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Abstract: The ‘Ending the HIV Epidemic (EHE)’ national plan aims to reduce annual HIV incidence 
in the United States from 38,000 in 2015 to 9300 by 2025 and 3300 by 2030. Diagnosis and treatment 
are two most effective interventions, and thus, identifying corresponding optimal combinations of 
testing and retention-in-care rates would help inform implementation of relevant programs. 
Considering the dynamic and stochastic complexity of the disease and the time dynamics of decision-
making, solving for optimal combinations using commonly used methods of parametric optimization 
or exhaustive evaluation of pre-selected options are infeasible. Reinforcement learning (RL), an 
artificial intelligence method, is ideal; however, training RL algorithms and ensuring convergence to 
optimality are computationally challenging for large-scale stochastic problems. We evaluate its 
feasibility in the context of the EHE goal. We trained an RL algorithm to identify a ‘sequence’ of 
combinations of HIV-testing and retention-in-care rates at 5-year intervals over 2015-2070 that 
optimally leads towards HIV elimination. We defined optimality as a sequence that maximizes quality-
adjusted-life-years lived and minimizes HIV-testing and care-and-treatment costs. We show that 
solving for testing and retention-in-care rates through appropriate reformulation using proxy decision-
metrics overcomes the computational challenges of RL. We used a stochastic agent-based simulation 
to train the RL algorithm. As there is variability in support-programs needed to address barriers to care-
access, we evaluated the sensitivity of optimal decisions to three cost-functions. The model suggests 
to scale-up retention-in-care programs to achieve and maintain high annual retention-rates while 
initiating with a high testing-frequency but relaxing it over a 10-year period as incidence decreases. 
Results were mainly robust to the uncertainty in costs. However, testing and retention-in-care alone 
did not achieve the 2030 EHE targets, suggesting the need for additional interventions. The results 
from the model demonstrated convergence. RL is suitable for evaluating phased public health decisions 
for infectious disease control.  
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1. Introduction 

The human immunodeficiency virus (HIV) continues to persist as a major public health issue 
in the United States (US), with about 1.2 million people living with HIV (PWH) as of 2015 and 
about 38,000 becoming newly infected each year [1]. The 2019 ‘Ending the HIV Epidemic (EHE)’ 
US national strategic plan aims to reduce new infections by about 75% (to 9300 cases) by 2025 and 
by about 90% (to 3000 cases) by 2030 [2,3], by scaling-up four strategies, diagnose, treat, prevent, and 
respond [2]. Diagnoses followed by antiretroviral therapy (ART) treatment are key interventions as, in 
addition to being therapeutic, they can reduce HIV transmissions by up to 100% [4]. Since the 
implementation of the first national strategic plan in 2010, national guidelines have recommended at 
least annual testing for high-risk populations [5] and treatment initiation immediately upon diagnosis. 
However, estimates from the National HIV Surveillance System (NHSS) indicate that actual testing is 
less frequent than recommended, e.g., 3 to 5 years among those diagnosed with HIV in 2015 [6,7]. 
Further, though an estimated 70 to 80% of persons diagnosed with HIV were linked to care-and-
treatment upon diagnosis, only 48% were on ART treatment in 2015, indicating high rates of care 
drop-out [8].  

In this study, we develop a model to identify an optimal sequence of combinations of testing and 
retention-in-care rates at every 5-year interval from 2015 to 2070, to reduce HIV incidence. Identifying 
optimal testing rates, which is the inverse of how often to test, helps inform testing guidelines and 
implement social support and outreach programs to enable uptake [9]. Identifying optimal retention-
in-care rates, which is the proportion of persons in care at the end of the year from among those in care 
at the beginning of that year, helps inform social service and support programs necessary to reduce the 
current high rates of care drop-out [10]. Identifying risk-group specific testing and retention-in-care 
rate combinations help direct resources to relevant support programs. We use non-linear cost 
functions to assign fixed and variable costs of testing and retention-in-care. To model the need for 
additional outreach and social support services to address barriers to testing and sustained care-and-
treatment [11–13], we assume that the variable unit costs increase non-linearly with testing and 
retention-in-care rates [14,15]. As the type of service program-needs and its effectiveness vary by 
population [16], we utilize varying cost functions to generate the uncertainty range in optimal decisions. 

Previous studies that have evaluated combinations of testing and retention-in-care rates have 
identified the most cost-effective combinations through either use of comparative analysis to evaluate 
a few pre-selected scenarios in stochastic simulation models [17–19], use of static parametric optimization 
techniques to evaluate non-dynamic decisions suitable for short-term decision-making [20,21], or use of 
dynamic optimal control techniques that evaluate dynamic decisions but using deterministic 
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differential equation-based models [20–22]. Our approach evaluates dynamic decision sequences in a 
stochastic and dynamic agent-based simulation environment through formulating the problem as a 
Markov decision process (MDP) and solving using reinforcement learning (RL), an area of artificial 
intelligence [23–25]. This methodology enables both simulating the dynamic changes in the epidemic 
over time while also evaluating the corresponding dynamic changes in decisions over time in a 
stochastic environment to identify the most optimal sequence choices to reduce new infections. We 
use a previously validated Progression and Transmission of HIV (PATH 2.0) model [26], a dynamic 
stochastic agent-based model, to simulate the epidemic and evaluate the decisions. Previous RL models 
in HIV have focused on patient-level clinical decisions such as optimal treatment protocols [27,28]. 
Recent literature has seen an emergence in the use of RL for public health decision-making related to 
the COVID-19 pandemic, but they predominantly use deterministic equation-based model 
environments [29–34]. While deterministic models are suitable for diseases that spread easily, agent-
based models are more suitable for capturing the individual-level interactions for slow-spreading 
diseases such as HIV [35]. However, a combination of agent-based models and RL creates 
computational challenges. The number of iterations of RL training needed to ensure convergence 
increases exponentially with the size of the possible choices (22511 possible sequences in this 
application), and agent-based models are computationally expensive (e.g., each iteration of PATH 2.0 
takes about 30 minutes). To overcome this challenge, we reformulate the decision variables to use 
proportions unaware and on ART as proxies, proving its mathematical viability, which reduces the 
number of choices to 3611. To the best of our knowledge, this is the first model to evaluate the EHE 
goal of HIV elimination as a sequential decision-making problem in a stochastic dynamic environment 
and is naturally suited for informing the sequential goals of the US national plan. 

2. Methodology 

An MDP is a stochastic formulation of a decision-making problem, and RL is a machine learning 
methodology that uses 1) a simulation model to evaluate a policy (sequence of decisions) and 2) a 
control optimization algorithm to control the selection of policies to evaluate [36]. We used the 
Progression and Transmission of HIV/AIDS (PATH 2.0), a stochastic dynamic agent-based simulation 
model [26], and Q-learning RL algorithm [36,37]. We describe the MDP formulation in Section 2.1, 
and the RL algorithm in Section 2.22. 

2.1. Mathematical formulation of the decision-making problem as an MDP 

Let epidemic state at time 𝑡 be a multivariate parameter 𝑋  𝑝 , 𝜇 , , 𝜇 , , 𝜇 , ; ∀𝑖 , where 

 𝑝  is the HIV prevalence calculated as the number of people living with HIV (PWH) in risk 

group 𝑖  divided by the total number of people in the population; we modeled two risk groups, 

heterosexuals (HETs) and men who have sex with men (MSM), thus 𝑖 ∈  HETs, MSM , and 

 𝜇 ,  , 𝜇 ,  , 𝜇 ,   are the proportions of PWH in risk group 𝑖  that are unaware of their 

infection, aware of their infection but not on ART, and aware and on ART, respectively, and 𝜇 ,

 𝜇 , 𝜇 , 1; ∀𝑖, thus representing all stages along the care-continuum.  
Note that, for HIV prevalence 𝑝 , we use the total population size as the denominator instead of the 
commonly used public health definition that uses the population size in that specific risk group 𝑖 as 
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the denominator. This modification makes the state space mutually exclusive and collectively 
exhaustive, a necessary property for an MDP. 

Let the intervention decision at time 𝑡  be a multivariate parameter 𝐷 𝛿 , 1 𝜌 ; ∀𝑖  , 
where 𝛿  is the diagnostic rate and 1 𝜌  is the retention-in-care rate in risk group 𝑖, where 𝑖 ∈
 HETs, MSM . 

Then, 𝑋 , 𝐷 : 𝑡 0: T 2015, 2020, 2025, … ,2070   is an MDP defined with a 4-tuple 
Ω, A, 𝑃 , 𝑅 , where, 

 Ω  is the state space, defined as the set of all possible states of the epidemic, i.e., Ω

 𝑝 , 𝜇 , , 𝜇 , , 𝜇 , ; ∀𝑖 ∈  HETs, MSM  and 𝑋 ∈ Ω, 

 𝐴 is the action space, defined as the set of all possible decisions (referred to as actions in 
MDP terminology), i.e., 𝐴 𝛿 , 1 𝜌 , ∀𝑖 ∈ HETs, MSM , and 𝐷 ∈ A, 

 𝑃  is the one-step transition probability matrix under action 𝑎, with element 𝑃 𝑥, 𝑥  being 
the probability that the epidemic transitions from state 𝑋 𝑥 to 𝑋 𝑥  when action 𝑎 is taken, 
and 

 𝑅   is the immediate reward matrix under action 𝑎 , with element 𝑅 𝑥, 𝑥   being the 
immediate reward (total benefits minus total costs) of taking action 𝑎 when the epidemic is in state 
𝑥 and, as a result, it transitions to state 𝑥 ; we model costs as intervention costs and benefits as the 
total quality-adjusted life-years (QALYs) lived in the population. 

Note that the epidemic at any time 𝑡  can be represented by one and only one state, and the 
probability of transitioning to an epidemic state 𝑥  at time 𝑡 1 is only dependent on the epidemic 

state 𝑥  at time 𝑡 , i.e., 𝑃𝑟 𝑋 𝑋 , 𝑋 , 𝑋 , … 𝑃𝑟 𝑋 |𝑋  , thus satisfying the necessary 

Markov property for the MDP. Also, note that we use 𝑡 0: T 2015, 2020, 2025, … ,2070  to 
denote that we evaluate decisions at every five-year interval (consistent with the decisions made in the 
EHE national strategic plan). The initial year is 𝑡 0 𝑦𝑒𝑎𝑟 2015, and thus, the first decision-
making interval is for the period 2016 to 2020. We chose 2015 as the start year because, at the time of 
model development, the latest surveillance data available for HIV was 2016. 

The objective is to identify the optimal decision 𝒅 ∈ 𝑑 , . . , 𝑑  (referred to as an optimal policy 
in MDP terminology) that maximizes the expected reward, i.e.,  

                  𝒅 𝑎𝑟𝑔 𝑚𝑎𝑥 𝔼
                                      ,..,

𝛾 𝑅  𝑥, 𝑥             1  

where, 𝛾  is the discounting factor, and 𝔼 .   is the expected value. Thus, 𝒅  is the sequence of 
optimal actions at 5-years intervals over the period 2016 to 2070. Conceptually, Eq (1) suggests that 
the decision 𝑑  at every decision-making epoch 𝑡 is evaluated not just based on its costs and impacts 
during the current epoch (𝑅  𝑥, 𝑥 , but is also based on the costs and impacts of decisions that 
would have to be made in all future decision epochs ( 𝑑 , 𝑑 , … 𝑑 ) to eliminate HIV, while also 
optimizing those future decisions. Intuitively, a policy that leads to zero new infections will be optimal 
if it has the lowest future costs and the highest benefits (QALYs), though it may have higher immediate 
costs. Under this objective function, it is necessary not to discount future costs and benefits as 
discounting would diminish the weight given to infections averted and costs prevented in the future. 
Thus, discounting may not identify strategies that lead to HIV elimination. Therefore, we set 𝛾 1. 
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The problem of solving for the optimal policy 𝒅  can be visualized as a decision-tree (Appendix 
Section 1 Figure A1), with the epidemic state in 2015 being the start node, actions (𝑎 ) being the 
decision nodes, epidemic state the decision transitions it to in next 5-year interval being the chance 
nodes (with the probability of transition defined by 𝑃  and value of the outcome defined by 𝑅 ), the 
possible epidemic states in 2070 being the end nodes, and a policy being a path or a sequence of 
decisions in the decision-tree. Analytically estimating the outcome of each decision path is complex 
as the dynamics of the system makes estimating 𝑃  and 𝑅  complex. It is also sometimes impractical 
because of the large dimensions of the state space and action space, as will be seen in below 
formulation of the 4-tulpe Ω, A, 𝑃 , 𝑅 . Therefore, we solve for the optimal policy 𝒅 using RL (see 
Section 2.2).  

We next discuss the formulation of each element of the 4-tulpe Ω, A, 𝑃 , 𝑅 . 

State space 

We formulate the state space Ω  𝑝 , 𝜇 , , 𝜇 , , 𝜇 , ; ∀𝑖 ∈  HETs, MSM  as a finite state space 

by discretizing each of its elements as follows, 

𝑝 ∈
0,0.0005 , 0.0005,0.0015 , 0.0015,0.0025 , 0.0025,0.0035 ,

 0.0035,0.0045 , 0.0045,0.0055 , 0.0055 
, 

𝑝 ∈
0,0.0005 , 0.0005,0.0015 , 0.0015,0.0025 , 0.0025,0.0035 , … ,

0.0085,0.0095 , 0.0095,0.015 , 0.015 
, 

𝜇 ,  ∈ 10%, 11.25% , 11.25%, 13.75% , 13.75%, 16.25% , 10% ∪ 16.25% , 

𝜇 ,  ∈ 10%, 11.25% , 11.25%, 13.75% , 13.75%, 16.25% , 16.25%, 18.75% , 10% ∪ 
18.75% , 

𝜇_ 𝐴𝑅𝑇, 𝑖 ∈ 85%, 95% , 75%, 85% , 65%, 75% , 55%, 65% , 45%, 55% , 95% ∪ 
45% , 

𝜇 ,  1 𝜇 , 𝜇 , , 

thus, making the state a categorical value instead of a numerical value, e.g., the epidemic is assigned 
the state  

0,0.0005 , 0.0085,0.0095 , 11.25%, 13.75% , 10%, 11.25% , 45%, 55% , 55%, 65%  

when 

𝑝 ∈ 0,0.0005 , 𝑝 ∈ 0.0085,0.0095 , 𝜇 , ∈  11.25%, 13.75% , 

𝜇 , ∈ 10%, 11.25% , 𝜇 , 45%, 55% , 𝜇 , 55%, 65% . 

Note that we exclude 𝜇 ,  in the notation as it is redundant and can be calculated as 

𝜇 ,  1 𝜇 , 𝜇 , . 

Further, note that any state with at least one element in the open range (last element in each of the 
discretized ranges of 𝑝 , 𝜇 , , 𝜇 , , 𝜇 , ) is either not desirable, i.e., takes the epidemic to a worse 
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state than current, or exceeds the feasibility constraint (see Constraints below), and thus, should be 
avoided. Therefore, we combine those into a single state, say Δ. The epidemic is assigned the state Δ 
when 𝑝 0.0055  or 𝑝 0.015  or 𝜇 , 10%  or 𝜇 , 16.25%   or 𝜇 ,

10%  or 𝜇 , 18.75%  or 𝜇 , 45%  or 𝜇 , 45%  or 𝜇 , 95 % or 
𝜇 , 95%. 

As state Δ is representative of all epidemic states we want to avoid, we associate it with a very 
large cost, such that any action that would take the epidemic to that state would have a high negative 
reward and thus be marked as a bad decision. The upper bounds on 𝑝 , 𝜇 ,  and lower bounds on 
𝜇 ,  are set to values in 2015 to indirectly constrain the decisions to lead to a better epidemic state. 
Considering all the possible combinations of the discretized values, noted above for 
𝑝 , 𝑝 , 𝜇 , , 𝜇 , , 𝜇 , , 𝜇 , , there are a total of 16,500 ( 5 11 3 4 5
5  states excluding Δ. Hence, the final size of the state space is |Ω| 16,500 1. 

Action space  

Instead of directly formulating an action as a combination of diagnostic rate (δ ) and retention-
in-care rate 1 𝜌  , which is the decision of interest here, we formulate it using changes in 
proportions unaware and on ART as a proxy, i.e., instead of using action space as A

𝛿 , 𝛿 , 1 𝜌 , 1 𝜌  we use a proxy as  

𝐴  𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , ,  

where, 𝑎 ,  is the percentage decrement in 𝜇 ,  (the proportion unaware in risk group 𝑖), and 
𝑎 ,  is the percentage increment in 𝜇 ,  (the proportion on ART in risk group 𝑖). 

We formulated the action space as above because of its attractive mathematical properties that 
help efficiently constrain the number of action choices and thus improve the chance of convergence of 
the RL algorithm. We discuss these mathematical properties through four Remarks as follows. 

Remark 1: Given the system state 𝑥  at time t 1 , ( 𝑋 𝑥 ), corresponding to every 
action 𝑎 ,  , there is a unique diagnostic rate (δ  ) and corresponding to every action 𝑎 , , 
there is a unique retention-in-care rate 1 𝜌 . 

Remark 2: From a public health perspective, all actions that transition the epidemic state to a 
higher proportion unaware (𝜇 , ) or to a lower proportion on ART (𝜇 , ), compared to its current 
state, are undesirable and should not be selected. 

Remark 3: Setting the action space to use 𝑎 ,  and 𝑎 ,  instead of diagnostic rate and 
retention-in-care rate, respectively, helps efficiently control the number of possible actions 
(interventions) and thus is more computationally efficient.   

Remark 4: Setting the action space to use 𝑎 ,   and 𝑎 ,   instead of changes in the 
diagnostic rate and retention-in-care rate, respectively, over two consecutive decision-making time-
steps, also helps efficiently control the number of possible actions and thus is more computationally 
efficient.  

We support Remarks 1 to 4 through proofs in the Appendix Section 3. Briefly, for any given 
epidemic state, corresponding to every combination of 𝑎 ,   and 𝑎 ,  , there is a unique 
combination of diagnostic and retention-in-care rates, which essentially implies that our formulation 

of action as A 𝑎 , , 𝑎 , ; ∀i  would yield the same results as the more direct metrics of 

A 𝛿 , 1 𝜌 ; ∀𝑖  (Remark 1). In fact, for evaluating the proxy action in the simulation, we first 
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estimate the diagnostic and retention-in-care rates (see Appendix Section 2) and use that as input to 
the simulation. We use this estimation method, which generates functional expressions between 
𝛿  and 𝑎 ,  and between 1 𝜌  and 𝑎 ,  through the representation of the system as a 
differential equations model (see Appendix Section 2), followed by showing that the functional 
expressions are bijection functions (see Appendix Section 3) to prove Remark 1. Note that the proxy 
action space elements (𝑎 ,  and 𝑎 , ) directly modify part of the state space elements (𝜇 ,  
and 𝜇 , , respectively), which gives the flexibility to, at any decision time-step, not choose actions 
that would take the epidemic to a state worse than the current (Remark 2), and thus, also avoid 
transitioning into the undesirable state Δ . If on the other hand, we choose 𝛿   and 1 𝜌   as 
elements of the action space, we prove that we have to run the simulation model (~30 mins per run) to 
evaluate what state that action would transition the system into (could be better than current, worse 
than current, or Δ) thus requiring many more evaluations (Remark 3). Remark 4 has a similar purpose 
as Remark 3 except that it evaluates the use of changes in the diagnostic rate and retention-in-care rate 
over two consecutive decision-making time-steps, as the proxies 𝑎 ,   and 𝑎 ,   are also 
decrements or increments (of 𝜇 ,   or 𝜇 ,  , respectively) over two consecutive decision-making 
time-steps.  

We assumed two possible choices for decrements in 𝜇 ,  , decrease by 0 or 2.5%, and three 
possible choices for increments in 𝜇 , , increase by 0, 10, or 20%, each relative to their values at 
the time of decision-making. That is, we formulated the possible action choices as 

𝑎 , ∈ 0%, 2.5%  and 𝑎 , ∈ 0%, 10%, 20% , ∀𝑖 ϵ HETs, MSM  

resulting in 36 possible actions (2 3 for HETs  2 3 for MSM) to choose from at every 5-year 
decision interval between 2015 and 2070, and thus, 36  possible decision sequences. On the other 
hand, if we had directly formulated an action as changes in testing and retention-in-care rates, we would 
in the least have 225 action choices, and thus 225  possible sequences (see Appendix Section 3). The 
size of the action space can exponentially increase the number of RL iterations for convergence (see 
convergence discussion in next section) and thus becomes infeasible to model or guarantee convergence. 

For public health decision-making and implementation, testing rates and retention-in-care rates 
are more meaningful. Therefore, in Results, we present both metrics, the changes in proportions 
unaware and on ART, and the direct metrics of testing rate, estimated from the simulation as the inverse 
of the time from infection to diagnosis (a proxy for how often to test), and retention-in-care rate, 
estimated from the simulation as the proportion retained in care for the entire year among those in care 
at the beginning of that year.  

Transition probabilities and immediate rewards  

Generating the full one-step transition probability matrices 𝑃   and reward matrices 𝑅   is 
infeasible considering the size of the state space and action space. Therefore, we used PATH 2.0 [26], 
discussed later under Simulator, to simulate actions and stochastic transitions, track corresponding 
states it transitions to, and estimate immediate rewards. We estimated the immediate rewards as 
benefits minus costs. We model benefits as the total population quality-adjusted-life-years (QALYs) 
lived converted to a monetary value by multiplying with the US gross domestic product (GDP) per 
capita of $54,000 to denote the economic value added for every QALY lived [9,38,39]. Costs include 
total population costs for HIV testing, care, and treatment. Specifically, we estimated 𝑅 𝑥, 𝑥
𝑐 𝐿 𝐶 , where,  
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𝑐  = cost per QALY lived, a health utility measure to control for the willingness to pay for every 
QALY lived; here we assumed it is equal to $54,000, the GDP per capita in the US in the year 2015, 

𝐿  = sum of QALYs of all people in the population at decision-making epoch 𝑡,  
𝐶  = sum of HIV-related costs and intervention costs at decision-epoch 𝑡. 
We used the PATH 2.0 simulation model for the estimation of 𝐶   and 𝐿  . We present the 

estimation of the unit-costs corresponding to the interventions in Appendix Section 4. 

Constraints 

We set the following constraints, which can be interpreted as cost or feasibility constraints: 
a) The maximum possible decrement in proportion unaware and the maximum possible increment 

in proportion on ART, achievable in a 5-year interval, were set at 2.5 and 20%, respectively, as evident 
from the choice of actions. For reference as to the feasibility of achieving these maximum scale-ups, 
between 2010 and 2015, there was about a 2.3% decrease in proportion unaware (17.3% in 2010 to 
15% in 2014) and a 13.8% increase in proportion on ART (46% in 2010 to 59.8% in 2015 [40,41]). 

b) The maximum proportion aware and maximum proportion on ART were set at about 90 and 95% 
respectively, which are the targets typically aimed in national and global strategic plans [2,42]. 

2.2. Reinforcement learning algorithm to identify optimal policy 

Reinforcement learning (RL) and dynamic programming (DP) are commonly used algorithms to 
solve MDP problems. Applying DP guarantees convergence to the optimal solution; however, it 
requires estimating, under each action, a probability matrix of transitions between all states. In the case 
of large-scale problems such as our current application to HIV, estimating the transition probability 
matrices for all states and actions is computationally infeasible. This curse of dimensionality makes 
DP suitable for only small-scale problems [36]. Therefore, we use Q-learning, a machine learning 
control optimization algorithm that uses an iterative feedback and control process to identify the 
optimal policy. Thus, it does not require a priori knowledge of transition probability matrices and is 
known to converge to near-optimal solutions [36].  

Q-learning algorithm  

In this study, we use PATH 2.0 (‘simulator’) to simulate a specific action and train the Q-learning 
algorithm. The simulator returns as ‘feedback’ to the Q-learning algorithm (‘optimizer’), the 
immediate reward of the action simulated, and the epidemic state it transitions to at the end of the 5-
year period. The optimizer tracks the total reward for the period 2015 to 2070 by summing the 
immediate reward of each 5-year action while also tracking the epidemic states visited. It then controls 
what action should be next taken by observing the total reward of previous actions and sending that 
decision back to the simulator [36,43,44]. By repeating this iterative process a large number of times 
(training the Q-learning algorithm), the optimizer learns to pick a better action each time to eventually 
find the optimal decision.  

The optimizer tracks total reward as Q-values,  

𝑄 𝑥, 𝑡, 𝑎 1 𝛼 𝑄 𝑥, 𝑡, 𝑎 𝛼 𝑅 𝑥, 𝑥 𝛾 max
∈ ,

𝑄 𝑥 , 𝑡 1, 𝑏     (2) 

at every decision epoch 𝑡, given system state as 𝑥, selects the action (𝑎 𝑥, 𝑡  to simulate using a 
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decaying epsilon greedy method,  

𝑎 𝑥, 𝑡  
𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝐴 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

𝑎𝑟𝑔 max
∈ ,

𝑄 𝑥, 𝑡, 𝑏  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 𝜖      (3) 

where 𝑘 is the iteration of the Q-learning algorithm, 𝛼 is a learning rate, 𝛾 is the discounting factor, 
which was set to 1 here, and 

𝜖

. 0.049            𝑘 4000
. 0.049         𝑘 4000

. 

Typically, 𝜖   is set to decrease as 𝑘  increases, thus balancing more exploration of random 
actions in the beginning and exploitation of the greedy actions in future iterations. We additionally 
defined 𝜖  to explore at a higher rate when 𝑘 4000 to test for convergence. We initialize the Q-
values to some constant (𝐶 , i.e., 𝑄 𝑥, 𝑡, 𝑎 𝐶, ∀ 𝑥, 𝑡, 𝑎 , for 𝑘 0. We then iterate over 𝑘 and 
all decision epochs within each iteration to update 𝑄 𝑥, 𝑡, 𝑎  using immediate rewards 𝑅 𝑥, 𝑥  
returned by the simulator at every decision epoch 𝑡 after simulating action 𝑎. The algorithm is 
known to converge to near-optimal solutions when 𝑘 becomes a sufficiently large value [36]. That 
is, the optimal action 𝑠𝑎𝑦 𝑎∗ 𝑥, 𝑡   to be taken at time "𝑡" when the system is in state "𝑥" is 

defined as 𝑎∗ 𝑥, 𝑡 ∈  𝑎𝑟𝑔 max
∈ ,

𝑄 𝑥, 𝑡, 𝑏 .  The schematic of the above iterative training 

process and summary of the above training steps of the algorithm are shown in Appendix Section 5 
(Figure A3 and Table A4 respectively).  

The optimal policy 𝒅 𝑑 , 𝑑 , … 𝑑   would then be identified by also using PATH 2.0 

simulation along with trained Q-values ( 𝑄  . Specifically, we set 𝑑 𝑎∗ 𝑥 , 0  , where 

𝑥 epidemic state in the year 2015, simulate 𝑎∗, and say, the epidemic transitions to state 𝑥  in 
2020, then set 𝑑 𝑎∗ 𝑥 , 1 , simulate that action, and continue this iterative process until 𝑇. As the 
simulation is stochastic, we repeat this process 100 times to generate an uncertainty range. 

Simulator- Progression and Transmission of HIV (PATH 2.0) model  

PATH 2.0 is an agent-based stochastic simulation model that individually tracks HIV-infected 
persons by simulating HIV disease progression through a health-state transition model and sexual 
transmissions of HIV through a novel dynamic transmission model. PATH 2.0 is calibrated to be 
representative of the US HIV epidemic and has been validated to accurately simulate the epidemic for 
the years 2010 through 2015. Details of the model, its validation, and its adoption to inform HIV-
related decisions in the US are presented elsewhere [26,38].  

We used the PATH 2.0 model to simulate an action, 𝑎 𝑥, 𝑡 , selected by the Q-learning algorithm 
at a decision epoch 𝑡 given system state 𝑥, simulate state transitions, and calculate the corresponding 
immediate reward 𝑅 𝑥, 𝑥   by assigning QALYs ( 𝐿  ) and costs ( 𝐶   to every person in the 

simulation. Specifically, for the selected proxy action (𝑎 𝑎 , , 𝑎 , ; ∀i  ), we estimate 

diagnostic and retention-in-care rates (Appendix Section 2), and use PATH 2.0 to simulate diagnosis, 
care-and-treatment, and based on the care status of an infected person, simulate transmissions to their 
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susceptible partners, thus transitioning the epidemic to a new state 𝑥 . We assign a QALY of 1 per 
year if the person is healthy, between 0 and 1 if HIV-infected (varying based on disease stage), and 0 
if deceased [26,38]. Based on estimated diagnostic and retention-in-care rates and the effectiveness of 
the intervention programs, we estimate the number of persons intervened for each program and 
corresponding costs, which are discussed in more detail in Appendix Sections 2 and 4, respectively. 
Briefly, in estimating testing and retention-in-care costs, we made the following assumptions based on 
data from intervention programs [9,39,45]. HIV testing programs can be conducted in clinical or non-
clinical settings, each having its own fixed and variable costs [9,39]. Some people get tested voluntarily 
and incur only the cost of testing, while some get tested as a result of an outreach intervention and thus 
incur additional outreach costs [9], which we modeled as a non-linear function of the number of people 
outreached [15,46]. In accordance with current CDC recommendations, we assumed only persons with 
high-risk are recommended for regular testing and intervened through outreach programs and that 6% 
of heterosexual females, 10% of heterosexual males, and all MSM are high-risk populations [47–49]. 
We assumed a non-linear variable cost function for retention-in-care to model the additional support 
programs needed to retain a larger proportion of people in care. Details of intervention costs are included 
in Appendix Section 4.  

In summary, we assumed that the first decision-making year is 2015 for the period 2016 to 2020, 
and decisions are made at every 5-year interval and solved for a decision sequence that optimally 
reaches close to zero new infections by 2070, i.e., in the Q-learning algorithm 𝑡 ∈
2015, 2020, … , 2070 . We used 2015 as the initial year as per the latest data available at the time of 

model development [26, 38]. However, the time-step of the simulation is monthly. Every iteration (𝑘) 
of the Q-learning algorithm consists of simulating the PATH 2.0 model from 2015 to 2070 in monthly 
time-steps within a feedback and control loop to update Q-values and determine actions to be simulated 
every 5-years. Repeating this process for a large number of iterations, the optimizer learns to pick a 
better action at each iteration eventually converging to an optimal policy. The model is coded in 
NetLogo 6.0.2 software [50]. 

Evaluating convergence of Q-learning algorithm to optimal policy 

An algorithm has converged if it has reached a local optima through the iterative search process, 
i.e., successfully solved for an optimal combination of testing and retention-in-care rates. If the number 
of iterations is not sufficiently large, there is a risk that the algorithm is terminated before convergence. 
The ideal number is typically determined through experimentation. Further, there could be multiple 
local optima, i.e., multiple policies could yield similar total rewards, and because of the stochastic 
nature of the epidemic system, the optimal policy could be a range rather than a point estimate. 
Therefore, we ran the model for varying number of iterations, 2000, 3000, 4000, and 5000, and 
compared the corresponding total rewards (Appendix Section 6, Figures A4 to A13), to ensure 
convergence and obtain the uncertainty range in optimal policies. The relative difference in the average 
costs and QALYs between the varying iterations were at most 2% in each cost function evaluated (see 
cost functions in Uncertainty Analysis Section 3), suggesting convergence. The corresponding optimal 
policies differed slightly, more so in future years than earlier years, suggesting stochastic uncertainty 
as the model projects further into the future. Therefore, in Results, we present the range of optimal 
policies across these iterations as the uncertainty range.  
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3. Uncertainty analysis 

We modeled two types of uncertainty:  
1) The inherent stochasticity in the epidemic system is modeled through: a) the use of PATH 2.0, 

which is a stochastic simulation model where input parameters are drawn from probability distributions 
and events simulated using stochastic functions; b) the use of MDP with Q-learning, which is a 
stochastic control optimization method and; c) the use of varying numbers of MDP iterations (2000 to 
5000), and simulating the optimal policy from each iteration a 100 times to generate the average values 
for output metrics. 

2) The uncertainty in intervention costs is modeled by using three different cost functions, each 
with varying assumptions for the following four unit-costs a) the fixed cost per clinic for a retention-
in-care program, b) the variable cost per person for a retention-in-care outreach program, c) the 
marginal increase in variable cost for a retention-in-care outreach program, and d) the marginal 
increase in variable cost for a testing outreach program [49]. These four parameters were chosen as 
they are related to support programs, which tend to have more variability as the type of support needed 
varies by individual-needs. As the model attempts to find the optimal balance in testing and retention-
in-care rates, we selected a median and alternating bounds of the above four unit cost range to generate 
the overall range in optimal policy from uncertainty in costs. Therefore, we have three cost-functions 
as follows: 

Median (Median Testing and Retention-in-care Costs): Uses the median values for all four 
parameters. 

LTHR (Low Testing High Retention in Care Costs): Uses the lowest value for the testing costs and 
the highest value for the retention-in-care costs. 

HTLR (High Testing Low Retention in Care Costs): Uses the highest values for the testing costs 
and the lowest values for the retention-in-care costs. 

In summary, for each cost-function assumption, we trained the Q-learning algorithm with multiple 

stopping conditions (2000, 3000, 4000, and 5000 iterations). Using the trained Q-values (𝑄 ), for 

each cost function and stopping condition pair, we simulated 100 runs and extracted the average values 
(over the 100 runs) of the optimal policy and corresponding impacts generated, specifically, values for 
the testing rate, retention-in-care rate, proportion of people with HIV (PWH) aware of their infection, 
proportion of PWH on ART, number of new infections, number of PWH, and incremental total costs, 
which are useful metrics from a public health perspective. 

4. Results 

For the end of 2015, the PATH 2.0 simulation model estimated an annual testing rate of 0.26 for 
high-risk heterosexuals and 0.4 for MSM, i.e., an average time from infection to diagnosis of 3.8 years 
for heterosexuals and 2.5 years for MSM. These results closely match the CDC estimates for the time 
from infection to diagnosis in 2015 [6], estimated using data from the NHSS [7]. For the end of 2015, 
the model estimated an annual retention-in-care rate of 86% for heterosexuals and 91% for MSM. 
Figure 1a,b presents the optimal policy for the period 2016 to 2070, specifically the optimal 
combination of testing (bottom) and retention-in-care (top) rates over time for heterosexuals (and 
MSM). Figure 1c,d shows the corresponding proportions aware (top) and on ART (bottom) for 
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heterosexuals (and MSM). The figures present the uncertainty range (shaded bands) for each of the 
three cost function assumptions (Median: blue bands, LTHR: red bands, HTLR: green bands). 

 

Figure 1. Optimal combinations of testing (top lines) and retention-in-care (bottom lines) rates for 

heterosexuals (1a) and MSM (1b) and corresponding proportion aware (top lines) and proportion 

on ART (bottom lines) for heterosexuals (1c) and MSM (1d) for three cost functions of HTLR 

(green), Median (Blue), and LTHR (Red). Results are an average of over 100 simulation runs of 

the optimal policy. The shaded region is the uncertainty around the optimal policy generated by 

the reinforcement learning algorithm. 

For the period 2016 to 2020, under all three cost function assumptions, the model suggests a 
testing rate of 0.2 for high-risk heterosexuals (Figure 1a) and 0.3 for MSM (Figure 1b), equivalent to 
testing once every 5 and 3.5 years, respectively. Over the period 2016 to 2020, under all three cost 
function assumptions, the model suggests aggressive retention-in-care programs to gradually increase 
annual retention-rates from 86 to 94% for HETs (Figure 1a) and from 91 to 96% for MSM (Figure 1b). 
The uncertainty bands for this period, under all three cost function assumptions, for both testing and 
retention-in-care rates are narrow, suggesting a high chance that the algorithm has converged. 
Achieving the above testing and retention-in-care rates corresponded to about 85% of all heterosexual 
PWH and 82% of all MSM PWH being aware of their infection by the end of 2020, and about 70% 
of all heterosexual PWH and 70% of all MSM PWH on ART by the end of 2020 (Figure 1c,d). 
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Figure 2. The number of new infections for heterosexuals (1a) and MSM (1b) and the number of people 

living with HIV for heterosexuals (1c) and MSM (1d) for the HTLR (green), Median (Blue), LTHR 

(Red) cost function assumptions. Results are an average of over 100 simulation runs of the optimal 

policy. The shaded region indicates the uncertainty range in the optimal policy. 

Implementing the combination of testing and retention-in-care rates for the period 2016 to 2020 
generated a 50% reduction in annual new infections among heterosexuals (from 9000 in 2016 to 4500 
by the end of 2020) and a 42% reduction in annual new infections among MSM (from 26,000 in 2016 
to 15,000 by the end of 2020) which is a significant reduction compared to trends over the previous 5-
year period (Figure 2a,b). There was a modest decline in the number of heterosexual PWH, breaking 
the previous trend of growth (Figure 2c). There was modest-growth in the number of MSM PWH, 
which is a shift from the previous high-growth rate but suggests that the number of PWH will continue 
to increase for a short period before declining (Figure 2d). The annual cost of HIV increased by 
about 22% over this period, suggesting a high initial investment to achieve the above reduction in new 
infections (Figure 3). 

For the period 2021 to 2025, compared to the previous 5-year period, the model suggests relaxing 
the frequency of testing while modestly increasing and maintaining a high retention-in-care rate for 
both heterosexuals and MSM and under all three cost function assumptions. Specifically, for 
heterosexuals, the model suggests testing rates of 0.14, 0.11, and 0.18 under the HTLR, Median, and 
LTHR cost assumptions, equivalent to a testing frequency of every 7, 9, and 5.5 years, respectively 
(Figure 1a). For MSM, the model suggests a testing rate of around 0.15 under all three cost function 
assumptions, equivalent to a testing frequency of every 6.5 years (Figure 1b). The model suggests 
scaling-up retention-in-care programs to increase annual retention-rates from 94 to 96% for 
heterosexuals (Figure 1a) and from 96 to 98% for MSM (Figure 1b) over the period 2021 to 2025. The 
reduction in new infections was modest compared to the previous 5-year period for both heterosexuals 
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(Figure 2a) and MSM (Figure 2b), but the number of PWH declined at a faster rate compared to the 
previous 5-year period for heterosexuals (Figure 2c), and for the first time there was a reduction in the 
number of MSM PWH (Figure 2d). 

 

Figure 3. Changes in total population costs corresponding to the optimal policy under the 
three cost function assumptions, HTLR (green), Median (Blue), LTHR (Red). 

For the period 2026 to 2030, the testing rate reduced to 0.1 (test once every 10 years or less) under 
Median and HTLR cost functions in heterosexuals (Figure 1a) and under all cost functions for MSM 
(Figure 1b) and continued to remain at those values for the remaining duration of the simulation (up 
to 2070). Under the LTHR cost function for heterosexuals, the testing rate continued to remain at 0.18 
(test once every 5.5 years) until 2050 and then reduced to 0.1 for the remaining duration of the 
simulation. The corresponding proportion aware and on ART gradually increased to 80% (Figure 1c,d), 
and the corresponding number of new infections (Figure 2a,b) and PWH (Figure 2c,d) gradually 
decreased over the period 2026 to 2070 for both heterosexuals and MSM. For heterosexuals (Figure 2a), 
under the three cost function assumptions, the number of new infections reduced to about 3200 to 4000 
cases per year by 2030 (53 to 62% reduction compared to 2015) and further reduced to 750 to 1200 
cases per year by 2070 (86 to 91% reduction compared to 2015). For MSM (Figure 2c), under the three 
cost function assumptions, the number of new infections reduced to about 11,000 to 14,000 cases per 
year by 2030 (46 to 58% reduction compared to 2015), and further reduced to 3500 to 6000 cases per 
year by 2070 (80 to 86% reduction compared to 2015). 

Comparing across the cost function assumptions, for heterosexuals, the optimal rates were 
generally intuitive, with the highest testing and lowest retention-in-care in LTHR and lowest testing 
and highest retention-in-care rates in HTLR, though the differences in retention-care rates were modest 
(Figure 1a). For MSM, however, the optimal annual retention-in-care rates were similar in all three 
cost functions, and the results were counter-intuitive for testing rate as the model suggested a slightly 
lower testing rate in LTHR compared to Median and HTLR. That is, some of the testing resources were 
shifted to retention-in-care programs to offset its higher costs while maintaining annual retention-rates 
at the level of Median and HTLR (Figure 1b). And as a result, the proportion of MSM on ART in 
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LTHR, though lower than in Median and HTLR, was higher than that of heterosexuals on ART in 
LTHR (Figure 1d), which suggests the higher significance of retention-in-care programs to ensure 
sustained care-and-treatment, compared to testing. The optimality of this counter-intuitive strategy in 
MSM was evaluated by a counterfactual simulation run using the optimal LTHR strategy of 
heterosexuals for both heterosexuals and MSM. The number of new infections, PWH, and costs were 
higher in the counterfactual simulation, confirming the optimality of the strategy. Details of this run 
and the results are presented in Appendix Section 7. 

5. Discussion and conclusions 

This paper proposes a methodology for phased-decision-making, which is typical in public health 
for epidemic control. We modeled the question of 'how to optimally reach HIV elimination in the US’ 
as a sequential decision-making problem by formulating it as an MDP and solving it using a Q-learning 
algorithm. Compared to the most commonly used approach of explicitly evaluating a few pre-selected 
scenarios, our approach enables selecting an optimal from all possible choices (36  possible choices) 
through probabilistic projections of the decisions and the epidemic. In identifying the optimal sequence 
of combinations of testing and retention-in-care rates, we took a societal perspective to evaluate costs 
and QALYs. Though the stochastic dynamic sequential decision-making models are very attractive for 
evaluations of phased decision-making, they are computationally expensive to solve as the state space 
and action space of epidemic control problems are typically large, giving rise to issues of non-
convergence and thus limiting its applicability. In this study, we reformulated the action space by taking 
indirect metrics that significantly reduced the size of the action space, thus leading to a successful 
application. Though applied to HIV, the proposed approach can be used for other infectious diseases 
as typically testing and treatment are key methods to control spread. 

Our analysis is subject to limitations. We constrained the maximum intervention scale-up to one 
time and two times the maximum scale-up achieved in the past five years for proportion aware and 
proportion on ART, respectively, to balance feasibility and aggressive scale-ups. We also did not 
consider the availability of new interventions in the future, such as vaccines. We did not consider 
preventive interventions such as pre-exposure prophylaxis or changes in sexual behaviors in future 
generations. We did not evaluate interventions specific to people who inject drugs. We did not consider 
changes in demographics over time. Limitations to any model-based analysis, such as any drawbacks 
from the quality of data and unavailability of data leading to parameter estimations rather than the 
use of actual data, also apply to the PATH 2.0 simulation model and are discussed elsewhere [26]. 
Data on costs of support services and outreach are limited, and thus, we made assumptions on its 
variability to evaluate its sensitivity to optimal decisions. The model is limited to current testing and 
treatment technologies, i.e., we did not consider availability of a cure or significant improvements in 
costs of testing and treatment. Availability of a cure can dramatically change the timeline for HIV 
elimination due to reduction in transmissions, and reductions in costs could lead to better trade-offs 
with GDP and thus changes in the optimal decision. However, note that, as the model outcome is in 
favor of allocating resources to treatment over testing though costs of treatment are much higher, we 
can expect this outcome to remain in the event of significant reductions in costs of treatment relative 
to costs of testing.  

Despite these limitations, we believe the approach used in this paper in evaluating phased-
decisions related to the two most effective interventions is very timely in light of the 'Ending the HIV 
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Epidemic' federal plan for an HIV elimination objective [2].  
The optimal policies generally suggest more frequent testing for the first 10 years and less 

frequently after as the number of new infections decreases and the proportion aware increases. It 
suggests more frequent testing for MSM than heterosexuals for the first 10 years, which supports the 
risk-based testing proposed under current CDC guidelines [51], and similar testing rates for both risk 
groups thereafter. It suggests implementing retention-in-care programs to gradually increase annual 
retention-in-care rates to 95% within the first 10 years and maintain it at that rate thereafter. Generally, 
the model suggested aiming for a higher retention-in-care rate than the testing rate, suggesting 
prioritization of spending on retention-in-care programs. Optimal decisions were robust to uncertainty 
in costs, under the range assumed, except for MSM under LTHR. In this scenario, the model suggested 
taking advantage of the lower testing costs and maintaining a higher testing rate for a longer duration 
than in the Median and HTLR cost functions.  

While testing and retention-in-care rates help inform intervention programs, the corresponding 
targets for proportions aware and on-ART serve as control measures, i.e., help direct resources to 
relevant support programs and risk groups in cases where actual proportions (that are tracked through 
NHSS) fall short of the target proportions. Proportions aware and on-ART are leading indicators in the 
EHE, and thus, actual proportions are regularly tracked as part of the NHSS.  

The federal plan for 'Ending the HIV Epidemic’ aims for a 75% reduction in annual new infections 
by 2025 (to 9300 new cases per year) and a 90% reduction by 2030 (to 3000 new cases per year) [2,3]. 
Our results indicate that testing and retention-in-care programs alone would be insufficient to reach 
this goal optimally. The optimal strategy would achieve a significant reduction in annual incidence 
by 2030, reducing to about 14,200 to 18,000 annual new infections, which is a 50 to 60% reduction 
from 2015, but then gradually decrease at a slower rate thereafter, reaching about 4250 to 7200 
annual new infections by 2070, which is an 86 to 91% reduction from 2015. To further accelerate the 
reduction in new infections, other novel interventions that are recently emerging, such as pre-exposure 
prophylaxis for HIV-negative individuals and more targeted testing through identification of 
transmission clusters, should be explored [2]. 
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