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Abstract: Mathematical models are widely recognized as an important tool for analyzing and
understanding the dynamics of infectious disease outbreaks, predict their future trends, and evaluate
public health intervention measures for disease control and elimination. We propose a novel stochastic
metapopulation state-space model for COVID-19 transmission, which is based on a discrete-time
spatio-temporal susceptible, exposed, infected, recovered, and deceased (SEIRD) model. The proposed
framework allows the hidden SEIRD states and unknown transmission parameters to be estimated from
noisy, incomplete time series of reported epidemiological data, by application of unscented Kalman
filtering (UKF), maximum-likelihood adaptive filtering, and metaheuristic optimization. Experiments
using both synthetic data and real data from the Fall 2020 COVID-19 wave in the state of Texas
demonstrate the effectiveness of the proposed model.

Keywords: epidemic model; SEIRD model; nonlinear stochastic model; unscented Kalman filter;
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1. Introduction

Infectious disease outbreaks remain a major threat to global health. This is especially the case
for highly pathogenic and transmissible diseases with pandemic potential. These global threats were
recently exemplified by the 2009 swine flu outbreak and the ongoing COVID-19 pandemic caused by
the novel Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). To effectively mitigate
and control the spread of an epidemic, it is paramount for public health decision-making to be informed
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by an accurate understanding of the dynamics of disease transmission and the potential impact of
intervention measures.

To this end, epidemic models have become an important tool to help better understand epidemic
dynamics, predict its future trends, evaluate the effectiveness of intervention measures, such as lock-
down or vaccination, and ultimately control the epidemic.

Mathematical epidemiology models can be broadly divided into two main types: compartmental
models and agent-based models. An agent-based model is a very detailed stochastic model where
the agent represent single individuals within a population [1–8]. Such models are generally
complex and computationally expensive. In compartmental models, the population is subdivided into
epidemiological compartments with each compartmental generally representing a health or disease
progression stage [9–16]. Thus compartmental models are computationally simple, scalable, and
capable of describing the dynamics of the number of people in each compartment throughout the
course of an epidemic. In this work, we propose a nonlinear state-space compartmental model.

Compartmental model date back to the early twentieth century, most notably to the work by [17],
whose susceptible, infected, and recovered (SIR) model was used for modeling the plague (London
1665–1666, Bombay 1906) and cholera (London 1865) epidemics [10]. More specifically, it is a
weighted directed graph representation of a dynamic system. The susceptible refers to those healthy
people who are susceptible to the disease and may get infected; the infected refers to those under
infection; the recovered refers to those who recovered from infection and will be temporarily or
permanently immune to the disease. However, there are several drawbacks in the original SIR model:

1) It is a deterministic model, meaning the model always performs the same for a given initial
condition, which cannot explain the unknowable randomness in the observations [12, 16, 18];

2) It is only a temporal model, which does not consider the spread in geographical regions, e.g.,
human interaction induced by modern transportation [19];

3) It assumes that all the parameters are known, which is not realistic. Parameter estimation from
noisy observations is needed for better understanding and forecasting epidemics [18].

Many researchers have proposed variants of the basic SIR model to address some of these issues,
such as [20], who considered the age dependence of social structure; [21], who used hyperbolic
compartmental models to solve the large uncertainty in the values reported by official sources; [22,23],
who applied multiscale kinetic transport equations to describe the transport dynamic of the commuters
and non-communting population; but accurate state and parameter estimation from partial and noisy
observations remains an open problem. To handle this issue, our proposed framework embeds the
classical compartmental model within a nonlinear state-space model. The state model is a spatial-
temporal stochastic dynamic model that allows hidden states in a given location to change over time
and the disease dynamics in one location to affect neighbouring locations through human movements
between locations. The proposed framework consists of a multinomial state model based on a variant of
the SIR model — the SEIRD model [24–26] — and an observation model to allow the assimilation of
publicly available data, including daily testing rate, daily test positivity rate, specificity and sensitivity
of the tests. In addition, the model considers the differential testing rate between symptomatic patients
and asymptomatic and healthy individuals. The proposed framework is employed to estimate i)
the hidden epidemic state vector Xt = (S t, Et, It,Rt,Dt) and ii) epidemiological parameters, such
as infection rate and the average infectious period, using noisy incomplete time series epidemic
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data. Accurate estimation of the true epidemic state and parameters is paramount for designing and
evaluating the effectiveness of control strategies.

2. Mathematical model

2.1. Classical SEIRD model

The SEIRD model predicts the time evolution of epidemic. It models the dynamic interaction of
people between five different compartments, namely, the susceptible (S), the exposed (E), the infected
(I), the recovered (R) and the deceased (D). The classic discrete-time SEIRD model can be described
by the following equations:

S t+1 = S t − λS S tIt

Et+1 = Et + λS S tIt − λEEt

It+1 = It + λEEt − (λR + λD)It

Rt+1 = Rt + λRIt

Dt+1 = Dt + λDIt

(2.1)

with S t + Et + It + Rt + Dt = 1, where S t, Et, It, Rt, Dt are the fraction of the population (the size of
which is assumed to be constant over the time interval of interest) at time t that, respectively, S is not
yet infected with the disease; E has been exposed to the virus but does not show symptoms yet; I is
infective after the virus incubation period; R has been infected and then recovered; and D is deceased
due to the epidemic.

The model is governed by the following parameters:

• λS is the infection rate, which is the probability that an individual moves from the S to the E
compartment. The nonlinear term λS S tIt models the infection speed, which depends not only on
the infection rate, but also on the fraction of susceptible and infected people at time t;
• λE is the probability that an individual moves from the E to the I compartment. It can be

understood as the inverse of the average incubation time;
• λR is the recovery rate, which is the probability than an individual moves from the I to the R

compartment. It can be understood as the inverse of the average recovery time;
• λD is the mortality rate, which is the probability than an individual moves from the I to the D

compartment.

2.2. Covid-19 epidemic metapopulation state-space model

Given the complexity and reality of epidemics, many different implementations of the classical
SEIRD model have been proposed [24–27]. Two clear drawbacks of the classical SEIRD model is the
inability to model variation over a geographic area, and the fact that that the SEIRD values are assumed
to be directly observable. In this paper, we address these drawbacks by means of a novel nonlinear
metapolulation state-space framework, where the state process provides a spatial-temporal discrete-
time stochastic model of the evolution of the number of individuals in the SEIRD compartments
over several geographical regions, while the observation process models noisy time series of reported
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epidemiological data, considering the accuracy of tests and different testing rates for symptomatic and
asymptomatic people.

2.2.1. State model

Consider a discrete-time state process {Xt
i; i = 1, . . . ,G; t = 0, 1, . . . }, where Xt

i = (S t
i, E

t
i , I

t
i ,R

t
i,D

t
i)

is a state vector, containing the number of individuals in the SEIRD compartments in geographical area
i at time t, where the unit of time is typically day or week. At time t, the total number of individuals in
region i is Ni = S t

i + Et
i + It

i +Rt
i +Dt

i. We assume that this number stays constant over the time interval
of interest (e.g., no significant amounts of migration is assumed to occur during the time interval of
interest; plus , births and non-specific deaths are assumed to approximately balance out). This results
in a good approximation provided that the interval of time in consideration consists of weeks or a few
months, especially in the case of a full-blown outbreak when, the impact of migration is negligible.

Before proceeding, we recall the definition of the binomial and multinomial probability
distributions. A random variable Z has a binomial distribution with parameters n ≥ 1 and 0 < p < 1,
denoted by Z ∼ Binomial(n, p), if

P(Z = k) =
n!

k!(n − k)!
pk(1 − p)n−k, k = 0, . . . , n . (2.2)

Variable Z is the number of k occurrences of an outcome among n identical independent trials that can
result in the outcome with probability p. The expected value and variance of this variable are E[Z] = np
and Var(Z) = np(1 − p), respectively. More generally, we define a random vector (Z1, . . . ,ZM) to have
a multinomial distribution with parameters n ≥ 1 and p1, . . . , pM ≥ 0 such that

∑
pi ≤ 1, denoted by

(Z1, . . . ,ZM) ∼ Multinomial(n, p1, . . . , pM), if

P(Z1 = k1, . . . ,ZM = kM) =
n!

k1! · · · kM!(n−Σki)!
pk1

1 · · · p
kM
M (1−Σpi)n−Σki , k1, . . . , kM ≥ 0, Σki ≤ n .

(2.3)
Variables Z1, . . . ,ZM are the number of occurrences of each of M outcomes over n identical independent
trials that can result in outcome m with probability pm. It is clear that Zm ∼ Binomial(n, pm), for
m = 1, . . . ,M (thus E[Zm] = npm and Var(Zm) = npm(1 − pm)). In addition, the case M = 1 results in
the binomial distribution.

In our model, the state vector Xt
i = (S t

i, E
t
i , I

t
i ,R

t
i,D

t
i) is assumed to evolve according to the following

nonlinear stochastic model:
S t+1

i = S t
i − Σ j N t

S i, j

Et+1
i = Et

i + Σ j N t
S i, j
− N t

Ei

It+1
i = It

i + N t
Ei
− N t

Ri
− N t

Di

Rt+1
i = Rt

i + N t
Ri

Dt+1
i = Dt

i + N t
Di

(2.4)

for t = 0, 1, . . ., where N t
S i, j

is the number of susceptible individuals at time t in region i who will
become exposed at time t + 1 due to contact with an infective individual from region j, N t

Ei
is the

number of exposed people at time t in region i who will become infective at time t + 1, while N t
Ri

and
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N t
Di

are the numbers of infected people at time t in region i who will become recovered or deceased at
time t + 1, respectively.

We assume that each susceptible individual in region i becomes exposed due to contact with
an infective individual from region j at time t independently with a probability λS ci jIt

j/N j (these
parameters are explained below). Therefore, the distribution of the numbers of new infections over
the regions is multinomial:

(N t
S i,1
, . . . ,N t

S i,G
) ∼ Multinomial

S t
i, λS

ci1It
1

N1
, . . . , λS

ciGIt
G

NG

 . (2.5)

The infection rate λS > 0 is disease-specific, but also affected by public policies, such as mask wearing
and social distancing. We assume that these factors are constant over the geographical area (e.g., a
single political unit, such as a state or country) and time interval in the study, so that λS is the same
for all regions. If i = j, then the contact is internal to region i, and cii = 1. If i , j, then 0 ≤ ci j ≤ 1
models the relative amount of transient interchange of individuals between regions i and j, due to
commuting, tourism, and so on. If regions i and j are far apart, or one of them is not economically
important, then ci j is close to zero. Note that ci j = c ji. The values of ci j are selected in our study based
on the gravity model, which is a model of population movement between discrete locations, based on
the populations of the origin and destination and the distance between them [28–30]. Namely, the ci j

values are determined by a proportional factor (the so-called “gravitational constant”) multiplied by
the product of the populations of both regions and divided by the square of their distance from one
another. Finally, the ratio It

j/N j indicates that if there are more infective individuals in region j, they
will spread the disease with higher probability. Note that the expected value of the (normalized) j-th
flux is E[N t

S i, j
/Ni] = λS ci j(S t

i/Ni)(It
j/N j). This may be contrasted to the flux λS S (t)I(t) in the classical

case.
In our model, an exposed individual in region i becomes infective at time t, independently of the

other regions, with probability λE. Hence,

N t
Ei
∼ Binomial(Et

i , λE) . (2.6)

The expected number of exposed individuals who become infective at time t is thus E[N t
Ei

] = λEEt
i .

Note also that the distribution of the total time until an exposed individual becomes infective is
geometric with parameter λE, so that the expected number of time units until an exposed individual
becomes infective is λ−1

E .
Finally, each infective individual in region i becomes recovered or deceased at time t, independently

of the other regions, with probabilities λR and λD, respectively. Hence,

(N t
Ri
,N t

Di
) ∼ Multinomial(It

i , λR, λD) . (2.7)

The expected numbers of infective individuals who become recovered or deceased at time t are
E[N t

Ri
] = λRIt

i and E[N t
Di

] = λDIt
i , respectively. The expected numbers of time units until an infective

individual becomes recovered or deceased are λ−1
R and λ−1

D , respectively.

2.2.2. Observation model

The observation model is a major contribution of this work. We model reported epidemiological
data, namely confirmed new cases and cumulative recorded deaths, as noisy observations on the true
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state of the pandemic, as defined in the previous section. The proposed observation model addresses
the uncertainty introduced by imperfect testing and the imbalance in testing of symptomatic and
asymptomatic individuals (the former cohort is tested more [31]).

We model the reported data as a time series {Yt
i; i = 1, . . . ,G; t = 0, 1, . . . } where Yt

i = (Pt
i,Q

t
i)

contains the numbers Pt
i and Qt

i of new confirmed cases and deaths, respectively, in geographical area
i at time t. The number of reported new cases contain both false and true positives,

Pt
i = N t

T Pi
+ N t

FPi
, (2.8)

for t = 0, 1, , . . ., where N t
T Pi

and N t
FPi

are the number of false and true testing positives, respectively.
Let α and β be the false positive and true positive rates, respectively, of the COVID-19 test under
consideration (multiple tests of different accuracy can be introduced by splitting the populations
according to the test received). True positives come from the exposed and infective populations. In
addition, a percentage of the infective population is asymptomatic; we assume that those are tested at
a smaller rate than the symptomatic ones. Accordingly, we split the number of new true positives at
time t as the sum of the number of positive-tested symptomatic infective people and the number of
positive-tested asymptomatic infective and exposed individuals:

N t
T Pi
∼ Binomial(εt

2(1 − εt
4)It

i , β) + Binomial(εt
1(εt

4It
i + Et

i), β) , (2.9)

where εt
1 and εt

2 are the testing rates of asymptomatic and symptomatic individuals at time t,
respectively, while εt

4 is the percentage of infective individuals who are asymptomatic at time t. These
parameters are assumed to be the same over all regions. As shown later, these parameters can be
calculated from the overall testing and positivity rates, which are available from public records.

Similarly, the false positives come from the susceptible and recovered populations, and here we
have to distinguish between symptomatic individuals (who are not infected by COVID-19 but instead
by other similar viruses, such as Influenza) and asymptomatic individuals:

N t
FPi
∼ Binomial(εt

1(1 − εt
3)(S t

i + Rt
i), α) + Binomial(εt

2ε
t
3(S t

i + Rt
i), α) , (2.10)

where εt
3 is the percentage of non-specific symptomatic individuals at time t.

Finally, we assume that the reported cumulative recorded deaths in each region is a fraction of the
true number Dt

i, according to
Qt

i ∼ Binomial(Dt
i, β) . (2.11)

Even though there might be a number of non-COVID-19 deaths falsely reported as COVID-19, we
are assuming that this number is small and can be ignored. Notice that (2.11) implies that COVID-19
deaths are underreported, which is widely assumed to be the case.

Let Rt
T be the testing rate, i.e., the percentage of the population that is tested at time t, and let Rt

P the
positivity rate at time t. Both these parameters are reported by health authorities. Next, we show how
the parameters εt

1, εt
2, εt

3, and εt
4 can be calculated from Rt

T and Rt
P

The test positivity rate (Rt
P) is the percentage of positive tests Pt over the total number of tests N t

T
in a given region; it can be written as

Rt
P =

Pt

N t
T
=
εt

1Aα + εt
2Bα + εt

2Cβ + ε
t
1Dβ

εt
1A + εt

2B + εt
2C + ε

t
1D

(2.12)
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where A = (1 − εt
3)(S t + Rt), B = εt

3(S t + Rt), C = (1 − εt
4)It, and D = εt

4It + Et.
Similarly, the testing rate Rt

T is the percentage of total tests over the total population, which can be
written as

Rt
T =

N t
T

N t =
εt

1A + εt
2B + εt

2C + ε
t
1D

A + B +C + D
(2.13)

Using the previous two equations, we can solve for εt
1 and εt

2 in terms of εt
3 and εt

4:

εt
1 =

(S t + Et + It + Rt)Rt
T (RP

t(εt
3(S t + Rt) + (1 − εt

4)It) − αεt
3(S t + Rt) − β(1 − εt

4)It)
(β − α)(εt

3(S t + Rt)(εt
4It + Et) − (1 − εt

3)(S t + Rt)(1 − εt
4)It)

εt
2 =

(S t + Et + It + Rt)Rt
T

β − α
×

α(1 − εt
3)(S t + Rt) + β(εt

4It + Et) − RP
t((1 − εt

3)(S t + Rt) + (εt
4It + Et))

εt
3(S t + Rt)(εt

4It + Et) − (1 − εt
3)(S t + Rt)(1 − εt

4)It

(2.14)

Now, εt
1 and εt

2 are the testing rates of asymptomatic and symptomatic individuals at time t, and can
be related to each other. According to [31], we have

εt
2 = ζε

t
1, (2.15)

where ζ is uniformly distributed in the interval [2, 4.3] to account for various non-specific symptoms
(e.g., fever, cough, loss of taste, smell) that are shared by COVID-19 and other common viral diseases.
Substituting (2.15) into (2.14) results, after some algebra, in the following expression for εt

3

εt
3 =

(β − Rt
P)(εt

4It + Et) + ζ(1 − εt
4)It(β − Rt

P) − (S t + Rt)(Rt
P − α)

(ζ − 1)(S t + Rt)(Rt
P − α)

(2.16)

In addition, according to [32], the percentage of asymptomatic infective people εt
4 is around 20% and

from this the other parameters εt
1, εt

2, εt
3 can be calculated.

3. Covid-19 epidemic state and parameter estimation

In this section, we describe state-of-the-art estimators for the state and parameters of the
metapopulation state-space model introduced in the previous section. These estimators use as input
the noisy time series Yt

i = (Pt
i,Q

t
i) of reported new cases and deaths in the several geographical

regions in the study. The state vector Xt
i = (S t

i, E
t
i , I

t
i ,R

t
i,D

t
i) is estimated at each time t by using the

Unscented Kalman Filter (UKF) [33], which is the state-of-the-art estimator for stochastic nonlinear
state-space models, while the parameters λS , λR, λD are estimated by maximum-likelihood, by using
the metaheuristic optimization - fish school search algorithm [34–36].

First, we write the state-space model in the previous section in the standard form

Xt+1
i = f (Xt

i) + nt
i

Yt
i = h (Xt

i) + vt
i

(3.1)
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where f and h are nonlinear mappings, and {nt
i; i = 1, . . . ,G; t = 0, 1, . . . } and {vt

i; i = 1, . . . ,G; t =
0, 1, . . . } are white-noise (i.e., uncorrelated in time) transition and observation noise processes,
respectively, which are independent of each other and independent of the initial state {X0

i ; i = 1, . . . ,G}.
The proposed state-space model can be put in the standard form (3.1) by rewriting the state

equations as:

S t+1
i =

(
1 − λS Σ j ci jIt

j/N j

)
× S t

i + nt
S i

Et+1
i = (1 − λE) × Et

i +
(
λS Σ j ci jIt

j/N j

)
× S t

i + nt
Ei

It+1
i = (1 − λR − λD) × It

i + λE × Et
i + nt

Ii

Rt+1
i =Rt

i + λR × It
i + nt

Ri

Dt+1
i =Dt

i + λD × It
i + nt

Di

(3.2)

where the transition noise terms are:

nt
S i
= −Σ j

(
N t

S i, j
− E[N t

S i, j
]
)

= −Σ j

(
N t

S i, j
− λS ci jS t

iI
t
j/N j

)
nt

Ei
= −
(
N t

Ei
− E[N t

Ei
]
)
+ Σ j

(
N t

S i, j
− E[N t

S i, j
]
)

= −
(
N t

Ei
− λEEt

i

)
+ Σ j

(
N t

S i, j
− λS ci jS t

iI
t
j/N j

)
nt

Ii
=
(
N t

Ei
− E[N t

Ei
]
)
−
(
N t

Ri
− E[N t

Ri
]
)
−
(
N t

Di
− E[N t

Di
]
)

=
(
N t

Ei
− λEEt

i

)
−
(
N t

Ri
− λRIt

i

)
−
(
N t

Di
− λDIt

i

)
nt

Ri
=
(
N t

Ri
− E[N t

Ri
]
)
=
(
N t

Ri
− λRIt

i

)
nt

Di
=
(
N t

Di
− E[N t

Di
]
)
=
(
N t

Di
− λDIt

i

)

(3.3)

Similarly, the observation model can be rewritten in the standard form (3.1):

Pt
i = β ε

t
2

(
1 − εt

4

)
It
i + β ε

t
1

(
εt

4It
i + Et

i

)
+ α εt

1

(
1 − εt

3

) (
S t

i + Rt
i

)
+ α εt

2ε
t
3

(
S t

i + Rt
i

)
+ vt

Pi

Qt
i = βDt

i + vt
Qi

(3.4)

where the observation noise terms are:

vt
Pi
= N t

T Pi
− E[N t

T Pi
] + N t

FPi
− E[N t

FPi
]

= N t
T Pi
− β (εt

2(1 − εt
4)It

i + ε
t
1(εt

4It
i + Et

i))
+ N t

FPi
− α (εt

1(1 − εt
3)(S t

i + Rt
i) + ε

t
2ε

t
3(S t

i + Rt
i))

vt
Qi
= Dt

T Pi
− E[Dt

T Pi
] = Dt

T Pi
− βDt

i

(3.5)
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3.1. Unscented Kalman filter

With the state-space model in the standard format (3.2), one can apply the Unscented Kalman
Filter (UKF) algorithm [33,37,38] to estimate the state variables (S t

i, E
t
i , I

t
i ,R

t
i,D

t
i) from the noisy data

(Pt
i,Q

t
i) of new cases and cumulative deaths in geographical area i at time t. The UKF assumes that

the statistics of the state variables at time t = 0 are known (in practice, these values need to be only
very roughly guessed since, as the time t increases, the UKF generally “forgets” the information in
the initial state). It also assumes that all the parameters are known; however, in the next section we
describe a methodology to estimate the parameters from the data as well.

In the UKF algorithm, mt|t and Pt|t denote the estimates at time t of the mean and error covariance
matrix, respectively, of the state vector Xt = (S t, Et, It,R,Dt) using all observed data up to time t
(for brevity, the subscript i used previously to discriminate the region is omitted throughout this
section, since the same process is applied to all regions separately). We initalize the mean vector via
E[I0] = E[E0] = P0, E[R0] = 0, E[D0] = Q0/β, and E[S 0] = N − E[I0 + E0 + R0 + D0], while the
covariance matrix is initialized to the identity matrix. The UKF estimate of the state Xt is mt|t, with
uncertainty given by Pt|t. These estimates are computed by the following iteration:

Initialization: Given the initial observation Y0 = (P0,Q0), let

m0|0 = (N − 2P0 − D0/β, P0, P0, 0, Q0/β) , P0|0 = I . (3.6)

For t = 1, 2, . . . repeat:

Prediction:
1) Generate (2n+1) sigma points,

z0
t−1|t−1 = mt−1|t−1 ,

zi
t−1|t−1 = mt−1|t−1 +

[ √
nPt−1|t−1

]
i
, i = 1, . . . , n ,

zi+n
t−1|t−1 = mt−1|t−1 −

[ √
nPt−1|t−1

]
i−n
, i = n + 1, . . . , 2n ,

(3.7)

where
[ √

nPt−1|t−1

]
i
is the i-th column of the matrix square root.

2) Propagate the sigma points through the state equation:

xi
t = f(zi

t−1|t−1) , i = 0, . . . , 2n (3.8)

3) Compute predicted mean and predicted error covariance:

mt|t−1 =
1
2n

2n∑
i=0

x̂i
t ,

Pt|t−1 =
1
2n

2n∑
i=0

(x̂i
t −mt|t−1) × (x̂i

t −mt|t−1)T +Qt−1 ,

(3.9)

where Qt−1 is the covariance matrix of the transition noise (see the Supplementary Information for its
derivation).
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Update:
1) Update sigma points based on the predicted mean and error covariance:

z0
t|t−1 =mt|t−1 ,

zi
t|t−1 =mt|t−1 +

[ √
nPt|t−1

]
i
, i = 1, . . . , n ,

zi+n
t|t−1 =mt|t−1 −

[ √
nPt|t−1

]
i−n
, i = n + 1, . . . , 2n .

(3.10)

2) Propagate the sigma point through the observation equation:

ŷi
t = h(zi

t|t−1) , i = 0, . . . , n . (3.11)

3) Compute predicted measurement mean, measurement covariance matrix, and cross-covariance
matrix:

µt =
1
2n

2n∑
i=0

ŷi
t ,

St =
1
2n

2n∑
i=0

(ŷi
t − µt)(ŷi

t − µt)T + Rt ,

Ct =
1
2n

2n∑
i=0

(zi
t|t−1 −mt|t−1)(ŷi

t − µt)T ,

(3.12)

where Rt−1 is the covariance matrix of the observation noise (see the Supplementary Information for
its derivation).

4) Compute the filter gain and new state error covariance matrix. Assimilate the observation Yt at
time t to find new state mean vector mt|t:

Kt = CtS−1
t ,

mt|t = mt|t−1 +Kt(Yt − µt),

Pt|t = Pt|t−1 −KtStKT
t .

(3.13)

3.2. Maximum-likelihood adaptive filtering

The UKF algorithm requires that all parameter values be known. The parameters that govern the
proposed model in (3.2) and (2.8) are λS , λE, λR, λD, α, β, ε1, ε2, ε3, and ε4. Of these, α and β are
known, while ε1 through ε4 can be obtained using the procedure described in Section 2.2.2. Among the
λ parameters, some may be known a priori, but others may be unknown. Let θ be a vector containing
these parameters. Accurate estimation of θ from the observed data is key to make the proposed
methodology useful in practice. We estimate θ using maximum-likelihood method in combination
with the UKF, which is known as maximum-likelihood adaptive filtering [39–41].

Let Y0:t = {Y0,Y1, . . . ,Yt} denote the observed data up to time t. The log-likelihood of the model
parameters θ at time t is given by:

Lt(θ) = log pθ(Y0:t) = log
[

pθ(Yt | Y0:t−1)pθ(Yt−1 | Y0:t−2) · · · pθ(Y1 | Y0)pθ(Y0)
]

= Lt−1(θ) + log pθ(Yt | Y0:t−1) ,
(3.14)
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where

pθ(Yt | Y0:t−1) = −
1
2

log |2πSt(θ)| −
1
2

VT
t (θ) S−1

t (θ) Vt(θ) , (3.15)

with Vt = Yt − µt. The quantities µt and St are calculated in the UKF recursion. Then, the target is to
maximize the log-likelihood Lt(θ),

θ̂ML = arg max
θ

Lt(θ) . (3.16)

There are several possible ways to address this optimization problem. For example, one can apply
the Expectation-Maximization (EM) algorithm, which is especially effective when there is a closed-
form solution for the “M” maximization step, which avoids recursive gradient calculation. However,
there is no such closed-form solution in our case. Other gradient-based optmization methods did not
produce good results. Instead, we used biology-inspired metaheuristic optimization, in this case, the
Fish School Search (FSS) algorithm [34,35], which we had already applied in our previous work [36].
Metaheuristic optimization algorithms, such as FSS, can find good solutions, in a reasonable amount
of time, of complex, non-linear, and multi-dimensional problems, where traditional gradient-descent
optimization is not effective [42–44]. A brief description of the FSS algorithm is found in the
Supplementary Information. For more details about the FSS algorithm, please see [34–36].

4. Numerical experiments

In this section, we present the results of numerical experiments, using synthetic and real data from
the state of Texas in the United States. We divided Texas into 11 regions, based on the Texas Health
and Human Services (HHS) regional map.

Sections 4.1 and 4.2 assume the parameter values displayed in Table 1 (unless stated otherwise).
We initialize 100 individuals in the exposed state in region 1. The COVID-19 test false positive rate α
and false negative rate 1− β are based on [45]; the infection rate λS is an assumption; mean incubation
period 1/λE, and mean recovery time 1/λR are consistent with the Center for Disease Control and
Prevention (CDC) data [46, 47]; while the mortality rate λD is based on publicly reported data [48].
The values for εt

1 through εt
4 are computed as described in Section 2.2.2. On the other hand, in Section

4.3, the methodology was applied to real COVID-19 epidemic data.

Table 1. Parameter values for numerical experiments (section 4.1, 4.2).

Parameter Value Reference
Test false positive rate (α) 0.01 [45]

Test false negative rate (1 − β) 0.15 [45]
Infection rate (λS ) 0.4 Assumption

Mean incubation period (1/λE) 10 (days) [46]
Mean recovery time (1/λR) 14 (days) [47]

Mortality rate (λD) 0.01 [48]
εt

1, ε
t
2, ε

t
3, ε

t
4 0.03, 0.1, 0.1, 0.2 Section 2.2.2
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Figure 1. Prediction of COVID-19 spread over the state of Texas after 1, 60, 90, and 100
days from initial infection.
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4.1. Forward prediction of epidemic dynamics

Here we illustrate the proposed model’s ability to predict the spatial and temporal dynamics of
epidemic, assuming the parameter values displayed in Table 1. We ran the model for a period of 200
days. Figure 1 displays the results at day 1, day 60, day 90, and day 100. In this simulation, the
epidemic is assumed to have originated in region 1 with only a few infective individuals, as can be
seen in the upper left diagram of Figure 1. After 60 days, the pandemic has spread to other regions,
but it is still very limited. However, after 90 days, i.e., only 30 days after the previous snapshot, the
epidemic has spread much more widely, especially in the originating region 1, as well as regions with
large populational density, e.g., region 3 and region 6, which is where Dallas and Houston are located,
respectively. Finally, after only another 10 days, the number of infected individuals has almost doubled.
These results are in agreement with the fact that an epidemic is easier to control at an early stage, and
will spread at an exponential rate if not controlled early [49–51]. These predictions underscore the
need for early-stage public health interventions, such as social distancing, mask wearing, or a limited
lockdown in the critical originating region 1.

4.2. State and parameter estimation from synthetic data

In this section, we investigate the ability of the proposed maximum-likelihood adaptive filtering
methodology in recovering both the hidden state and all unknown parameters of the pandemic from
a synthetic time series of reported new cases and deaths. The synthetic data allow us to evaluate the
performance of the methodology against the simulated ground truth.

In the first experiment, we assume that the parameter values are known (see Table 1) and evaluate
the ability of the filtering methodology to recover the hidden SEIRD state from the synthetic times
series. Although in practice not all parameters would be known, this experiment allows us to evaluate
the pure state estimation capabilities of the algorithm. Figure 2 displays the results over region 1 (the
behavior was similar over all other regions). We can see that the maximum-likelihood adaptive filter
can track the state evolution remarkably well. This is confirmed quantitatively by the relative error,
defined as

relative error =
| estimated state − true state |

true state
,

which is displayed in Table 2 for a few time snapshots. We can see that the errors are small, with the
exception of early in the epidemic, when not enough data has been accumulated yet.

Table 2. Relative error with all parameter values known.

Parameter day 10 day 25 day 40 day 55 day 70 day 85 day 100 day 115 day 130
Susceptible (S ) 0.001 0.003 0.010 0.038 0.104 0.139 0.096 0.068 0.052

Exposed (E) 0.169 0.175 0.137 0.089 0.004 0.071 0.099 0.104 0.107
Infected (I) 0.311 0.137 0.140 0.107 0.050 0.022 0.061 0.079 0.091

Recovered (R) 0.53 0.193 0.154 0.134 0.092 0.046 0.017 0.004 0.001
Deceased (D) 0.711 0.261 0.029 0.095 0.077 0.041 0.015 0.001 0.005

In the second experiment, we remove the assumption that the infection rate, mean recovery time, and
mortality rate parameters are known, and evaluate the performance of the methodology in recovering
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Figure 2. State estimation in region 1 with all parameter values known.

the values of these parameters. This is a difficult problem, since the states are also unknown, and the
algorithm must perform simultaneous state and parameter estimation. Table 3 shows that the algorithm
produced estimated parameter values that are close to the groundtruth values. Figure 3 displays state
estimation results when the estimated parameters are plugged in for the unknown parameters. We can
see that the results are not quite as good as the case where all parameters are known in Figure 2, but
the proposed methodology is still able to track the state evolution relatively well. The relative errors in
Table 4 is still very small in many cases. Once again, the error tends to be larger early in the epidemic
because not enough data has been accumulated. In addition, some of the states, such as number of
susceptible and exposed individuals, become very small near the end of the time interval, which makes
the relative error increase.

Table 3. Parameter estimation with synthetic data.

Parameter Groundtruth Estimated Value
Infection rate (λS ) 0.4 0.451

Mean recovery time (1/λR) 14 (days) 12.05 (days)
Mortality rate (λD) 0.01 0.0121

4.3. State and parameter estimation using Johns Hopkins University COVID-19 data

In this experiment, we demonstrate the performance of the proposed algorithm on Texas COVID-
19 data from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University
(JHU) [52]. Due to the presence of delayed reporting, there is often incorrect data in the early part of
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Table 4. Relative error analysis with all parameter values unknown.

Parameter day 10 day 25 day 40 day 55 day 70 day 85 day 100 day 115 day 130
Susceptible (S ) 0.001 0.005 0.024 0.115 0.325 0.386 0.191 0.038 0.181

Exposed (E) 0.280 0.357 0.379 0.309 0.019 0.228 0.303 0.320 0.332
Infected (I) 0.299 0.191 0.261 0.241 0.051 0.209 0.369 0.469 0.546

Recovered (R) 0.775 0.449 0.470 0.495 0.400 0.217 0.094 0.034 0.009
Deceased (D) 0.684 0.013 0.369 0.483 0.409 0.236 0.112 0.050 0.024

Figure 3. State estimation in region 1 using estimated parameter values.

the week and corrections at the end of the week. To address this, we consider the time unit to be week,
not day, and average the daily reported data (from Sunday to Saturday) to produce one data point for
the week. The data used in this experiment is from the week of Oct 4th, 2020 to the week of Feb 1st,
2021, which is from the third (Fall 2020) wave of the COVID-19 epidemic in the United States.

In this experiment, we only use data from four large regions (3, 6, 7, 8), which contain Dallas,
Houston, Austin and San Antonio, which are the most reliable data available. The population
movement parameters ci j of those four areas were calculated using the gravity model, as explained
in Section 2.2.1, where the “gravitational constant” is set such that the probability of an individual
moving between regions on a given day is equal to 1%. This produced the following calculated values
for ci j:

c =


1 0.0018 0.0032 0.0006

0.0018 1 0.003 0.0007
0.0032 0.003 1 0.0007
0.0006 0.0007 0.0007 1
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Figure 4. Prediction of new cases using JHU COVID-19 data over region 3. The blue line
represents the actual observed data, the red dashed line are the predicted values in the time
interval where the observed data is known.

We assume that only the test false positive rate, false negative rate and the mean incubation time are
known. However, the value of the latter in Table 1 is based on a daily time unit, so here the value used
is λE = 10/7 = 0.7. If desired, all estimated rates obtained by the algorithm in this experiment can be
divided by 7 in order to obtain daily rates.

Table 5. Estimated parameters for Texas Fall 2020 wave using JHU COVID-19 data.

Parameter Region 3 Region 6 Region 7 Region 8
Infection rate (λS ) 0.16 0.16 0.16 0.16

Mean recovery time (1/λR) 9.92 days 10.52 days 10.85 days 10.95 days
Mortality rate (λD) 0.0111 0.00992 0.0135 0.0112

In addition, unlike in the experiment with synthetic data, we have no groundtruth for the states or
parameters. In order to evaluate the performance of the algorithm, we use the estimated values of states
and parameters to predict the time series of observed data and check its agreement with the actual JHU
data. These plots are displayed in Figures 4 and 5 for region 3 (the plots for other regions are in the
Supplementary Information). In all cases, the state vector was initialized using the procedure described
in Section 3.1, which produced the value m0|0 = (7717644, 1574, 1574, 0, 3591). Table 5 displays the
estimated values of the parameters. These results indicate that our model can accurately estimate the
hidden states and unknown parameters. The value for the infection rate is the same over all regions, by
assumption; however, Figures 4 and 5 provide evidence that this is a reasonable assumption.
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Figure 5. Prediction of cumulative deaths using JHU COVID-19 data over region 3. The
blue line represents the actual observed data, the red dashed line are the predicted values in
the time interval where the observed data is known.

4.4. Discussion

Compared with the standard SEIRD model, which assumes that the states of the epidemic can be
observed directly, our stochastic state-space model realistically treats these states as hidden and only
indirectly observed from the reported data. The proposed methodology is also able to incorporate
detailed information about the testing procedure, such as false positive and false negative test rates
and differential testing rate between symptomatic and asymptomatic patients. Contrary to standard
models which consider reported cases as the true state of the epidemic, our model accounts for the
impact of unobserved, undiagnosed cases on epidemic prediction. In so doing, our model provides a
more accurate understanding of epidemic dynamics than models that ignore the effect of unobserved
variables.

Our model has limitations, which can be addressed by future work. First, our model does not
consider vital dynamics such as birth and death from other causes. Provided that the model is run over
a short interval of time, such as an isolated wave in the epidemic, the results will not be affected too
much; in addition, new born play an insignificant role in COVID-19 spread. Second, we assume that
individuals infected with COVID-19 will develop life-long immunity. Though some epidemiological
data have indicated evidence of COVID-19 reinfections, in most cases immunity persist for at least
eight months. Therefore, we believe that this assumption has a marginal impact on our results,
provided once again that the model is run over a short enough time interval. Third, our model ignored
the impact of age on COVID-19 epidemiological parameters such as infection rate, disease severity
(symptomatic vs asymptomatic), mortality rate, recovery rate, and testing rate. Age-specific infection
rate and disease-induced complications have been observed during the ongoing COVID-19 pandemic
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and considered to play an import role in disease transmission and the design of public health policies.
Fourth, our model in its current form assumes that connection between the different regions can be
modeled with a simple gravity commuting model [28–30]. This limitation can be addressed by using
empirical population mobility data. Finally, Our model did not consider potential temporal changes of
parameters over time, e.g., the mortality rate may be be high and recovery rate low at the beginning
of an outbreak because of lack of effective treatments, or public behavior, such as social distancing
and mask wearing, may vary over time. Also, in the case of the Fall 2020 wave, it is known that mass
vaccination began at the end of this wave (December 2020), which very likely had a major impact in
the disease transmission parameters. Hence, the estimated parameter values reflect average rates over
the time interval in consideration.

5. Conclusions

We proposed a novel stochastic metapopulation state-space model for COVID-19 transmission,
based on a discrete-time SEIRD model, which is able to estimate the hidden epidemic states and
transmission parameters from a noisy time series of reported epidemiological data, by applying
unscented Kalman filtering (UKF), Maximum Likelihood (ML) adaptive filtering, and metaheuristic
optimization. We reported results from a comprehensive set of experiments, using synthetic data and
real epidemic data to demonstrate that our model can estimate parameters and predict future trends
accurately and effectively. The proposed framework was applied to the state of Texas in the United
States, using data from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University. It can also be applied to any city, state, and nation by providing the necessary time series
data (e.g., reported cases, deaths, and testing rates). The proposed methodology may provide a valuable
tool for revealing the current epidemic status through accurate estimated states and disease transmission
parameters, improving the ability of authorities to make informed decisions on public health measures
to contain the disease.
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Supplementary Information

1. Calculation of the covariance matrix Q of the process noise.

Covariance matrix Qt is a 5 by 5 square matrix giving the covariance between each pair of elements
of the state process noise vector (nt

S i
, nt

Ei
, nt

Ii
, nt

Ri
, nt

Di
) for a specific region i at time t.

Diagonal elements of the covariance matrix contain the variances of each variable, which are
calculated as:
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Di

) = It
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The off-diagonal elements contain the covariances of each pair of variables, which are calculated
as:
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Cov(nt
Ri
, nt

Di
) = −It

iλRλD (5.10)

The remaining elements will be zero.

2. Covariance of the observation noise (R)

Covariance matrix Rt is a 2 by 2 square matrix giving the covariance between each pair of elements
of the observation noise vector (vp

t
i, vq

t
i) for a specific region i at time t.

Similarly, diagonal elements of the covariance matrix contain the variances of each variable, but all
the off-diagonal elements will be zero.

var(vp
t
i) = ε

t
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3)(S t
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t
3(S t
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t
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4It
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var(vq
t
i) =Dt

iβ(1 − β)

(5.11)

3. Fish school search algorithm

Fish school search (FSS) is a population-based continuous optimization algorithm, which is
inspired by the collective behavior of natural fish schools that expand and contract while searching
for food. In the FSS algorithm, the objective is to find a model that maximizes a given score or
fitness. Each candidate model, i.e., each candidate parameter vector θ, corresponds to a particle or
“fish”. An ensemble of candidate solutions is a “school,” which is iteratively updated by a series
of biologically-inspired moves, namely, (1) an individual movement operator for each fish (a small
random perturbation), (2) a feeding operator that updates the weight of all fish based on the fitness
improvement from the previous step, (3) a collective instinctive movement operator that makes the
fish that had successful individual movements influence the collective direction of movement of the
school, and (4) a collective volitive movement operator when the fish move in concert, depending on
whether the fish school is successful after the previous steps, i.e., its total weight increases, or not. If
the fish school is successful, then it should contract, changing from exploration to exploitation mode.
Otherwise, it should expand in order to explore the space more. This process is repeated for either a
fixed number of iterations or until there is no significant improvement in the score.
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4. State and parameter estimation using Johns Hopkins University COVID-19 data

Figure 6. Prediction of new cases using JHU COVID-19 data over region 6. The blue line
represents the actual observed data, the red dashed line are the predicted values in the time
interval where the observed data is known.

Figure 7. Prediction of cumulative deaths using JHU COVID-19 data over region 6. The
blue line represents the actual observed data, the red dashed line are the predicted values in
the time interval where the observed data is known.
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Figure 8. Prediction of new cases using JHU COVID-19 data over region 7. The blue line
represents the actual observed data, the red dashed line are the predicted values in the time
interval where the observed data is known.

Figure 9. Prediction of cumulative deaths using JHU COVID-19 data over region 7. The
blue line represents the actual observed data, the red dashed line are the predicted values in
the time interval where the observed data is known.
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Figure 10. Prediction of new cases using JHU COVID-19 data over region 8. The blue line
represents the actual observed data, the red dashed line are the predicted values in the time
interval where the observed data is known.

Figure 11. Prediction of cumulative deaths using JHU COVID-19 data over region 8. The
blue line represents the actual observed data, the red dashed line are the predicted values in
the time interval where the observed data is known.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7685–7710.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical model
	Classical SEIRD model
	Covid-19 epidemic metapopulation state-space model
	State model
	Observation model


	Covid-19 epidemic state and parameter estimation
	Unscented Kalman filter
	Maximum-likelihood adaptive filtering

	Numerical experiments
	Forward prediction of epidemic dynamics
	State and parameter estimation from synthetic data
	State and parameter estimation using Johns Hopkins University COVID-19 data
	Discussion

	Conclusions

