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Abstract: Shear wave ultrasound elastography is a quantitative imaging approach in soft tissues based 

on viscosity-elastic properties. Complex shear modulus (CSM) estimation is an effective solution to 

analyze tissues' physical properties for elasticity and viscosity based on the wavenumber and 

attenuation coefficient. CSM offers a way to detect and classify some types of soft tissues. However, 

CSM-based elastography inherits some obstacles, such as estimation precision and calculation 

complexity. This work proposes an approach for two-dimensional CSM estimation and soft tissue 

classification using the Extended Kalman Filter (EKF) and Decision Tree (DT) algorithm, named the 

EKF-DT approach. CSM estimation is obtained by applying EKF to exploit shear wave propagation 

at each spatial point. Afterward, the classification of tissues is done by a direct and efficient decision 

tree algorithm categorizing three types of normal, cirrhosis, and fibrosis liver tissues. Numerical 

simulation scenarios have been employed to illustrate the recovered quality and practicality of the 

proposed method's liver tissue classification. With the EKF, the estimated wave number and 

attenuation coefficient are close to the ideal values, especially the estimated wave number. The states 

of three liver tissue types were automatically classified by applying the DT coupled with two proposed 

thresholds of elasticity and viscosity: (2.310 kPa, 1.885 Pa.s) and (3.620 kPa 3.146 Pa.s), respectively. 

The proposed method shows the feasibility of CSM estimation based on the wavenumber and 

attenuation coefficient by applying the EKF. Moreover, the DT can automate the classification of liver 
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tissue conditions by proposing two thresholds. The proposed EKF-DT method can be developed by 

3D image reconstruction and empirical data before applying it in medical practice. 

Keywords: Shear wave elastography elasticity; viscosity; complex shear modulus; extended Kalman 

filter, decision tree 

 

1. Introduction 

In medical history, the palpation approach is used to evaluate the pathological structure's stiffness 

to detect and classify pathology. In ancient Egypt, humans learned that a stiff structure in an organ 

(soft tissue) is an abnormal sign. Accordingly, palpation is used to detect and diagnose sickness; 

surgeons also applied this technique during operations and surgical intervention to detect diseased 

tissue. It can be said that the physical properties of tissues in terms of elasticity and viscosity provide 

helpful information in medical diagnostics, especially tumor detection [1]. According to [1], different 

types of tissue in a region (such as normal and diseased tissue (cirrhosis) of the liver tissue) give 

different values of elasticity. It is the basis for tissue elasticity estimation methods to diagnose the 

disease. Elastography includes two main steps: Firstly, it creates an excitation into the medium; 

secondly, it measures mechanical response from the medium and computes elasticity by different 

techniques. The stimulating method for shear wave propagation in tissues is classified by the 

stimulating method using acoustic radiation force or mechanical force. Elastic imaging techniques can 

also be classified according to point measurement methods or imaging methods. There have been many 

different techniques for creating elastic 1D, 2D, and 3D images. Shear wave elasticity imaging is 

introduced as a new ultrasonic technology of medical diagnostics in [2]. Complete principles and 

techniques of ultrasound elastography are then presented in [3]. In [4–7], the authors applied ultrasound 

elasticity imaging in soft mediums. In [8–12], some advanced techniques were applied to improve the 

ability of ultrasound elastography. 

Viscosity and elasticity estimations of soft tissues have created a significant leap in biomedical 

imaging and tissue classification. Shear wave elastography imaging (SWEI) was initially applied as 

extra medical diagnosis information [1]. Afterward, in 2013, Gennission et al. stated that SWEI 

provides significant advantages over other imaging techniques in quantitative imaging and elasticity 

contrast of tissues [13]. In 2014, Ferraioli et al. demonstrated applying elastography using shear waves 

to assess liver disease states [14]. Nowadays, SWEI equipment is commercialized [6]. However, 

equipment capable of imaging both elasticity and viscosity are rarely available.  

To find these tissues ' characteristics, one needs to estimate shear wave propagation velocity in 

tissues at one or several frequencies. There are various ways to do so, such as acoustic radiation, 

surface vibration, or deep vibration as a mechanical force [15–19]. Orescanin et al. [20] obtained the 

shear wave propagation using a vibrating needle. Helmholtz algebra inversion transformation can be 

used to calculate the CSM directly [12]. However, this costs a lot of time and is easily affected by 

noise. In [21], the author analyzed errors of Helmholtz inversion for incompressible shear, vibration 

elastography. These drawbacks can be overcome by applying the Bayesian method with better velocity 

estimation as the low signal-to-noise ratio (SNR) [22]. However, this method is only applicable in a 

homogeneous medium of tissue. In our recent works [23,24], we have expanded the approach proposed 

in [22] into an inhomogeneous medium. Particularly, we applied the MLEF to efficiently estimate the 
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CSM [25]. This method helps enhance the accuracy of CSM estimation while reducing the 

computational complexity. A limitation with this method is that we cannot detect the geometry 

properties of an object in the medium (i.e., a tumor in the body). 

Most current methods are proposed for the automatic classification of soft tissues [26–29]. They 

are based on traditional techniques [30,31] and various machine learning algorithms such as decision 

trees [32,33], k-means [34], HMMs [35], and SVM [36]. These techniques have also been used to 

distinguish tissues, lesions, tumors, etc. Within the scope of this work, we emphasize the advantages 

of CSM estimation based on the extended Kalman filter (EKF) and Decision tree algorithm (DT) to 

categorize three types of soft tissue in the liver. Specifically, the proposed DT algorithm can 

differentiate between ordinary fibrosis, substantial fibrosis, and cirrhosis. Numerically simulation 

scenarios have been performed to demonstrate the effectiveness of the proposed EKF-DT method. The 

results illustrate that the EKF-DT approach improves the estimation quality and effectively classifies 

soft-tissue types. 

2. Methodology  

2.1. Detecting tumors in soft tissues 

Figure 1 illustrates the imaging system for estimating shear wave velocity. The excitation source 

is a stainless needle vibrating at a specific frequency (100Hz ≤ f ≤ 500Hz). The shear wave afterward 

propagates in the tissue with the velocity of the particle measured by Doppler equipment. 

 

Figure 1. Excitation and acquisition of shear wave estimation system. 

In the mathematical view, the complex shear modulus (CSM) denotes quantitative information 

about the physical properties of soft tissues as below [1], 

 𝜇 = 𝜇1 − 𝑖𝜔𝜇2,  (1) 

where 𝜇1 is elasticity and 𝜇2 is viscosity calculated by the Kelvin-Voigt model. 

The region of interest (ROI) includes objects which need to be reconstructed (if present) in two-

dimensional space (see Figure 2). The entire ROI is scanned over the angle from 00 to 900 with an 
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angular shift of 10 to create 91 rays. In each ray, the particle's velocity at each spatial point is collected 

by ultrasonic devices based on the Doppler effect. The following two objective functions are 

established to detect tumors by estimating the physical properties of tissues in terms of elasticity and 

viscosity:  

𝑂1(𝑟) = {
𝜇1 − 𝜇1

0, 𝑖𝑓 𝑟  ∈ abnormal tissue

0,   𝑖𝑓 𝑟  ∉ abnormal tissue

, (2) 

and  

𝑂2(𝑟) = {
𝜔(𝜇2 − 𝜇2

0), 𝑖𝑓 𝑟 ∈  abnormal tissue

0,   𝑖𝑓 𝑟  ∉ abnormal tissue

. (3) 

For abnormal tissue, 𝜇1 denotes elasticity, and 𝜇2  denotes viscosity (if present); similarly, for 

ordinary tissue, 𝜇1
0  and 𝜇2

0  represents elasticity and viscosity, respectively, and 𝜔  denotes angular 

frequency (𝜔 = 2𝜋𝑓).  

 

Figure 2. The movement of rays when scanning the ROI. 

In practice, it is impossible to estimate the CSM directly; instead, the CSM is computed through 

the wavenumber 𝑘𝑠 and attenuation coefficient α [13], 

 

𝜇1 =
𝜌𝜔2(𝑘𝑠

2 − 𝛼2)

(𝑘𝑠
2 + 𝛼2)2

 

𝜇2 =
2𝜌𝑘𝑠𝛼

(𝑘𝑠
2 + 𝛼2)2

 

(4) 
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where 𝜌 is the density of the background medium (𝜌 =1000 kg/m3). 

2.2. Extended Kalman filter 

The primary function of the Extended Kalman filter is to evaluate the wavenumber 𝑘𝑠  and 

attenuation coefficient α. At each spatial point, we develop the model by applying the extended Kalman 

problem.  

Eq. (5) is used to calculate particle velocity 𝑣(𝑟, 𝑡) at position r, and time t [22]:  

 
𝑣(𝑟, 𝑡) =

1

√𝑟 − 𝑟0

𝐴𝑒−𝛼(𝑟−𝑟0)𝑐𝑜𝑠[𝜔𝑡 − 𝑘𝑠(𝑟 − 𝑟0) − 𝜙], (5) 

where A represents needle amplitude, 𝑟0 denotes needle position, and 𝜙 indicates the initial phase; 𝛼 

and 𝑘𝑠,  respectively denote attenuation coefficient and the wave number at spatial position r. 

In discrete form, Eq. (5) is represented as below: 

 

 
𝑣𝑛(𝑟) =

1

√𝑟 − 𝑟0

𝐴𝑒−𝛼(𝑟−𝑟0)𝑐𝑜𝑠[𝜔𝑛∆𝑡 − 𝑘𝑠(𝑟 − 𝑟0) − 𝜙], (6) 

where 𝑛 is the time step-index and ∆𝑡 is the sampling period. Through the trigonometric transform of 

Eq. (6), we have:  

 𝑣𝑛(𝑟) = 𝑣𝑛−1(𝑟) cos(𝜔∆𝑡)

−
1

√𝑟 − 𝑟0

𝐴𝑒−𝛼(𝑟−𝑟0)𝑠𝑖𝑛[𝜔(𝑛 − 1)∆𝑡 − 𝑘𝑠(𝑟 − 𝑟0)

− 𝜙] sin(𝜔∆𝑡), 

(7) 

To evaluate the wavenumber 𝑘𝑠 and attenuation coefficient α, Eq. (7) is described as state equation 

form:  

 𝑥𝑛 = 𝑓(𝑥𝑛−1, 𝑝𝑛−1), (8) 

where 𝑓 is a nonlinear vector function that describes the dynamics of the state vector. 

Eq. (8) corresponds to  

 

[

𝑣𝑛

𝛼𝑛

𝑘𝑠(𝑛)

] = [

𝐹(𝑣𝑛−1)
𝛼𝑛−1

𝑘𝑠(𝑛−1)

], (9) 

where 𝑥𝑛 = [

𝑣𝑛

𝛼𝑛

𝑘𝑠(𝑛)

] is state vector at each point, the random variable 𝑝𝑛 is the process noise, 𝑘𝑠 is the 

wavenumber, 𝑘𝑠(𝑛)  is the wave number evaluated at the time step n 

B ecause 𝛼𝑛 and 𝑘𝑠(𝑛) are time independence;  thus, we use 𝐹 as a nonlinear function  that is the 

time dependence of  𝑣𝑛 at a certain position. 𝐹 describes the relation between 𝑣𝑛−1 and 𝑣𝑛 as shown 

in Eq. (7), 𝛼𝑛−1 = 𝛼𝑛 and 𝑘𝑠(𝑛−1) = 𝑘𝑠(𝑛) with supposing that α and 𝑘𝑠 are unchanged throughout the 

experiments. By using Doppler acquisition, the measured particle velocity at each spatial point is 

impacted by Gaussian noise 𝜔𝑛(𝑟). Thus, the measured particle velocity is: 

https://en.wikipedia.org/wiki/Time
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𝑣𝑛(𝑟) = 𝑣𝑛(𝑟) + 𝜔𝑛(𝑟), (10) 

To apply the EKF, Eq. (10) is rewritten in the measurement equation form of the Kalman problem: 

 𝑦(𝑛) = ℎ(𝑥𝑛, 𝜔𝑛), (11) 

Eq. (11) corresponds to  

 

𝑣𝑛(𝑟) = [1  0  0] [

𝑣𝑛

𝛼𝑛

𝑘𝑠(𝑛)

]  + 𝜔𝑛, (12) 

where 𝑦𝑛 = 𝑣𝑛 is the measurement vector at each point. From Eqs. (8) and (11), 𝑥𝑛 is estimated by 

using the EKF corresponding to the algorithm in [30]. As a result, wave number 𝑘𝑠 and attenuation 

coefficient α at each point are estimated.  

 Afterward, we received a point cloud in ROI, where each point is presented by a pair of values, 

including estimated wave number 𝑘𝑠 and attenuation coefficient α. Therefore, the CSM coefficient is 

estimated by using Eq. (4). Finally, objective functions are reconstructed by using Eqs. (2) and (3). 

For a quantitative evaluation of the effectiveness of 2D CSM estimation using the proposed 

method, a normalized error (or percent of estimated error, %RRE) was used and defined as follows: 

 
𝜖𝜇 =

1

𝑀 × 𝑁
∑

𝑀

𝑖=1

∑

𝑁

𝑗=1

𝜇𝑖,𝑗−�̂�𝑖,𝑗

𝜇𝑖,𝑗
, 

𝜖𝜂 =
1

𝑀 × 𝑁
∑

𝑀

𝑖=1

∑

𝑁

𝑗=1

𝜂𝑖,𝑗−�̂�𝑖,𝑗

𝜂𝑖,𝑗
, 

(13) 

where 𝜖𝜇  and 𝜖𝜂 are the normalized errors of elasticity and viscosity 2D estimations. 𝑀 × 𝑁 is the 

image size, 𝜇𝑖,𝑗 and �̂�𝑖,𝑗 is the ideal elasticity, and estimated elasticity at pixel location (𝑖, 𝑗), 𝜂𝑖,𝑗 and 

�̂�𝑖,𝑗 is the ideal viscosity and estimated viscosity at pixel location (𝑖, 𝑗). From that, we can calculate 

the ROC (receiver operating characteristic) value as 100%—%RRE. In the simulation scenario, 

Gaussian noise is generated to mix with the particle velocity of the shear wave. The degree of 

interference is expressed by the signal-to-noise ratio (SNR) parameter and is defined as follows: 

 
SNR (dB) = 10log (Psignal/Pnoise), (14) 

where, Psignal is the signal's average power, and Pnoise is the average power of the noise. 

Figure 3 presents the proposed approach for two-dimensional CSM estimation and soft tissue 

classification using the Extended Kalman Filter (EKF) and Decision Tree (DT) algorithm, named the 

EKF-DT approach. 
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Figure 3. The application of decision tree algorithm in classifying tissues. 

3. Simulation and results 

3.1. The estimated results of the proposed EKF-DT algorithm  

In this paper, simulation scenarios were implemented to verify the proposed EKF-DT method. 

The medium (soft tissue) has a size of 12.6 × 12.6 mm and three regions in it, corresponding to three 

pathological conditions of the liver. Three different tissue types with respective elasticity and viscosity 

are shown in Table 1. These values are referenced from work [26]. 

Table 1. Some parameters of liver typical states. 

 Conditions Elasticity (Pa) Viscosity (Pa.s) 

1 Healthy liver 𝜇11 = 2060 𝜇21 = 1.72 

2 Substantial fibrosis patient  𝜇12 = 2560 𝜇22 = 2.27 

3 Cirrhosis patient 𝜇13 = 4680 𝜇23 = 5.19 

The CSM data was collected at 43 spatial locations per ray. The distance between two consecutive 

spatial positions was 0.3 mm, the sampling frequency was 10 kHz, 500 samples were collected at each 

spatial position, and the medium density 𝜌 = 1000 kg/m3. The vibration needle had a diameter of 1.5 

mm, and the vibration frequency of the needle that we chose is 100Hz. For the frequency value f, 

essentially, a small value is good because it can penetrate tissue deep enough to image tissue far from 

the stimulus. However, if a too low frequency is chosen, the shear wave's frequency oscillation may 

be equal to or slightly larger than the disturbance frequency. Then, the estimated quality will be very 
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poor. Therefore, the shear wave frequency should not be too low and should not be too high. In this 

paper, Threshold_A and Threshold_B are initially selected as (2.310 kPa, 1.885 Pa.s) and (3.620 kPa, 

3.146 Pa.s), respectively. The steps to measure the particle velocity of the shear wave in the ray 

scanning method are as follows: First, the evaluated area of tissue is divided by 91 rays evenly spaced 

along the angle from 00 to 900 in polar coordinates, where the coordinate (0,0) is also the position of 

the vibrating needle. Next, a shear wave generator at a frequency of 100 Hz is excited at this particular 

location through a vibrating needle with the amplitude A = 8.6 mm. Finally, the linear array transducer 

BW-14/60 was used to measure the particle velocity of the shear wave at 43 equally spaced locations 

on each ray. In total, we need to measure the particle velocity at 91 × 43 = 3913 locations. 

Figure 4 illustrates the objective function of ideal elasticity O1, where the vibration needle is 

located at the origin of coordinate O.  The values of the three tissue types are shown in Table 1. The 

elasticity discrepancy between fibrosis and healthy liver is not noticeably represented. The ideal 

initialization image (Figure 4) has a size of 12.6 × 12.6 mm. The vibrating needle is located at the 

upper left vertex of the rectangle. Centered as the needle placement, the region of interest (ROI) will 

be an arc with a radius R = 12.6 mm. The ROI contains three regions corresponding to three 

pathological conditions of liver tissue (normal, fibrosis, cirrhosis). 

 

(a) 

 

(b) 

Figure 4. Objective functions: (a) Elasticity O1(r); (b) Viscosity O2(r). 

Figure 5 illustrates the recovered elasticity objective function �̂�1  using the EKF-DT method. 

Despite the appearance of ripples on the surface, the reconstructed results closely resemble the ideal 

function. These ripples result from additive noise and the imperfection of the model. It is not easy to 

differentiate between fibrosis and cirrhosis because of ripple influence. Moreover, Figure 5 indicates 

that the ray scanning technique cannot sweep through the entire square area of 12.6×12.6 mm2. The 

region of interest (ROI) is limited to a quarter circle area with a radius of 12.6 mm. Due to the hardware 

limitation of the BW-14/60 linear array transducer, it is possible to measure the particle velocities of 

43 equally spaced locations per ray. Therefore, the scannable length is also the radius of the circle 

centered at the vibrating needle. Thus, points outside the scan radius cannot be estimated by the 
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limitation of this transducer. In fact, to investigate a larger area, it is necessary to slide the transducer; 

the final image is a synthetized image of the obtained small images. 

 

 
(a) 

 
(b) 

Figure 5. The reconstructed objective functions: (a) Elasticity Ô1(r); (b) Viscosity Ô2(r). 

Figures 6a and 6b shows the estimated wave number and attenuation coefficient along the 60th 

ray with SNR = 30dB. It is noticeable that a casual change of the wavenumber happens at the distance 

of 6 mm (between fibrosis and cirrhosis) and 100 mm (between cirrhosis and healthy liver tissue) 

compared to the coordinate origin O. Similarly, this change can be seen in Figures 4 and 5. Figures 6a 

and 6b show that the estimated wave number and attenuation coefficient can fairly approach the ideal 

lines. Nevertheless, the ripples are significantly more significant than the estimated wave number when 

evaluating the attenuation coefficient. After assessing the wavenumber and the attenuation coefficient, 

the elasticity and viscosity are calculated using Eq. (4). Finally, the objective functions O1(r) and O2(r) 

are reconstructed. 

 

 
(a) 

 
(b) 

Figure 6. Estimated wave number 𝑘𝑠 (a) and attenuation coefficient 𝛼 (b) along the 60th ray. 
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Applying Threshold_A and Threshold_B in the decision tree algorithm (DT), as seen in Figure 3, 

can easily separate cirrhosis locations from the fibrosis and healthy tissue. Figure 5 indicates a 

reconstructed CSM image that accurately shows the location of soft tissues (fibrosis, cirrhosis, and 

healthy liver) in the ROI. 

3.2. Find the best values of thresholds  

3.2.1. Investigate the thresholds for elasticity 

The selection of the initial threshold pair for elasticity is (𝜇1𝑇 = 𝜇11 +
𝜇12−𝜇11

2
, 𝜇1𝑇′ = 𝜇12 +

𝜇13−𝜇12

2
) = (2310, 3620). To investigate the increase of this threshold pair to value pair (2560, 4680), 

we take ten investigated points, then the hopping value pair is (25, 106). Similarly, to investigate the 

decrease of this threshold pair to the value pair (2060, 2560), we also take ten investigated points, and 

the hopping value pair is also (25, 106).  

Table 2. Investigation of different threshold pairs of elasticity to the estimated performance. 

The increased values of threshold pair 

The values of the 

threshold pair 

Percent of estimated 

error (%) 

The values of the 

threshold pair 

Percent of estimated 

error (%) 

(2310, 3620) 2.6982 (2435, 4150) 7.0592 

(2335, 3726) 2.9941 (2460, 4256) 9.8462 

(2360, 3832) 3.3314 (2485, 4362) 14.5444 

(2385, 3938) 4.1953 (2510, 4468) 20.4734 

(2410, 4044) 5.2663 (2535, 4574) 28.0592 

The decreased values of threshold pair 

(2310, 3620) 2.6982 (2185, 3090) 4.6450 

(2285, 3514) 2.8521 (2160, 2984) 5.7692 

(2260, 3514) 3.1420 (2135, 2878) 7.2249 

(2235, 3302) 3.3964 (2110, 2772) 9.5562 

(2210, 3196) 3.9882 (2085, 2666) 13.6627 

 

Figure 7 shows the influence of different threshold pairs of elasticity and viscosity on the 

estimation quality, and Figure 8 shows the ROC (receiver operating characteristic) curve to obtain 

Threshold_A and Threshold_B. From Table 2 and Figures 7–8, it can be seen that the smallest 

estimated error percentage of elasticity is 2.6982% with the threshold pair of (2310, 3620). 

3.2.2. Investigate the thresholds for viscosity 

The selection of the initial threshold pair for viscosity is (𝜇2𝑇 = 𝜇21 +
𝜇22−𝜇21

2
, 𝜇2𝑇′ = 𝜇22 +

𝜇23−𝜇22

2
) = (1.995, 3.73). To investigate the increase of this threshold pair to value pair (2.27, 5.19), 

we take ten investigated points, then the hopping value pair is (0.0275, 0.146). Similarly, to investigate 



7641 

Mathematical Biosciences and Engineering                                                                         Volume 18, Issue 6, 7631–7647. 

the decrease of this threshold pair to the value pair (1.72, 2.27), we also take ten investigated points, 

and the hopping value pair is also (0.0275, 0.146).  

Table 3. Investigation of different threshold pairs of viscosity to the estimated performance. 

 The increased values of threshold pair 

The values of the 

threshold pair 

Percent of estimated 

error (%) 

The values of the 

threshold pair 

Percent of estimated 

error (%) 

(1.995, 3.73) 2.9053 (2.1325, 4.46) 7.8343 

(2.0225, 3.876) 3.0947 (2.16, 4.606) 10.9941 

(2.05, 4.022) 3.9349 (2.1875, 4.752) 15.2308 

(2.0775, 4.168) 4.7574 (2.215, 4.898) 20.3195 

(2.105, 4.314) 5.8935 (2.2425, 5.044) 26.4556 

The decreased values of threshold pair 

(1.995, 3.73) 2.9053 (1.8575, 3)  2.2485 

(1.9675, 3.584) 2.4970 (1.83, 2.854) 2.3609 

(1.94, 3.438) 2.4083 (1.8025, 2.708) 2.8698 

(1.9125, 3.292) 2.2189 (1.775, 2.562) 3.7692 

(1.885, 3.146)  2.1834 (1.7475, 2.416) 5.8047 

Table 3 and Figures 7–8 show that the smallest estimated error percentage of viscosity is 2.1834%, 

with the threshold pair of (1.885, 3.146).  

 

Figure 7. Influence of different threshold pairs of elasticity and viscosity on the estimation quality. 
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After well-investigation, Threshold_A and Threshold_B are found as (2.310 kPa, 1.885 Pa.s) and 

(3.620 kPa, 3.146 Pa.s), respectively. These pairs of thresholds can be used to obtain the best estimation 

performance with the smallest estimated error percentage.  

 

Figure 8. ROC curve to obtain Threshold_A and Threshold_B. 
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dimensional visco-elasticity of soft tissues, while it is a more practical issue of three-dimensional 

viscoelastic imaging. This approach deals with the problem of tracking two-dimensional shear-wave, 

also known as tracking in-plane wave propagation. And so, it cannot accurately track out-of-plane 

wave propagation, causing an erroneous CSM estimation. In addition to that, the approach works well 

for the simulation data, but experimental data is of value and is an issue for later consideration. 

Ultimately, the CSM estimation with the EKF scheme is contingent on the tissue response dynamic 

model, which is a constitutive viscoelastic model. Regularly used constitutive models are idealized, 

such as Maxwell, Voigt, and Kelvin models, and do not directly use for natural tissues [43]. It is still 

an open research issue. 

To discuss algorithms for classifying tissue pathological conditions, four algorithms were 

examined in [44], with paying attention to expressing the traditional statistical spectrum and late 

progress in schemes based computer: discriminant analysis; regression models; tree-based algorithms; 

artificial neural networks. Each scheme is assessed according to four criteria: precision needed 

computing time for producing results, understandability of the results, and the easy use of the algorithm 

to relatively naive medical users. In this paper, we choose tree-based algorithms because this algorithm 

has no hypothesis regarding the underlying distribution; therefore, this approach executed consistently 

well. Indeed, in this paper, based on the CSM estimation results of the EKF algorithm, we applied the 

decision tree algorithm to classify well the three histological conditions of the liver with the 

performances of elasticity and viscosity classification are 97.3018% and 97.8166%, respectively. 

Moreover, with the best estimation performance, we find out the optimal classification threshold pair 

of (2.310 kPa, 1.885 Pa.s) and (3.620 kPa, 3.146 Pa.s), respectively. The number of locations will 

become much larger depending on the estimated image resolution and array probe technology. And 

we have to identify each point in the processing space, leading to a large number of estimated points, 

so a fast classification algorithm is needed to perform. In addition, the number of features in the 

problem is not much, so a simple algorithm like a decision tree is very effective. 

Several other effective solutions have also been studied to classify the disease states of the tissue, 

such as [45–47]. In [45], a deep learning (DL) structure is built to automatically extract the features of 

the learned-from-data image in the shear wave elastography, and the DL architecture differentiated 

benign and malignant breast tumors. In [46], with integrating two quantitative ultrasound parameters, 

SWVmax and RI, a plain classification scheme represents a high diagnosis performance. This scheme 

can exactly discriminate between benign and malignant breast lesions. Furthermore, this can reduce 

the unessential number of breast biopsies up to 60 percentages for all cases, dodging the bias in 

subjective explanation. In [47], an approach combing of ultrasound, shear wave elastography, and MRI 

is proposed to predict and characterize benign or malignant tissue precisely. With the inclusion of shear 

wave elastography, it is supposed to specify the threshold value of velocity for classifying benign or 

malignant lesions. 

With the three advantages of EKF filter: only need to collect data set at a specified vibration 

frequency without using multi-frequency information; exploit noise reduction to the advantage of 

EKF; low complexity of EKF is suitable for real-time/online CSM image imaging, this filter can be 

used for real-time/online image imaging. In [48], the authors used an adaptive filter that faced the real-

time requirement. Currently, with the global Covid-19 epidemic situation, remote/online diagnosis of 

medical conditions is essential and urgent. Therefore, based on the advantages of the EKF filter, we 

continue to apply a simple machine learning algorithm (decision tree algorithm) to classify the 

pathological condition of tissues to support the remote diagnosis, supporting the doctor's diagnosis. 
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However, the proposed approach also has some limitations as follows: (a) To be able to apply the EKF 

filter, the particle velocity of the shear wave is modeled according to equation (5) which is only suitable 

for homogeneous environments; (b) Imaging by ray scanning is quite simple because it can be 

converted to the CSM estimation at each tissue space location. The limitation of this method is that it 

only estimates CSM in the ray-scanning region, whose center is the excitation site, and the estimated 

locations are not equally spaced (the region far from the excitation source will be sparser than the 

region near the excitation source); (c) Decision tree algorithm is still quite simple, it needs to be 

developed or applied by more complex machine learning algorithms; (d) The study is just implemented 

with the simulation data set, to be able to apply in practice, the experimental implementation needs to 

be carried out. 

5. Conclusion 

This paper has demonstrated that the CSM estimation of soft tissues could find and classify several 

significant states of tissues. Numerically simulated scenarios reconstructing objective functions of 

elasticity and viscosity have been implemented to confirm the EKF-DT method's efficient outcomes. 

The simplified DT algorithm efficaciously classifies the states of estimated tissues. As a consequence, 

this approach can automatically spot health issues by categorizing three states of the liver (normal, 

substantial fibrosis, and cirrhosis) with the well-investigated threshold pair. In the next work, we 

improve classification performance by integrating the DT algorithm with SVM. Moreover, 3D image 

recovery and experiments could be used to verify the suggested EKF-DT solution [49,50]. 
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