers and targets for prognosis and therapy [4].

Previous studies have demonstrated that discovering and controlling specific proteins can
effectively control atherosclerosis. It is well known that lipid deposition is a key factor in
atherosclerosis. Many experimental studies have shown that PCSK9 was associated with the phenotype
of familial hypercholesterolemia. Based on this finding, the PCSK9 inhibitors (alirocumab and
evolocumab) could dramatically decrease plasma LDL-C levels, even in patients who are taking the
maximum dose of statins. PCSK9 inhibitors bring long-term benefits to patients with coronary heart
disease, especially patients with myocardial infarction [5]. These approaches allow for the
identification of novel gene, specific antibody and efficient therapeutic strategies. Inflammation is
another key pathophysiological mechanism in atherosclerosis. In the CANTOS clinical trial
(Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), Canakinumab, an anti-IL-j3
monoclonal antibody significantly reduced the incidence of major adverse cardiovascular events
(MACE) in the subjects with prior myocardial infarction [6].

The vascular endothelium is a thin layer of cells acted as a barrier to prevent lipid infiltration.
Endothelial dysfunction is an independent risk factor of atherosclerosis. Numerous molecular and
signal pathways are involved in the process of endothelial dysfunction, such as Nuclear factor kappa
B(NF-«kB) [7], endothelial nitric oxide synthase(eNOS) [8], AMPK-mTOR (AMP-activated protein
kinase-mechanistic target of rapamycin kinase) signaling pathway [9]. However, the absence of
reliable markers has hampered our understanding of specific role of endothelial dysfunction in
atherosclerosis, especially myocardial infarction.

The cardiomyocytes (CM) were incapable of regeneration following injury in adult mammalian
heart, but it can be regenerated for newborn mammalian heart. Several studies used RNA-sequencing
to explore key molecular mechanisms of cardiomyocytes in myocardial infarction. Cui M et al. have
recently described two factors, nuclear transcription factor Y subunit alpha (NFYa) and nuclear factor
erythroid 2-like 1 (NFE2L1) transcription factors, that play a unique role in protecting against ischemic
injury [10]. Ruiz-Villalba A et al. identified a unique subtype of cardiac fibroblasts (CF) that plays an
essential role in ventricular remodeling process in response to cardiac damage [11]. The activated
cardiac fibroblasts highly express collagen triple helix repeat containing 1 (Cthrcl) in the scar.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7774-7789.



7776

Furthermore, it has been confirmed that the CTHRCI was a key regulator to heal scar process. However,
how different types of cells (e.g., endothelial cell (EC), CM and CF) interact with each other during
the course of myocardial infarction are unclear. Furthermore, the key molecules involved in inter and
intra-cellular signaling pathways between endothelial cell (EC), CM and CF remains poorly
understood.

In this paper, to identify key genes and regulatory pathways involved in different subtypes of
AMI, we collected both bulk and single-cell RNA-seq (SCRNA-seq) data to construct weighted gene
co-expression networks and multilayer inter-/intra-cellular signaling networks. Network module
analysis, topological attribute analysis, functional enrichment analysis and scRNA-seq data analysis
were performed. The results revealed that PLAUR (receptor for urokinase plasminogen activator)
plays a vital role in inter- and intra-cellular signaling transduction of myocardial cells. Our study
provided potential biomarkers for diagnosis and prognosis of AMI.

2. Materials and methods
2.1. RNA-seq data analysis

RNA-seq data was collected from Gene Expression Omnibus (GEO) database with accession
number GSE103182 [12]. The RNA-seq data contained 30 samples of AMI patients, of which 15 were
STEMI and 15 were NSTEMI. The raw data were corrected for unnecessary confounding variables
and analyzed for differential gene expression with R package RUVSeq [13] and edgeR [14],
respectively [12].

Based on the FPKM standardized expression matrix, we constructed the co-expression network
for differential expressed genes using WGCNA R package [15] (version: 1.70-3). The main steps to
construct co-expression network were as follows: (1) cluster the samples, and remove outliers; (2)
select the soft threshold B; (3) construct co-expression network by ‘blockwiseModules’ function, which
is used to divide genes into modules. The parameter ‘minModuleSize’ was set to 30. Other parameters
not mentioned were default parameters in the WGCNA package.

For network visualization, we exported the co-expression network of gene modules (expect grep
module), and then imported them into Cytoscape [16] software (version: 3.8.2), respectively. Also, we
performed network topology properties analysis on every gene of every network by the ‘Analyze
Network’ function in the Cytoscape software.

2.2. scRNA-seq data analysis

scRNA-seq dataset of heart tissue in human heart disease (coronary atherosclerotic heart disease
and dilated cardiomyopathy) patients was derived from GEO database with accession number
GSE121893 [17]. There were 25742 genes and 4933 cells in the data. Due to many missing values or
dropouts in single-cell data usually, we made single-cell data imputation by scImpute [18] package
before analysis. All parameters are default in the scImpute package.

We imported the scRNA-seq data into R4.0.3, and performed data analysis by Seurat [19] package
(version: 4.0.0). First, ‘CreateSeuratObject’ function was used to create Seurat object, and
‘LogNormalize’ method in ‘NormalizeData’ function was used for data normalization. Then, we found
2000 highly variable genes through ‘FindVariableFeatures’ function. Next, we carried on
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dimensionality reduction by PCA method, based on the 2000 highly variable genes, which was scaled
by ‘ScaleData’ function. The top 15 PCs was applied in analysis of cell clustering, by ‘FindNeighbors’
and ‘FindClusters’ function, whose resolution was set to 0.5. In addition, cell type classification was
performed according to the marker genes described in the original literature [17]. Finally, UMAP
method was used for visualization based on the first 15 PCs. Other parameters not mentioned were
default parameters in the Seurat package.

2.3. Multilayer network construction

Based on the scRNA-seq data mentioned above, multilayer networks were constructed by our
previously developed tool scMLnet [20] package (version: 0.2.0), which uses prior information and
Fisher's exact test to construct intercellular communication and intracellular transcriptional regulation
network. We constructed multilayer networks with CM as receptor cells, macrophages (MP), EC,
fibroblasts (FB) and smooth muscle cells (SMC) as ligand cells. All parameters are default in the
scMLnet package.

2.4. Functional enrichment analysis

For further study, clusterProfiler [21] package (version: 3.18.1) was used for functional
enrichment analysis in both RNA-seq and scRNA-seq data. In the WGCNA analysis of RNA-seq, in
order to study the functions involved in each gene module, we performed gene ontology (GO)
enrichment analysis on all genes of every gene modules respectively. In the multilayer network analysis
of scRNA-seq, we extracted sub-network of specific gene from multilayer network. And GO
enrichment analysis was employed in the downstream genes (transcription factors and target genes) of
the sub-network. All parameters were the default parameters in the clusterProfiler package.

2.5. Plasma collection and RNA extraction

Whole blood samples were collected from STEMI patients and health control subjects before
heparinization using vacutainer tubes containing EDTA. Blood samples were immediately processed
by centrifugation at 1000 x g for 10 min at room temperature to separate the peripheral blood
mononuclear cell (PBMC). The isolated PBMC was frozen at —80 °C in EP tubes until use.

2.6. RT-gPCR

Total RNA in PBMC was isolated using Trizol (Invitrogen, U.S.A.) following the manufacturer’s
instructions. cDNA was generated by reverse transcript from mRNA using the Prime ScriptTM RT reagent
Kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions. The SYBR Premix ExTaqTM
Kit (TaKaRa, Dalian, China) was used for real time PCR reaction. The PLAUR primer sequences were:
forward 5’-TGTAAGACCAACGGGGATTGC-3’ and reverse 5’~-AGCCAGTCCGATAGCTCAGG-3’.
The thermal cycle condition used for reverse transcription was as follows: 15 min at 37 °C and 5 s at 85 °C.
The condition used for real-time PCR was as follows: 30 s at 95 °C, 40 repeats of 5 s at 95 °C and 31 s at
60 °C, and 1 repeat of 15 s at 95 °C, 1 min at 60 °C and 15 s at 95 °C. Expression levels were normalized
to the housekeeping genes GAPDH and analyzed using the 2—ACt method.
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Figure 1. Heatmap of 323 DEGs between STEMI and NSTEMI.
3. Results
3.1. Gene co-expression networks based on bulk RNA-seq data

Base on differential expression analysis, 323 differentially expressed genes (DEGs) were obtained,
of which 180 genes were highly expressed in STEMI and 143 genes were highly expressed in NSTEMI
(Figure 1) [12]. When clustering the samples, we found the sample 13003 was a outlier, thus we
removed it from data for further analysis (Figure 2A-B).

The key step to construct co-expression networks by WGCNA is to select soft threshold B which
is used to take B powers for the adjacency matrix between genes. The soft threshold B is used to make
the co-expression network conform to the distribution of scale-free network. Because biological
network has the characteristics of scale-free network, which means that the degree of nodes in the
network obeys power-law distribution. In other words, it meets the negative correlation between log(k)
and log [P(k)], where k represents the degree of nodes and P(k) represents the frequency of nodes with
degree k. The larger the correlation coefficient R*2 between log(k) and log [P(k)], the more significant
the characteristics of the scale-free network.

When B was 12, the correlation coefficient R"2 was greater than 0.9 (Figure 2C-D), and the
network approached the distribution of scale-free network (Figure 2E-F). For reducing the operation
time, we chose 12 as B, and then used ‘blockwiseModules’ function to construct co-expression
networks. Finally, 323 DEGs were divided into 4 modules, each corresponding to each color
(Figure 3A). Genes that didn’t belong to any of the four modules were classified into gray module.
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Figure 2. Co-expression network construction. (A-B) Clustered sample, and removed
outlier samples. (C-D) Selected soft threshold B. (E-F) Check scale-free network.

3.2. Network visualization and analysis

We imported the co-expression network of each module into Cytoscape software for visualization
(Figure 3B), and used the “Analyze Network™ function to analyze the network topology attributes of
all nodes of each network. Degree is a count of the number of edges directly connected to a node in
the network, and betweenness is defined as the proportion of the number of paths passing through the
node in the total number of shortest paths in the network. That the greater the degree and betweenness
of a node, means that the node plays an important role in the network and might be of great biological
significance. Base on them, we identified potentially important genes in the modules (Figure 4). In the
blue module, TMEM229B and GIMAP6 were two genes with high degree and betweenness; In the
brown module, CIRBP had the highest betweenness, but its degree was slightly lower. While the degree
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of ATPSL, NDUFB10 and ATP5J2 were higher, but the betweenness of them was relatively low; In the
turquoise module, RNF149, SRGN and ABHDS5 had relatively high degree and betweenness; In the
yellow module, although DYNLT1 had the highest betweenness, its degree was relatively backward.
In addition, PLAUR, RGL4, IVNS1ABP and FCAR had relatively high degree and betweenness.
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Figure 3. Co-expression networks visualization. (A) Cluster dendrogram and module
division of genes. (B) Gene modules networks visualization by Cytoscape.

For further study of the biological processes involved in each gene module, we used the
‘enrichGO’ function in the clusterProfiler package to perform GO enrichment analysis on all genes of
each gene module (Figure 5). We used “FDR” as the correction method of multiple hypothesis test,
0.05 as the threshold of P value and 0.2 as the threshold of Q value for enrichment analysis. The blue

Mathematical Biosciences and Engineering

Volume 18, Issue 6, 7774-7789.



7781

module was mainly significantly related to biological processes such as cell matrix adhesion and
regulation of cell shape. Biological processes such as ATP metabolic process, RNA slicing and mRNA
slicing were significantly enriched in the brown module. The yellow module was mainly significantly
related to biological processes such as regulation of apoptotic signaling pathway, neural degradation
and neural activation involved in immune response. However, no biological processes were
significantly enriched in the turquoise module.
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Figure 4. Scatter diagram of degree-betweenness centrality.
Table 1. Result of multilayer networks.
Receiver cell types MP EC FB SMC
Sender cell types CM CM CM CM
Number of pairs Ligand-Receptor pairs 13 150 188 63
Receptor-TF pairs 352 2183 1891 1184
TF-TG pairs 293 320 320 308
Number of molecules Ligands 9 55 65 28
Receptors 13 84 73 43
TFs 85 99 99 95
TGs 87 87 87 87
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Figure 5. GO enrichment analysis for each gene module.
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3.3. scRNA-seq data based multilayer regulatory networks

After data analysis of sScRNA-seq, five cell types were identified, namely CM, MP, EC, FB and
SMC (Figure 6). In addition, two clusters were not identified and were labeled as “UN1”" and “UN2”
respectively.

Then, we used CM as receptor cells and MP, EC, FB and SMC as ligand cells to construct
multilayer networks respectively (Table 1, Figure 7). We found that PLAUR as a receptor existed in
the multilayer networks of EC-CM and FB-CM (Figure 8A,B). Moreover, the downstream genes
regulated by PLAUR receptor were the same in both networks. Therefore, we extracted the
downstream genes regulated by PLAUR receptor for GO enrichment analysis (Figure 8C). We
observed that downstream genes were significantly enriched in biological processes such as regulation
endothelial cell proliferation, pri-miRNA transcription and cellular response to oxygen levels.

3.4. RT-gPCR validation

To validate the differential expression of PLAUR in an independent cohort, we enrolled patients
(age >18 years) who presented with ST segment elevation myocardial infarction (STEMI). STEMI
was defined by continuous chest pain lasting >30 min, ST-segment elevation >0.1 mV in at least
2 contiguous leads, and elevated troponin I levels. The healthy control subjects (age >18 years) were
prospectively recruited independently without coronary artery diseases according to coronary CT
angiography. The healthy control subjects were matched to patients with STEMI patients with PR for
age and sex. This study was performed in accordance with the Declaration of Helsinki and was
approved by the Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University. All
patients provided written informed consent.

We performed RT-gPCR to measure the expression of PLAUR in both health control subjects
and patients with STEMI (Figure 9). Compared with healthy control subjects, the expression of
PLAUR decreased significantly in patients with STEMI (p < 0.05). The differential expression of
PLAUR indicates that it may be used as a potential biomarker for prognosis of AMI patient.

celltype

CM
» EC

® MP
® SMC
® UN1
® UN2

-10 5 0 5 10

Figure 6. Cell-type clustering and identification.
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Figure 9. RT-qPCR validation of PLAUR expression in patients with STEMI. Fold change
of PLAUR mRNA levels measured by qRT-PCR in patients with STEMI (n = 3
independent patients) and healthy control subjects (n = 3 independent subjects). Expression
values were normalized to GAPDH. P-value was calculated using student #-test (p = 0.023).
Data shown as mean + SEM.

4. Discussion

Based on whole-blood RNA-seq transcriptomics, this study represents the weighted co-
expression networks of differentially expressed genes between STEMI and NSTEMI patients. In
addition to identify key genes involved in different network modules using network topological
attributes, we revealed regulatory mechanisms of key genes by multilayer signaling network based on
single-cell RNA-seq data. Furthermore, we identified PLAUR as a crucial receptor gene in transducing
inter-cellular signals from endothelial cells and fibroblast cells to intra-cellular pathways of myocardial
cells, leading to downstream gene expression involved in cellular response to hypoxia.

We mainly analyzed four modules of the co-expression networks constructed by WGCNA.
According to GO enrichment analysis, those four modules were associated to some important
biological processes, such as cell matrix adhesion, cell shape, apoptotic signaling pathway, neural
degradation, neural activation, ATP metabolic process, RNA slicing and mRNA slicing. In the blue
module, TMEM229B and GIMAP6 express highly. CIRBP, ATPSL, NDUFB10 and ATP5J2 had high
betweenness centrality. RNF149, SRGN and ABHDS were ranked as top genes in the turquoise module
according to degree and betweenness centrality. In addition, PLAUR, RGL4, IVNS1ABP and FCAR
were genes with relatively high degree and betweenness centrality in the yellow module, where
although DYNLT1 had the highest betweenness centrality, its connectivity was relatively low. Previous
study has proven that the process atherosclerosis involved in lipid metabolism, inflammatory,
endothelial dysfunction, monocyte transendothelial migration and apoptosis. It has also been verified
that TMEMZ229B is a novel gene which was highly expressed untreated islets and strongly suppressed
by STZ. It means TMEN229b play a protective role in B-cell function [22].

In the multilayer networks of EC-CM and FB-CM, PLAUR was found as a crucial receptor that
mediates inter-cellular and intra-cellular signaling pathways and regulates numerous downstream
genes which are involved in endothelial cell proliferation, pri-miRNA transcription and cell response
to oxygen levels. PLAUR is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein which
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is associated with cell signaling because it forms a multi-protein complex with neighboring
tansmembrance receptors, such as EGFR [23]. Inhibition of PLAUR can inhibit tumor growth,
invasion. PLAUR can be released into blood and be detected as a biomarker in small cell cancer [24],
breast cancer [25]. In this study, we found that PLAUR had high degree and betweenness centrality,
and involved in apoptosis signal pathway and immune response.

Nowadays in clinical practical, the major biomarkers of myocardial infarction are creatine kinase-
MB (CK-MB) and cardiac troponin (cTn). The measurement of CK-MB and c¢Tn is superior because
of the high sensitivity and specificity for myocardial damage [26]. However, the limitation of CK-MB
and cTn is obviously. CK-MB and cTn will elevate in skeletal muscle injury, marathon runners, chronic
renal failure and hypothyroidism [27]. We expect that the key genes identified in this study represent
promising novel biomarkers for myocardial infarction. Such biomarkers may facilitate timely
diagnosis of AMI and identification of successful reperfusion after thrombolysis. Moreover, more and
more drugs targeting a single gene or protein will have a great impact on decreasing of MACE. Amon
them are PCSK9 inhibitor and anti-IL-3 monoclonal antibody. The above-mentioned genes may be
explored as potential targets for myocardial infarction.

In summary, in this study, we employed bulk and single-cell RNA-seq data to construct gene
regulatory networks and cell-cell communication networks to identify key genes involved in AMI. Our
study sheds lights on identifying molecular biomarkers for diagnosis and prognosis of AMI, and
provides candidate key regulatory genes for further experimental validation.

Data availability

The gene expression datasets as well as clinical information of the patients were downloaded from
the NCBI GEO database, as described in the main text.
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