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Abstract: Human Listeria infection is a food-borne disease caused by the consumption of contaminated
food products by the bacterial pathogen, Listeria. In this paper, we propose a mathematical model to
analyze the impact of media campaigns on the spread and control of Listeriosis. The model exhibited
three equilibria namely; disease-free, Listeria-free and endemic equilibria. The food contamination
threshold is determined and the local stability analyses of the model is discussed. Sensitivity analysis
is done to determine the model parameters that most affect the severity of the disease. Numerical
simulations were carried out to assess the role of media campaigns on the Listeriosis spread. The
results show that; an increase in the intensity of the media awareness campaigns, the removal rate of
contaminated food products, a decrease in the contact rate of Listeria by humans results in fewer humans
getting infected, thus leading to the disease eradication. An increase in the depletion of media awareness
campaigns results in more humans being infected with Listeriosis. These findings may significantly
impact policy and decision-making in the control of Listeriosis disease.

Keywords: media campaigns; infectious disease; Listeria; numerical simulations; food contamination
threshold

1. Introduction

Listeriosis is a serious and severe food-borne disease that affects the human population globally.
The disease is caused by a bacteria called Listeria monocytogenes which exists in the environment
as its primary host (soil, water, ready-to-eat (RTE) foods and contaminated food products) [1, 2].
Human beings contract Listeriosis through the ingestion of contaminated RTE food products such as
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cantaloupes, meat, Ricotta Salata cheese, vegetables, polony, bean sprouts, ham, or directly from the
environment [3,4]. The epidemiology of Listeriosis is clearly articulated in [1,4].

Before the 2017 outbreak in South Africa, an average of 60 to 80 confirmed Listeriosis disease cases
were recorded annually (i.e., approximately 1 case per week). The recent outbreak in South Africa,
which occurred from 1 January 2017 to 17 July 2018, had 1060 confirmed cases, with 216 (26.8%)
deaths. This was the world’s largest-ever documented Listeriosis outbreak [5]. The source of the disease
was traced to be contaminated RTE processed meat products. Also, Listeriosis outbreaks resulting from
human consumption of different kinds of contaminated RTE food products occur commonly in the
United States of America, Canada and Europe [3].

The media campaign is a series of advertisement messages that share a single idea, beliefs, concepts,
and theme, which make up an integrated marketing communication over a particular time frame and
target identified audiences [6]. In addition, media campaigns and media-driven awareness programs
such as print media, social media, internet, television, radio, and advertisements play an essential role in
the disseminating of information about the spread of infectious disease outbreaks [7]. Dissemination
of information educates people and helps them take preventive measures such as; practicing better
hygiene; factory workers wearing clean gloves to avoid cross-contamination of food products during
food production/manufacturing. Further, when a disease breaks out in a human population, changes in
behavior in response to the outbreak can alter the progression of the infectious agent. In particular, people
aware of a disease in their proximity can take precautionary measures to reduce their susceptibility to
infections by isolating a portion of the susceptible population from the infected ones [8].

In recent times, researchers have used mathematical models to model infectious and non-infectious
diseases/describe the effect and impact of media campaigns on the dynamics of infectious such as
Ebola [9], HIV/AIDS [10, 11], Avian Influenza [12], Listeriosis [13], and vector-host disease [14,15].
Misra et al. [16] used a non-linear mathematical model which assumed that due to awareness programs
by media, once the population becomes aware of the disease spread, they avoid contact with the infectives
and therefore form a new class of individuals called the aware class, who become susceptible again if
their awareness wanes over time. The model analysis revealed that the number of infectives decreases
with an increase in media campaigns. Kaur [17] extended the work by Misra by assuming that aware
susceptibles do not lose awareness but can also interact with infected individuals and get infected, albeit
at a lower rate. Their study suggested that with the increase in the rate of implementation of awareness
programs via media, there is a subsequent decline in the number of infected in any targeted population
under consideration. Authors in [9] used a mathematical model to describe the transmission dynamics
of Ebola in the presence of asymptomatic cases and the impact of media campaigns on the disease
transmission was represented by a linearly decreasing function. Their results showed that messages
sent through media have a more significant effect on reducing Ebola cases if they are more effective and
spaced out. The S IRS model was proposed in [18] to investigate the impact of awareness programs by
considering private and public awareness, which reduces the contact rate between unaware and aware
populations and the effect/impact of public information campaigns on disease prevalence. It was shown
that both private and public awareness could reduce the size of epidemic outbreaks. A smoking cessation
model with media campaigns was presented [19]. The results showed that the reproduction number was
suppressed when media campaigns that focus on smoking cessation were increased. Thus, spreading
information to encourage smokers to quit smoking was an effective intervention. According to [20],
the S ITRS model was used to analyze the role of information and limited optimal treatment on disease
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prevalence. The model considered the growth rate of information proportional to a saturated function of
infected individuals. The results from the mathematical analysis showed that the combined effects of
information and treatment is more effective and economical in the control of the infection. Exponential
functions have also been used to model the impact of media awareness campaigns on people’s behavior,
which affects the evolution of infectious diseases. In particular, the effects of Twitter messages on
reducing the transmission rate of the influenza virus was studied in [21]. The result revealed that Twitter
messages had a substantial influence on the dynamics of influenza disease spread.

To date, there are very few mathematical models on the dynamics of Listeriosis (see, for instance,
[22-25]), let alone those investigating the potential role of media awareness campaigns on the dynamics
of Listeriosis. This paper is motivated by the work done in [16]. We formulate a mathematical model to
study the impact and effects of media campaigns on the dynamics of Listeriosis disease resulting from
the consumption of contaminated RTE in the human population. We describe the model in detail in the
following section.

The outline of this paper is as follows; Section 1 introduces the research paper followed by the model
described in Section 2. The model basic properties and analyses are presented in Section 3. Numerical
simulations were done and presented in Section 4. Section 5 concludes the paper.

2. Model description

The human population is divided into four sub-classes, viz: Susceptibles S (), aware susceptibles
S 4(1), the infected [,(¢) and the recovered R, (7). Individuals are recruited at a rate proportional to the
size of the human population N(¢) where

N(1) = S (1) + Sa(®) + (1) + Ru(D).

The recruitment rate is given by u,N(t) where y;, is natural birth/mortality rate. Upon infection with
Listeria from contaminated food, the susceptibles move into the infectious class 1,() with a force of
infection 4,(t), where A,(t) = B F. with B being the rate at which humans gets infected and F.(r)
the contaminated food products. Here, 4,(¢) describes the force of infection by the consumption of
contaminated food products. The susceptible individuals can also move to the awareness class at a
rate p as a result of the interaction with the media campaigns. We assume that media campaigns wane
over time and the aware individuals can revert to being susceptible again at a rate w;. The infected
individuals recover at a rate y with immunity after treatment. These individuals who recover after some
time can also lose their immunity and become susceptible again at a rate ¢,. We assume a constant
human population N(#), which consists of individuals who do not work in the factory over the modelling
time. Further, we assume that aware individuals cannot be infected as their awareness protects them
from contracting the disease. Given that the bacteria survive even at 4°C, it can die or grow in its
host or the environment at significantly low temperatures. Let r; and £ denote the growth and removal
rate of the of Listeria, L(7). Our model assumes a logistic growth of Listeria with carrying capacity
K;. The non-contaminated food products F,(f) can be contaminated as a result of interaction with the
bacteria from the environment that comes, via the workers, exchange of gloves or utensils during food
manufacturing and also through the contact with contaminated food F.(7) with a force of infection A(z),
where

Ap(0) = BLL(t) + B, F (1)
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The parameters 8, and Sy, are the contact rate of Listeria and the contamination rate of non-contaminated
food by contaminated food products, respectively. The contaminated food products are then responsible
for transmitting Listeriosis disease to the human population through ingestion of the contaminated food
products. The total amount of food products, F(¢), at any given time is given by

F(t) = F, (1) + F(0),

where p¢ is the rate of removal of food products through consumption. Let M, be the cumulative density
of media campaigns with maximum intensity, M, at which media awareness campaigns are implemented,
1o the rate of implementation of the media awareness campaigns and y the rate of depletion of media

awareness.

Factory

BactAeria

Human Population

Figure 1. Shows the model flow diagram. The solid arrows represent the transitions between
the compartments while the dotted lines represent the influences on the solid arrows and the

compartments.

The above model descriptions and Figure 1 gives the following systems of non-linear ordinary
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differential equations:

ds
d_th = upN + 0pRy + 1Sy — A4S h — unSn — pM,S i,

ds .,

4

o S = (i + Y,
Jk,

— =yl — (up + 6,)Ry,

= pM,S ) — (W1 + pn)S 4

(2.1

dt
dL L
— =rl1-—|-£L,
dr [ KL) ¢
M, I} M
=7 - as
py oln — Ho
dF,
y :,ufF—/lan—,uan,
ol AF F
dt = Ay — Hpl e
All parameters for the model system (2.1) are assumed to be non-negative for all time ¢ > 0. By
setting
Sh S. . Iy Ry, ; L M, 7 F, 7 F.
S, = —>» Sa:—al:—,]":—a = —> ma:—7 n= =" c = -
"TN N "N "N K. M F F

and given that r;,(¢) = 1 — s,(¢) — s,(¢) — i,(t) we have the following rescaled system

dSh

dt
ds,

dd_t
I~ .
= = Qs = (i + Y)in,

il

= pp + (1 = sy = Sq — i) + W15, — (A, + g, + Pmg) s,

= ﬁmash - (0.)1 + ,uh)saa

— =nl(1-1)-¢&l,
dt
dmy, .
dcjlf = Ty — Moy,
= = - ;l + ns
jif pp— (g + up)f,
. = ;l n = "Jeo
dt ff :uff
where
- N N _
Ay =Bife, Ap=pol+pBsfe, @= u P =pM, 7 =ma,

with 8, = B4 F, B> = BK1, B3 = B, F and initial conditions

57(0) = sp0 > 0, 5,(0) = 540 > 0,7,(0) = ipo =2 0,1(0) = lp > 0,
my(0) = my > 0, £,(0) = foo 20, f.(0) = foo 2 0.

(2.2)

(2.3)
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3. Model properties and analysis

3.1. Positivity of solutions

We prove the positivity of the solutions of model system (2.2) with initial conditions (2.3). First, we
state the following Lemma as given in [26].

Lemma 1. Suppose Q C R X C" is open, f; € C(Q,R),i=1,2,...,n.If
filsw=0xecz, 20, Xy = (X109, -+, Xu) s i=1,2,-+ ,n,
then C' is the invariant domain of the following equations
XM = fi(t,X), t=20,i=1,2,--- ,n. 3.1
If filuw=0xecr, <0, Xp = (X1 - Xuw)' i=1,2,--- ,n, then C" is the invariant domain of Eq (3.1).

We have the following Theorem on the invariance of system (2.2).

Theorem 1. Each solution (s(t), s,(t), I;,(?), [(t), m,(2), f,(¢), f.(?)) of the model system (2.2) with the
non-negative initial conditions (2.3) is non-negative for all t > 0.

Proof. Let X = (sp, Sa, In, [, mg, fo, f.)T and

gX) = (g1(X), g2(X), g3(X), g4(X), g5(X), g6(X), g7(X))",

then we can re-write the model system (2.2) as follows:

X =g(X)
where
g1(X) i+ Sn(1 = s = 54 — i) + w15, — (A + oy + Pmy) s,
82(X) pmgsy = (W1 + mi)Sa,
83(X) Ansp = (W + Y)in,
g(X) =184X)| = rl(1 -1 = ¢, : (3.2)
gs5(X) To@ip = HoMas
86(X) s = (g + fip) fos
27(X) Apfn = My fes

From (3.2), setting all the classes to zero, we have that

ds(0) dsa(1)

= (up +wis,) >0,

|s¢,=0 = PMmaSh > Oa

ditto o a0 dmg
t 3 t a(t .
o l=0 = sy >0, P lizo =0, F5 |n,=0 = moaiy > 0,
dfu(t) _ dfe(t) -7
B =0 = wp >0, LYo =Arf, > 0.
Thus, it follows that from Lemma 1 that R’ is an invariant set and positive. m]
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3.2. Existence and uniqueness of solutions

We now show that the solutions of systems (2.2) are bounded. We thus have the following result.

Theorem 2. The solutions of model system (2.2) are contained in the region Q € R7, which is given by
Q = {(Sps Sariny bmg, fus ) ERT :0< 5,4+ 5, +0i, <1,0<1<1,0<m, < Mlo,O < fu + f. < 1} for the
initial conditions (2.3) in Q.

Proof. Considering the total change in the human population from the model system (2.2) given by

dn

7 (1 = sy = 84 — 1) + (1 — 8, — 54 — ip) — Vi, (3.3)

forn = s, + s, + i, <1 we obtain
dn .
i Hr(1 = n) + 6,(1 — n) = yiy,
< (u + 6p)(1 = n),

whose solution is
n(t) < 1 —n(0) exp[—(u + op)tl,

where 1n(0) = 5,(0) + s,(0) + i,(0) is the initial condition. We note that 0 < n < 1 — n(0)e”“*9)" 5o that
n(t) is bounded provided that n(0) > 0.
The equation

dl
E‘ = I"ll(l — l)

for the Listeria compartment has a standard solution for a logistic equation

1
1 + O, exp[-r?] ’

(1) =

which is bounded with ®; = exp[—c], where c is a constant.
On the other hand, the total change in the amount of food products resulting from summing the last
two equations of (2.2) is given by

df
== = uy—uyf,

dt
< up(1 = 1),
whose solution is
f(@® =1- f(0) exp[—pyt],

where f(0) = £,(0) + f.(0) Here, f.(t) < 1 as t — oo and hence it is bounded above. We thus, conclude
that all the solutions of system (2.2) are bounded, biologically feasible and remains in Q for all 7 € [0, c0).
This completes the proof. O
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3.3. Steady states and its analyses

The steady states of the model system (2.2) are obtained by equating the right side of Eq (2.2) to
zero, so that

tn+ 051 =5, — s, — i) + wi S, — (Bif, + wp +pmy)s, =0,
pm,s, — (w1 + up)s, =0,
Bif sy — (wn + Y, =0,
nl (1 =17 — &r =0, (3.4)
Ty, — poin,, =0,
My = Bol” + Bsf +up)f, =0,
(ﬁzl* +,33f:)f: - ,Uff: =0.

From the fourth equation of system (3.4), we have [* =0 or [* = 2, where ¢ = (r;— &) and r; > &. We
n
consider the two cases separately.

CASE A: If I' = 0, (i.e., if there is no Listeria in the environment) then from the second last equation of

(3.4) we have that
. _ Hy

= . (3.5)
B3 + s
Substituting (3.5) into the last equation of (3.4) we obtain
Bk fe = urfiBsfe +pp) =0,
and upon simplification we have
fr=0or o (3.6)
B3

Thus, if = O then f7 = 0,4, = A, =0, f; = land if = 0,m; = 0, s, = 0. Also, from the first equation
of (3.4)
s, = 1.

This results in the disease-free steady states (DFS) given by
E; =(1,0,0,0,0,1,0).

On the other hand, from (3.6), we have

Hf
= =Ry = 1),
I ﬁs(f )
where
g B
My

We thus have the following result on the existence of f.

Lemma 2. The existence of f! is subject to Ry > 1.
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. . . . 1
However, we note that 35 is the contamination rate contributed by contaminated food products and —

is the duration of food contamination. So, Ry can be defined as the “food contamination threshold” tfllla{t
measures the growth of contaminated food due to the contamination of uncontaminated food products
by contaminated food products. This is equivalent to the basic reproduction number (Ry) in disease
modelling, see [27].

If fr = %(Rf — 1), then expressing the second, third, and fifth equations of (3.4) in terms of i; we
obtain the following equation

mZ ¢Oih’
sp= iy (3.7
p + 0 . . .
where ¢y = i, 1 = M and ¢, = _btodr Substituting all the expressions in Eq (3.7)
Ho By (R = 1) G + @)

into the first equation of (3.4) and after some algebraic simplifications we obtain the following quadratic
equation

&I+ &1y + & = 0, (3.8)
where
& = —Psuy+0p) <0,
& o= y+,uh+6h+’83(uh+w(uh+6h) >0 if Ry >1,
By (Rf_ 1)
& 7pBs (up +y) (up + 64) S0 if Ry > 1.

Bipopts (pn + w1) (Rf - 1)

However, we note that the solutions of the quadratic equation (3.8) are given by

. &1 * \/ﬁ — 4& 60

g 2%,

The solutions to (3.8) has one positive root when R, > 1. Biologically, this implies that the disease will
persist and eventually invade the human population. This results in the Listeria steady state (LFS)

B} = (1 6213 0, iy, R R )

We note that at Listeria disease free steady state, there are contaminated food products which may result
in Listeriosis infection in the human population.

Remark 1. We note that, when I' = 0, we have two steady states Ej, and E7. The existence of E] is
subject to the contaminated food generation number (Ry) been greater than 1. As long as Ry > 1, even
without Listeria in the environment, we will have the disease in the human population.
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CASEB: If ' = = then from last equation of (3.4) solving for new f,’, we have
r

L= % (3.9)
B3 f: +—

Substituting (3.9), into second last equation of (3.4) we obtain the following expression in terms of f*
after some algebraic simplifications

2+ vif 41 =0, (3.10)
where
vo = —Pagus <0,
vi = Poptsq + il = Rp),
vo = Bapgr > 0.

The solutions of the quadratic equation (3.10) given by

—vi £ Vi —4vavg
fc* = ,

2V2

has one positive root irrespective of the signs of v;. The solutions of f say fi* exists, but cannot be
determined due to its intractability. Hence, as long as [* = 1 we have a positive f;*

Now, we express the second, third and fifth equation of (3.4) in terms of i; and obtain the following
expressions

mZ = lPOiZ’
spo= Wiy, (3.11)
s, = Wiy,
+ o'oY,

respectively, where ¥, = x, ¥, = ();3 ﬁh) and ¥, = p _:_) - Similarly, substituting all the
1 Hn + W

Ho
expressions from Eq (3.11) into the first equatlon of (3.4) and after some algebraic manipulations we
obtain the following quadratic equation in terms of i}

Esiy” + iy + & =0, 3.12)
where
& = —(u,+6,) <0,
g = (Wt + ) (Wi + 0p) + Bif (O + i +7y) 50,
Bife
& = 7o (y + up) (On + pn) - 0.
Bitofi* (un + wy)
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The solutions (iy) of the quadratic equation (3.12) given by

. =&y £ \/ﬁ — 4583

th 26

exists and has one positive root. We thus have the following result on the existence of new i; say i;".
Lemma 3. The steady state i;* exists whenever f:* exists.

This results in the endemic steady states (ESS) given by

. . MRS
E* — S*+, s*+’l*’m*+’ k+ — (\I; l*+,\I’ l*+’ 1,‘}‘ l*+’ .
2 (h a 1 a n) 1ty 2t 0n ﬁ3fc*++ﬁ2
Hence, at endemic steady state, there are contaminated food products which result in the persistence of
the Listeria infections in the human population.

3.3.1. Local stability of the disease-free steady state

To analyse the local stability of the DFS, we show that the eigenvalues of the Jacobian matrix at DFS
have negative real parts. We now state the following theorem for the DFS.

Theorem 3. The disease-free steady state (Ej) is always stable whenever Ry < 1 and r; < €.

Proof. The Jacobian of system (2.2) is given by the block matrix

A As
J = . (3.13)
Az Ay
where .
—(0, + ﬁmZ) =0, + W -0 0 —ﬁs;‘l 0 —ﬁl SZ
pm’ —(w1 + ) 0 0 ps, 0 0
A= o , Ay = .
Bif; 0 —(u,+7y) O 0 0 Bis
0 0 0 Fo 0O O 0
00« 0 — Lo 0 0
A;= 10 0 0 —Bof, |, andAys= | O —(Bol* +B3f +up)  —B3f;
0 0 0 Bof, 0 Baol* + Bsf! Bsf, —ur

in which %y = r; — ¢ — 2rl*. Evaluating (3.13) at DFS, we have that

Ji(Eg) | J2(Ep)
J(Ep) = ;

INEy) | J(E)
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where
=0, Wi —0p) —0p, 0 -0 0 =B
o |0~ 0 0 A_ |2 0 0
JI(EO) - 0 0 _(llh +y) O s JZ(EO) - O O ﬁ] ’
0 0 0 rn—£& 0O 0 O
0

0 0 ma O -y 0
J3(Ep) = [0 0 O —,32] and Jy(Ey) = { 0 -y B ]
0 0 0 4 0 0 B—puy
Similar to the approach used in [28], the eigenvalues of J(E}) are: Ay = =0y, A = —(wy + p), A3 =

_(llh +7)
A=1-86<0,ifr; <& As = —pp, dg = =y and A7 = ps(Ry — 1) < 0 when Ry < 1. We note that all

the eigenvalues are negatives. Hence Ej is locally asymptotically stable. O
3.3.2. Local Stability of the Listeria-free steady state

We state the following theorem for the local stability of Listeria-free steady state.
Theorem 4. The Listeria-free steady state (E7) is always stable whenever Ry > 1 and r; < €.

Proof. Evaluating (3.13) at Listeria-free steady state, we have that

JI(EY) | L(EY)

J(E}) = ,
J3(EY) | J4(EY)
where
—(0n + Poiy) —Op + wy =0 0 —pdiiy, 0 =Py,
f)(polz —(w; + /Jh) 0 0 ﬁ¢ll* 0 0
J E“‘< = 1M4F ’ J E* = h ¥ ’
R T I R B N U R N P
0 0 0 r—£& 0 0 0
0 0 ma O —Uo 0 0
HEY= 100 0 Fl andnEn=|0 -wR
00 0 2 0 R =1 2 —p

The eigenvalues from J(EY) are: 4, = (r; — &) < 0if r; < £ and the solutions to the cubic equation
B +a>+ad+ag =0,

where
1 . o
ap = W(ﬁ%()’ + 1) (PR, + Op(mPT, + po(, + w1))) + (Bitopt p0n(un + w1)(Ry — 1)),
310

1
a, = [rm(&(ﬂﬁif,@ﬂh +0,+y)+ #o((ﬂh +9) (up + wy) + 6, 2up + wy + 7’))) + (Bitopt0R) Ry — 1)),

iy
ay = 2py+ 6+ w +y + =k
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Given that ay, a; and a, are positive provided that Ry > 1, we note that

1 "
aa; — ap = W(TO + B1Onpop (P, + po(y + 05 + )Ry — 1)),
3Ho

for
Yo = B3(7piy, + po(On + pp + W) (APiL (Y + 05 + 2p3) + po(y + 64 + pan)F1)

and F, = (2u, + w; + y). We also, note that a,a; — ap > 0 if Ry > 1. Hence, by the Routh-Hurwitz
criterion the eigenvalues of J(EY) have negative real parts. The rest of the eigenvalues are determined
from J4(E7), which are; A5 = —ug and the solutions to the quadratic equation

/12+a4/l+a3:0,

where | |
as = ,LlfRf +[.lf(1 - ﬁ) and ayg = IUJRJ(I - @)
f f
We thus have that a3 > 0 and a, > 0if Ry > 1 and a4 is always positive. Therefore, the eigenvalues
have negative real parts by Routh-Hurwitz criteria. Hence, E7 is locally asymptotically stable. O

3.3.3. Local stability of the endemic steady state

We now state the following theorem on the local stability of endemic steady state.
Theorem 5. The endemic steady state (E3), is always locally asymptotically stable if Ry > 1 and r; > €.

Proof. Evaluating (3.13) at endemic steady state, we have that

JI(EY) | L(EY)

J(E3) = ,
J3(EY) | J4(E3)
where
—(5;, +/~)\I"()l'z+) —0;, + wy -0 0 —,l~)\1"1l7;+ 0 _ﬁl\PliZ+
o _ o S —(w1 + ) 0 0 B V22 ST 0
A Y 0 ey 0 [ PETI 0T 0 g
0 0 0 —(r;— &) 0 0 0
0 0 ma 0 —Uo 0 0
JED=10 0 0 =Bofi"l andJu(E)= | O —Bo+Bfi"+up) —B3f;," |-
00 0 Bff 0 B+ B3 ST Bafy™ =y
The eigenvalues from J,(E3) are: 4, = —(r; — &) < 0if r; > £ and the solutions to the cubic equation

B+ b2+ b A+ by =0,
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where

| .
by = (ﬂplh+/1h (y + pn) + 65 (mPI," (y + pn) + Do) )

o
1 ~ ekt

by = ﬂ—(npzh (y + 61+ 2u) + o ((y + ) (i + w1) + 6,Dy) )
0

mpi,*

Ho

o

by = 2up+0,+w +y+

Note that by, b; and b, are positive and

b2b1 - b() = %(Tl + Tz) > 0,
0

Ti= P+ On+ 2u) + iy + S+ ) ((n + w1y + 24+ 1) + Sy + BufTT + 2y + w1)) and

=
|

TPUoEr T (8) + (¥ + 2up)* + 2y + 3wy + SulB1fT + Sy + 2(y + w)))).

Thus, by the Routh-Hurwitz criteria, the eigenvalues have negative real parts. The remaining eigenvalues
are determined from J4(E7), which are: As = —uy and the solutions to the quadratic equation

A+ b+ b =0,
where

wr ((Ba + Bof2*) % + Boy) o
Ba+ Bafit ’

(2B2 + Baf ) 1y .
Ba+ B3 S
Hence, the eigenvalues have negative real parts by Routh-Hurwitz criterion. Therefore, all the

eigenvalues of J(EJ) have negative real parts. Thus, E7 is locally asymptotically stable and otherwise
unstable. O

by

0.

Bo+Bafl +

4. Numerical results

4.1. Parameter values

Numerical simulations of the model system (2.2) were done using the set of parameters values given
in Table 1. Most of the parameter values were estimated since there are very few mathematical models
in literature, that have been done on L. Monocytogenes disease dynamics and hence the parameter values
are elusive. We used a fourth order Runge-Kutta numerical scheme to perform the simulations with
the initial conditions: s,(0) = 0.42, 5,(0) = 0.53,7,(0) = 0.05,1(0) = 0.1,m,(0) = 0.25, f, = 0.2 and
/. = 0.8. The initial conditions were hypothetically chosen for the numerical simulations presented in
section and are thus only for illustrative purpose and do not represent any observed scenario.
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Table 1. Parameter values used for numerical simulations.

Parameter description Symbol Value (day™!) Source
Mortality rate of humans m 0.02/365 [24]
Recovery rate of humans Yy 0.02 Assumed
Rate of loss of immunity for humans on 0.2 [24]
Waning rate of aware susceptibles w1 0.25 [16]

Rate of non-aware susceptibles to aware p 0.9 Assumed
Growth rate of Listeria T 0.25 [24]
Death rate of Listeria & 0.056 Assumed
Depletion rate of media campaigns o 0.03 [17]
Implementation rate of media campaigns n 0.001 [17]
Contact rate between Listeria and humans Bi 0.0025 Assumed
Food contamination rate by Listeria B2 0.09 Assumed
Food contamination rate B3 0.0048 Assumed
Removal rate of food products My 0.056 Assumed

4.2. Sensitivity analysis

Sobol sensitivity analysis [29] were used to determine the model parameters that are sensitive to
changes in some variable of the model system (2.2). We performed simulations for some chosen
parameters «, (o, P, w1, Bi, P2, B3 and uy versus some of the model state variables s,, i, and f. to
show their respective PRCCs over time. These parameters and state variables were selected because
they are the most significant in the Listeria disease transmission and control according to our model
formulation relating to the subject under investigation. The simulations were done with 1000 runs over
800 days as depicted in Figures 2 and 3. The scatter plots for parameters with positive and negative
PRCCs are also shown in Figure 4. Thus, an increase in the rate at which susceptible individuals
move into the aware susceptible class results in a fewer number of humans been infected with the
Listeriosis and parameter w; with negative correlation signifying that if aware individuals revert to
being susceptible, then they are prone to contracting the disease as depicted in Figure 4 respectively.
This highlights the importance of media campaigns in disease control.

4.3. Effects of varying  and o on Listeriosis spread

This subsection is devoted to numerical simulations that show the effects of increasing and decreasing
media campaigns over time as depicted in in Figure 5. Figure 5(a),(b) reveal that the increase in the
awareness campaigns result in a decrease in the number of infected and increase the aware susceptible
humans, respectively. While the reduction of media campaigns results in more humans being infected
with Listeriosis and less aware susceptible humans as shown in Figure 5(c),(d), respectively.

4.4. Contour plot of B3 and py on Ry

In Figure 6, we present a contour plot of the food contamination rate 33 and rate of food product
removal, i, versus the food contamination constant, R;. An increase in the contamination of non-
contaminated food by contaminated food products results in an increase in the value of R;. Hence, more
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Figure 2. Partial correlation coefficients of parameters r, uo, p, w1, 81,52, 83 and p; over time
for state variables s,, f. and i, respectively. Note that, p in the legend represents p.
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Figure 3. Partial correlation coefficients of parameters x, u, o, w1, B1,5, and B3 over time
against f, and i,. Note that, p in the legend represents p.
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[PRCC , p-value] = [-0.99972, 0]. [PRCC, p-value] = [0.97996 , 0].

600 " 600
400 400
200 200
= 0 < 0
-200 200
400 \ 400
.,
600 500
600 400 -200 0 200 400 600 0 80 6 40 2 0 20 40 60 80
y p
(@ (b)

Figure 4. Scatter plots of parameters with the negative (0) and positive (w;) PRCCs.
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Figure 5. Effects of implementation of media campaigns () on the fraction of; (a) infected
humans (b) aware susceptible humans, while the effects of depletion of media campaigns (1)
on the fraction of; (c) infected humans (d) aware susceptible humans.
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Figure 6. Contour plot of Ry as a function of 83 and u;.

humans get infected with Listeriosis. Also, an increase in the removal of contaminated food products
results in a decrease in the values of Ry which implies that fewer humans contract the disease. Note
that, the changes in the value of u; do not significantly impact R when compared to 5.

4.5. Effects of B3 and py on Ry

Figure 7 illustrates a mesh plot showing the variation of 33, u, and the contaminated food generation
number R;. It is seen that an increase in the rate of food processing increases R, while an increase in
the removal of contaminated food results in a decrease in R;. Note that at the intersection of the plane
R = 1 and the mesh plot, we obtain all values of 83 and i necessary for the eradication of the disease.
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Figure 7. Effects of 53 and s on the contamination food constant (Ry).
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4.6. Impact of varying p and i on infected humans

Figure 8 depicts the effects of varying parameters p and . In Figure 8(a), we observe that increasing
p decreases the number of infected humans. This implies that media campaigns have the potential to
reduce the number of infectives. On the other hand, an increase in p does not impact the value of the
contaminated food generation number, R;. On the other hand, increasing u also reduces the number of
infected individuals and Ry (see Figure 8(b)). So the removal of contaminated food products during an
outbreak is an important intervention in the control of Listeriosis.
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Figure 8. (a) Effects varying removal of contaminated food products (us) on the fraction
of infected humans. (b) Effects varying the rate of non-aware susceptible becomes aware
susceptible (p) on the fraction of infected humans. The value for the Ry is 1.5306.

5. Conclusions

A deterministic model on media campaigns’ potential role on Listeriosis disease transmissions
was developed and analysed in this manuscript. Stability analyses of the model were done in terms
of the food contamination constant Ry. The model exhibited three different steady states, which are:
disease-free, Listeria-free, and endemic equilibria. The disease-free and the Listeria-free steady states
are locally asymptotically stable if the net growth rate r; < &, Ry < 1 and r; < &, Ry > 1 respectively,
while the endemic equilibrium state is locally asymptotically stable if r; > & and R; > 1. On the other
hand from our numerical results, it was established that an increase in the removal of contaminated
food products and an increase in the rate at which the susceptible individuals become aware susceptible
individuals leads to a decrease in the number of infected humans (see Figure 8). Thus to effectively
control Listeria disease spread, policymakers, public health, governments, and global stakeholders
are advised to implement media campaigns that do not wane as time progresses. This means that
media campaigns need to be effective. Further, these interventions from the campaigns should target
mainly susceptible individuals in the danger of contracting Listeriosis. As people adhere to the media
campaign effectively, it helps reduce and control the number of infected humans leading to less disease
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transmission. The model presented in this paper is not without fallibility. The model was not fitted to
epidemiological data and we assumed that the infectives do not interact with the aware susceptibles.
During Listeriosis spread, the assumption has a negative impact on the human population since fewer
un-aware individuals become aware of the disease. Despite these shortcomings, the results obtained in
this paper are still implementable to help manage, control or contain Listeriosis disease transmission in
the event of an outbreak.

In future work, a non-standard explicit discretization method can be considered for solving the
Listeriosis model which developed in [30] and the result can be compared with classical methods such
as Euler, Runge—Kutta, and some other established approaches.
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