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Abstract: In the past few years, Safe Semi-Supervised Learning (S3L) has received considerable
attentions in machine learning field. Different researchers have proposed many S3L methods for safe
exploitation of risky unlabeled samples which result in performance degradation of Semi-Supervised
Learning (SSL). Nevertheless, there exist some shortcomings: (1) Risk degrees of the unlabeled
samples are in advance defined by analyzing prediction differences between Supervised Learning
(SL) and SSL; (2) Negative impacts of labeled samples on learning performance are not investigated.
Therefore, it is essential to design a novel method to adaptively estimate importance and risk of
both unlabeled and labeled samples. For this purpose, we present {;-norm based S3L which can
simultaneously reach the safe exploitation of the labeled and unlabeled samples in this paper. In order
to solve the proposed ptimization problem, we utilize an effective iterative approach. In each iteration,
one can adaptively estimate the weights of both labeled and unlabeled samples. The weights can reflect
the importance or risk of the labeled and unlabeled samples. Hence, the negative effects of the labeled
and unlabeled samples are expected to be reduced. Experimental performance on different datasets
verifies that the proposed S3L method can obtain comparable performance with the existing SL, SSL
and S3L methods and achieve the expected goal.

Keywords: semi-supervised learning; safe semi-supervised learning; performance degradation; ¢;
norm; importance estimation
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1. Introduction

Along with the rapid development of Artificial Intelligence (AI) during the past few years,
Semi-Supervised Learning (SSL) has attracted widespread attentions in machine learning field [1-6].
Various SSL methods are proposed to improve promising performance by exploiting both labeled and
unlabeled samples. Different from Supervised Learning (SL), SSL tries to employ different
assumptions or strategies to explore the unlabeled samples. The following assumptions are often
used: (1) smoothness; (2) cluster; (3) manifold; (4)disagreement. SSL has shown the superiority to SL
in some practical applications, such as object detection [7, 8], image classification [9-11], speech
recognition [12, 13], etc. Although the SSL methods can achieve promising performance, they failed
to consider the harmful effect of the unlabeled samples on the classification performance. Some
previous studies [3, 14—18] have verified that the risky unlabeled samples can result in a bad
consequence through theoretic and empirical analysis. The unlabeled samples may be risky which
means that SSL is inferior to SL. If the risky unlabeled samples can not be safely explored, it will
limit the application scope of SSL to some extent. Therefore, it is worthy to design Safe SSL (S3L)
which never performs worse than SL.

Up to now, some researchers have proposed a few S3L methods which consider the risk of the
unlabeled samples. On the whole, different approaches are proposed to conservatively explore the
risky unlabeled samples. In our opinion, the proposed approaches can be summarized as follows: (1)
Risky unlabeled samples are firstly identified through SSL and SL and then conservatively explored
by SSL. (2) The risk degrees are firstly computed and then embedded into some SSL methods. (3)
Multiple SSL classifiers are simultaneously learnt to decrease the degeneration probability.

In the first strategy, some methods tried to identify the risky unlabeled samples through SSL and
SL. If an unlabeled sample was risky, it should be classified by SL. Otherwise, it would be classified by
SSL. Thus the final classifier was trained by the labeled samples and unlabeled ones with the pseudo
labels predicted by SL or SSL. In particular, Li and Zhou [19] presented an S3VM _us method where
a hierarchical clustering method was used to select the risky unlabeled samples. The selected samples
were then predicted by SVM and the remaining were predicted by transductive SVM (TSVM) [20].
Hence, S3VM_us should have a smaller degeneration probability than TSVM. Li et al. [21] built a large
margin approach named LargE margin grAph quality juDgement (LEAD). LEAD firstly constructed
multiple graphs and then performed Graph-based SSL (GSSL) to yield the predictions of the labeled
and unlabeled samples. The risky unlabeled samples were identified by SVM which considered the
predictions of multiple GSSL as the input features. Finally, their pseudo labels in LEAD were predicted
by SVM and the rest were labeled according to the average predictions of multiple GSSL.

In the second strategy, some regularization approaches were used to exploit the risky unlabeled
samples. Wang and Chen [22] introduced Safety-Aware SSCCM (SA-SSCCM) which was extended
from semi-supervised classification method based on class membership (SSCCM). SA-SSCCM
utilized a ¢£,-norm based loss function to restrict the predictions of the unlabeled samples to be those
of SL (i.e., Least-Square SVM (LS-SVM)). The performance of SA-SSCCM was never significantly
inferior to that of LS-SVM and seldom significantly inferior to that of SSCCM. Gan et al. [15]
proposed Risk-based Safe Laplacian Regularized Least Squares (RsLapRLS) which tried to assign
risk degrees to different unlabeled samples and a risk-based regularization term was embedded into
LapRLS to reduce the risk. Wang et al. [23] proposed safe LS_S3VM based on Adjusted Cluster
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Assumption (ACA-S3VM) which discussed the negative effect of an inappropriate model assumption
(e.g., cluster assumption). In this method, the unlabeled samples lied in the cluster boundary were
found by unsupervised clustering and cautiously explored.

Different from the aforementioned two strategies which learned one single classifier, the third
strategy tried to simultaneously learn multiple semi-supervised classifiers or regressors. Li and
Zhou [24] developed safe semi-supervised SVMs (S4VMs). S4VMs constructed multiple low-density
separators simultaneously to reduce the risk of identifying a poor separator with unlabeled samples.
The performance of S4VMs was never significantly inferior to that of SVM. Furthermore, in order to
extend S4VMs for dealing with multi-class problems, Thiago et al. [25] proposed a hierarchical
bottom-up S4VMs tree scheme to take advantage of S4VMs. Similar to S4VMs, Gan et al. [26]
presented a Safety-aware GSSL (SaGSSL) method which tried to learn a safe classifier by
constructing multiple graphs. The experimental results demonstrated that SaGSSL could adaptively
select good graphs from the candidates and reduce the risk of inappropriate graphs for GSSL. Except
the classification problem, Li et al. [27] proposed SAFE semi-supervised Regression (SAFER) which
was designed to deal with the regression problem. SAFER aimed to learn a safe regressor from
multiple semi-supervised ones and obtained the desired performance.

Although many different S3L methods have been proposed to safely explore the unlabeled samples
and obtained better performance compared to SL and SSL, they have the following shortcomings: (1)
The risk degrees of the unlabeled samples are given by an pre-defined approach; (2) The hurt of the
labeled samples (e.g., mislabeled ones) on learning performance is not considered.

To overcome the shortcomings, we present £;-norm based S3L which can simultaneously reach
the safe exploitation of the labeled and unlabeled samples. In the proposed algorithm, we utilize a
¢;-norm based loss function to generate the objective function of S3L and use an effective iterative
optimization technique to obtain an optimal solution. In each iteration, the weights of the labeled and
unlabeled samples are adaptively estimated. The risky samples will have small weights and a small
impact on training the final classifier. Hence, it is expected to alleviate the negative influence of both
labeled and unlabeled samples. The main contributions of the proposed algorithm include: (1) The
risk of both labeled and unlabeled samples can be reduced by adaptively the weights through ¢; norm;
(2) An effective optimization algorithm is introduced to solve the proposed problem. This work is
an extended version of our work in [28]. In comparison to the work in [28], we have given more
details of the existing related methods and proposed algorithm. Additionally, extensive experiments
are performed on more datasets to show the effectiveness of the proposed algorithm, including result
discussion and parameter analysis.

The remaining part of the paper is organized as follows: In Section 2, we firstly review background
knowledge (i.e., LapRLS and RsLapRLS). In Section 3, we will present the motivation and give the
details of proposed algorithm. Section 4 will report the results to verify the effectiveness of the
proposed algorithm by conducting experiments on several UCI and benchmark datasets. Finally, we
will present the conclusions and some future work in Section 5.

2. Background knowledge

2.1. Laplacian regularized least squares

Suppose a dataset X = {(x1,y1),- -, (x5, Y1), X141, -+ , X} with [ labeled samples and u = n — [
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unlabeled ones, x; € R® and y; € {-1,1}. For the purposes of exploration of unlabeled samples,
LapRLS [29] tried to construct a local graph W. The graph was used to approximate to geometric
structure of the whole samples. The graph W was constructed as:

Wi = 2.1)

i—x;l2 .
exp{—”x‘zﬁ’nz} if x; € Nj(x;) or x; € Np(x;)
otherwise

here N,(x;) denotes the data sets of p nearest neighbors of x;.
After obtaining the graph, LapRLS built a graph-based regularization term and embedded it into
RLS. The term was written as:

1 n
R= 73 Zl (f(x) = f(x,))*Wi; = fTLf 2.2)

here f = [f(x)), -+, f(x,)]", and L is the graph Laplacian defined as L = D — W with D;; = 2 Wi
The objective function of LapRLS was then written as:

l
Jf) = Z (f(x) =y* +yal fllz +vifTLf (2.3)

i=1
where ||- || is the norm defined in H which is a Reproducing Kernel Hilbert Space (RKHS) associated
with a Mercer kernel K : X X X — R. y, and 7y, are regularization parameters. When v, is equal to O,
LapRLS will boil down to RLS.

According to the Representer Theorem [29], the decision function was represented as

f@) =) ekl x) (2.4)
i=1

where a* denoted the optimal value of @ and k(-, -) was the Mercer kernel.
The equation Eq (2.3) was rewritten as:

J(@) = (K - Y)' (Ko - Y) + v Ka +y;0” KLKa (2.5)
where Y = [y}, -+ ,y]" was the given labels. The Gram matrix K was calculated using a Mercer kernel

whose entry K;; = k(x;, x;). K; was the first [ rows and k, was the last # rows in K.
By setting the derivative of Eq (2.5) to zero, we can obtain the following solution:

o = (K] K; +y4K + vy KLK)"' (K] Y) (2.6)

2.2. Risk-based safe laplacian regularized least squares

In order to reach the safe exploitation of the unlabeled samples, RsLapRLS utilized a £, norm to
define the loss function. The loss function constrained the outputs of the unlabeled samples to be those
of RLS. Hereafter, we denote the supervised classifier obtained by RLS as g(x). The objective function
of RsLapRLS was given as:

l
Q) =D (F) =) + yallflly + yif Lf
=t 2.7)
+A D 5(f(x) - gx))

Jj=l+1
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where A was a regularization parameter. Specifically, RsLapRLS became RLS when y, and 1 were
both 0 and became LapRLS when A = 0. s; was the risk degree of the unlabeled sample x;.
From the above equation, the output of RsLapRLS was a balance between that of RLS and LapRLS.
A risk degree estimation equation was pre-defined for the unlabeled sample x;.

exp{—cf(x;)} if cs(x;) = 1and cf(x;) # 0
s; =1 expllef(x)l} if cs(xj) = -1l and cf(x;) # 0 (2.8)
exp{—cs(x;)} ifcf(x;) =0

here, the consistency (cs(x;)) and confidence (cf(x;)) were calculated as:

cs(x;) = sign(y;-y;)

_ (2.9)
cf (x)) =yl = Iy}l

wherey; and y; were respectively the outputs of LapRLS and RLS.

c¢s(x;) denoted the prediction consistency of x; between LapRLS and RLS. If the predictions were
consistent, c¢s(x;) was equal to 1, otherwise -1. cf(x;) represented the prediction confidence or
difference of x; between LapRLS and RLS.

As shown in Eqs (2.8) and (2.9), the risk degree s; was small when cs(x;) = 1 and cf(x;) > O or
cs(x;) = 1 and cf(x;) = 0. In this case, the unlabeled sample x; should be exploited through the semi-
supervised approach. Otherwise, the risk degree s; was large and the output of x; should approach to
that of RLS which was defined by the last term in Eq (2.7).

According to Eq (2.4), the objective function Eq (2.7) was then rewritten as:

Q) =(Kja — V) (Ko = Y) + ysa’' Ka + y;o" KLK«

— — (2.10)
+ AK,a-Y) S(K,a-7)
where Y = [g(x141), -+, g(x,)]" was the outputs of RLS and S was a diagonal matrix with S i = Sl
The derivative of Eq (2.10) with respect to @ could be otained and set to zero. The solution of
RsLapRLS was then given as:

o =K/ K; + ysK + y;KLK + AK'SK,)™!

_ 2.11
(K'Y + AKLSY) 1D

3. Proposed algorithm

3.1. Motivation

As shown in Section 1, the existing S3L methods mainly consider the hurt of the unlabeled samples.
Firstly, the risk degrees of the unlabeled samples are in advance defined in S3L. If inappropriate risk
degrees are assigned to the unlabeled samples, the unlabeled samples will not be safely exploited.
Therefore, it is important to investigate an adaptive weight computing method. Secondly, the risk
of the labeled samples should be considered. In some cases, the samples may be mislabeled by the
experts. In the next subsection, we will present how to solve the above problems using £; norm.
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3.2. Formulation and solution

For convenience, the objective function of RsLapRLS is written as:

Q) = IIfs = YIE + yall /1% + vif TLf + Alf, 0 52 =Y o 52|} 3.1)

where f; and f, respectively denote the outputs of the labeled and unlabeled samples. s = [s;.1, - , $,]
denotes the risk degrees of the unlabeled samples. A o B represents the Hadamard product between the
vectors A and B.

In this paper, a ¢; norm is used to substitute for the £, norm. Hence, the objective function of the
proposed algorithm is written as:

TS = Wfi = Yl +yall i +yif"Lf + Allfu = Y (3.2)

Equation (3.2) can be written as:
!
T = D 1) =yl + vall fIl +vif LS
i=1

+4 ) 1f(x) = gy

. (3.3)
= D rilfG) =5+ vallflly +vif LS

i=1

= > ri(f) =77 + O(f)
i=1

where y; = y;and r; = 1ifie{l,--- ,l}and y, = g(x;))and r; = Aifie{l+1,--- ,n}.
The derivative of Eq (3.3) with respect to f(x;) is obtained as:

AT () _ iﬂ,ﬁ@(f(x,-) -3, 90(f)
of(xi) 1 o of(x) of(xi)

(3.4)

where y; = m with a small value &.
If w; is fixed, Eq (3.4) can be considered as the derivative with respect to f(x;) of the following
function:

R(f) = D i f(x) = 5 + O(f) (3.5)
i=1

As we know, a closed-form solution of Eq (3.5) can be obtained. Since y; is related to f(x;), an
alternating optimization approach is utilized to solve the optimization problem (3.3). In each iteration,
f and y; are calculated, respectively. Because the computation formula of y; has been given, we next
discuss how to calculate f when y; is known.

Based on Eq (2.4), Eq (3.5) can be denoted as:

R(@) = (Ka — Y)'R(Ka = Y) + yaa" Ka + y;o' KLK« (3.6)
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where Y = [§1, - , 7.1” and R is a diagonal matrix with R; = p;r;.
The derivative of Eq (3.6) with respect to a is obtained and set to zero, the following equation is
achieved:
a* = (RK + yal +v,LK) ' (RY) (3.7)

It is worthy to point out that the weight y; can reflect the risk degree of the labeled and unlabeled
samples. If the difference between the prediction and given label for a labeled sample is large, the
labeled sample may be mislabeled and risky. In this case, the corresponding y; should be small.
Meanwhile, the unlabeled samples may be safe if the corresponding output approaches to that of LS
and the weight y; is large. Otherwise, the unlabeled sample should be risky and the weight w; will be
small. Hence the risky labeled and unlabeled samples will have a small impact on training the final
classifier. Overall, it is expect to yield a safe exploitation through the weight.

The iterative framework of the proposed algorithm is shown in Algorithm 1.

Algorithm 1 Proposed algorithm

Input: A dataset X = {(x1,y1),- -, (X5, Y1), X141, - -+, X}, the parameters y,, vy, 4, 17, and Maxiter.
Output: The optimal decision coefficients a*.
1: Train a RLS classifier g(x) and calculate the outputs of the unlabeled samples using g(x);
2 Initialize (¥ = 1,i= 1, ,n;
3: fort = 1: Maxiter do
4. Update o'” using Eq (3.7);
5. Compute f'(x;) = X', ay)k(x,-,xj);
6:  Update /,cl(.’) = m,
7. if ju® — u=V|| < 5 then
8 return o).
9: endif
10: end for

3.3. The convergence analysis

Next, we will give a convergence analysis of Algorithm 1. Eq (3.5) can be written as

R(a) = Z pirdKia — )% + yaa" Ka + y;a" KLKa (3.8)
i=1
here K; is the i-th row of the matrix K.
First, the optimal solution @ of the optimization problem Egs (3.8) and (3.6) can be yield through
Eq (3.7). Hence, in the ¢-th iteration, a'” is the optimal solution of Eq (3.8). We have

Z 1r(Kia® = 57 + ya@™) Ko + (@) KLKa"
1:1 (3.9
< Z,Ul(-t_l)ri(Kia/(l_l) _ }71_)2 + ,yA(a,(t—l))TKa(t—l) + ,y](a,(t—l))TKLKa(t—l)

i=1
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Since y; = T f(xlf)—y,-l’ the above inequality can be written as
o riKia® = 3)°
m + Ya (a(t))TKa(l) + '}’](Q(I))TKLKQ’O)
i=1 l i
= r(Ki'™D — ) - 1 . 1 (3.10)
< Z 2|K:a=D — 3 + VA(OK(Z_ )) Ko™V + y,(a/(f‘ )) KLKa"
i=1 1 i
Because
~ (K" — %) ~ B (Kia™D — §,)?
Kia’(l)_ |- — < Kia(l‘ D _ N L 311
| i 2|K;a =D — | | yi 2|K;a-) — 3] ( )

and r; is a nonnegative constant, we have

n

. (K" — 3,)? X Ly o, riKe —5)?
K@ - 5| = 2O ) N Kt - ) - 3.12
;(” @ S ka5 < 2\ S S ) G

Through Eqs (3.10) and (3.12), the following inequality is achieved.

n

D K = 5l + ya@) Ka® + y1(@”) KLKa"
i=1

(3.13)

n
< ) il = 5 + 4@ ") Ko™ + 3@ KLKa ™"
i=1

From Egs (3.2), (3.3) and (3.13), one can see that J(f) will be monotonically decreased and
nonnegative. Therefore, Algorithm 1 will be converged.
4. Experimental analysis

Next, we perform some experiments to show the behavior of the proposed algorithm. The used
datasets are selected from UCI * and benchmark ones [1]. Firstly, two subsets are obtained by randomly
dividing the whole dataset. The two subsets include 10 or 100 labeled samples and the remaining
unlabeled ones. This division process is repeated 30 times for the UCI datasets and 12 times for the
benchmark datasets. The details of each dataset are described in Table 1. In the experiments, the
following methods are used:

e SL: RLS, SVM, LS-SVM.
e SSL: LapRLS, TSVM, SSCCM.
e S3L: S3VM _us, S4VMs, SA-SSCCM, RsLapRLS.

For the UCI datasets, the parameters C; and C, in S4VMs are respectively fixed to 1 and 0.1. A4,
A and 77 in SA-SSCCM are set to 100, 1 and 1, respectively. For benchmark datasets, C; and C,
in S4VMs are respectively set to 100 and 0.1. 4, 4, and n in SA-SSCCM are set to 100, 0.1 and
1, respectively. € in S3VM _us is set to 0.1. vl in RLS is fixed to 0.05, p in LapRLS, RsLapRLS and

*http://archive.ics.uci.edu/ml/
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Table 1. Description of the datasets.

ID Dataset #Points #Features
1 Heart 270 13

2 Diabetes 768 8

3 German 1000 20

4 BCI 400 114

5 G241c 1500 241

6 G241n 1500 241

7 Digitl 1500 241

8 USPS 1500 241

proposed algorithm is set to 5. y4, y; and 4 in LapRLS, RsLapRLS and proposed algorithm are obtained
by leave-one-out cross validation in the case of 10 labeled samples and by 5-fold cross validation in
the case of 100 labeled samples. 7y, and y; are selected in the set {107°,107%,1072, 1, 10, 100} and
A is selected from {107, 107*,1072,0.1,0.5,0.9, 1, 5,9}. The linear and Gaussian kernels are used to
calculate the Gram matrix K. In the Gaussian kernel, the width parameter ¢ is set to the average distance
between the samples in the case of 10 labeled samples, and obtained by 5-fold cross validation among
{0.256,0.56, 9, 26, 46} in the case of 100 labeled samples.

Tables 2 and 3 report the classification results of different methods. The third-to-last row reports
the average accuracies of different methods. The second-to-last row reports the win/tie/loss (W/T/L)
counts where SSL performs better/comparable/worse than the corresponding SL. The last row reports
the W/T/L counts where S3L performs better/comparable/worse than the corresponding SSL.

As can be seen from the two tables, it can be concluded:

(a) According to the average accuracy, the proposed algorithm can perform better than the other SL
and SSL methods. On the one hand, it demonstrates that the unlabeled samples can generally
boost the learning performance. On the other hand, the proposed algorithm can be used to learn a
semi-supervised classifier.

(b) In terms of the W/T/L counts, different SSL methods perform worse than the corresponding SL
methods in some cases. textcolor[rgb]1,0,0Specifically, LapRLS performs worse than RLS on
18 out of 32 cases. It shows the negative influence of the unlabeled samples on the learning
performance.

(¢) In terms of the W/T/L counts, the S3L methods are never significantly inferior to the
corresponding SL. methods. In particular, RsLapRLS and the proposed algorithm can perform
better or comparable to RLS on all cases. It is indicated that the proposed algorithm can reduce
the risk of the unlabeled samples.

(d) Finally, the proposed algorithm is superior and more robust than RsLapRLS on all cases in term of
the average accuracy and standard deviation. We can conclude that the proposed £;-norm strategy
is effective to deal with the hurt of the labeled samples. Since the weights of both labeled and
unlabeled samples are adaptively estimated, it will further alleviate the negative impact which is
caused by artificial risk degree assignment in RsLapRLS.
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Figure 1. A plot of convergence and testing accuracy on G241n dataset.
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Figure 2. A plot of convergence and testing accuracy on USPS dataset.

Additionally, we carry out some experiments to analyze the convergence of the proposed algorithm.
Figures 1 and 2 give the plots of convergence and the corresponding testing accuracy at each iteration
on G241n and USPS datasets. From the two figures, one can see that the porposed algorithm usually
converges after less than 15 iterations. It shows that the proposed algorithm is efficient and converges
fast.

Futhermore, we give a parameter analysis which tries to analyze the impact of A on the
performance of the proposed algorithm. The parameter A can reflect the importance of the regularizer
constraining the outputs of the risky unlabeled samples. The value is selected among
{107°,107,1072,0.1,0.5,0.9, 1, 5, 9}. Figures 3—6 report the accuracies of the proposed algorithm as
the parameter A changes. From these figures, one can see that proposed algorithm can obtain the best
results in a wide range. It will extend the practicability of proposed algorithm to some extent.

5. Conclusions

On the whole, we have investigated a £;-norm based S3L algorithm. This algorithm has ultilized ¢;
norm instead of £, norm to define the objective function. It can effectively reduce the risk of both

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7727-7742.
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Figure 3. Accuracy for 10 labeled data with linear kernel.
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labeled and unlabeled samples. In comparison to RsLapRLS which uses ¢, norm, the performance of
the proposed algorithm is better and more robust. However, the proposed algorithm is designed to
deal with two-class problems and multi-class problems often occur in some applications(i.e., face
recognition). Additionally, compared to label information, pairwise constraints are more easily
collected. Hence, how to design pairwise-constraint S3L methods and solve the multi-class problems
will be the future work.
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