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Abstract: This paper is devoted to a nonautonomous SVIR epidemic model with relapse, that is, the
recurrence rate is considered in the model. The permanent of the system is proved, and the result on
the existence and uniqueness of globally attractive almost periodic solution of this system is obtained
by constructing a suitable Lyapunov function. Some analysis for the necessity of considering the
recurrence rate in the model is also presented. Moreover, some examples and numerical simulations
are given to show the feasibility of our main results. Through numerical simulation, we have obtained
the influence of vaccination rate and recurrence rate on the spread of the disease. The conclusion is that
in order to control the epidemic of infectious diseases, we should increase the vaccination rate while
reducing the recurrence rate of the disease.
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1. Introduction

As early as the 2nd century AD, the Antonine plague was prevalent in the Roman Empire, causing
a rapid population decline and economic deterioration, allowing invaders to take advantage of it and
leading to the collapse of the Roman Empire. Between 1519–1530 AD, an epidemic of measles and
other infectious diseases reduced Mexico’s Indian population from 30 million to 3 million. Since the
outbreak of COVID-19, the number of infected people worldwide has reached more than 140 million,
many countries have prevented the spread of the virus by reducing people’s contact, but these measures
have had a huge impact on the economy. These shows that infectious diseases have always been the
primary factor affecting human death. Therefore, it is necessary to study the transmission mechanism
and the dynamic behavior of epidemics.

Inspired by the Kermack and Mckendricks’ original epidemic model [1], the study of mathematical
epidemiology has grown rapidly, with a large variety of models having been formulated and applied
to infectious diseases. For example, we can see SIS (susceptible-infectious-susceptible) models in [2],
the authors considered the global dynamics of the SIS model with delays denoting an incubation time.
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By constructing a Lyapunov function, they prove stability of a disease-free equilibrium E0 under a
condition different from other paper. There are some other SIS models, we can refer to [3, 4] and the
references cited therein. Kuniya etc. [5] formulated a SIR (susceptible-infectious-recovered) model
with nonlocal diffusion. They prove the global asymptotic stability of the disease-free equilibrium
when the basic reproduction number R0 < 1 and also prove the uniform persistence of the system when
R0 > 1 by using the persistent theory for dynamical systems. In 2020, Naik ect [6] established a new
SIR model with Crowley-Martin type functional response and Holling type II treatment rate. The au-
thors proved that the model has a disease-free equilibrium point and an endemic equilibrium point, and
studied the existence and stability of the equilibrium point by using the La-Salle invariance principle
and the Lyapunov function. The author also established a similar model in the same year, please refer
to [7]. There are some other SIR models, we can refer to [8] and the references cited therein. In addition
to these, the application of fractional-order models in infectious diseases has become more and more
widespread. Naik ect [9] established a nonlinear fractional infectious disease model for HIV trans-
mission. In the analysis process, the authors introduced Caputo-type fractional derivatives, applied the
generalized Adams-Bashforth-Moulton method to find the numerical solution of the model. And by us-
ing the fractional Routh-Hurwitz stability criterion and the fractional La-Salle invariance principle, the
equilibrium state of the model is determined and its stability is analyzed. Similar models can also refer
to [10–12] and the references cited therein. In addition, some scholars have considered treatment items
in the model, such as the SEIR (susceptible-exposed-infectious-recovered) model in [13, 14]. In addi-
tion to these, there are other models that take into account more factors, as in [15–19]. From the work
of S.A. Boone, et al. [20] and A. Gabbuti, et al. [21], we know that vaccination is the most effective
measure to control the spread of hepatitis B due to prevention and management of viral disease heav-
ily relies upon vaccines and antiviral medications. In 2014, Xu ect [22] studied vaccination decisions
based on game theory and its impact on the spread of infectious diseases. In 2016, they studied the
importance of vaccination for sexually transmitted diseases. It is concluded that with the establishment
of herd immunity after vaccination, the mortality rate caused by infectious diseases will decrease [23].
In 2021, scholars have also analyzed the impact of vaccination on the spread of COVID-19 [24, 25].
There are many similar models, see [26–28]. Considering a continuous vaccination strategy, Liu et
al. [28] formulated the following system of ordinary differential equations:

dS (t)
dt
= µ − βS (t)I(t) − (µ + α)S (t),

dV(t)
dt
= αS (t) − β1V(t)I(t) − (µ + γ1)V(t),

dI(t)
dt
= βS (t)I(t) + β1V(t)I(t) − γI(t) − µI(t),

dR(t)
dt
= γ1V(t) + γI(t) − µR(t),

(1.1)

where S (t),V(t), I(t) and R(t) denote the susceptible, vaccinated, infectious and recovered populations
as time t, respectively. The parameters µ, β, α, β1, γ1, γ are all positive constants, here, µ is the recruit-
ment rate and natural death rate, β is the rate of disease transmission between susceptible and infectious
individuals, β1 is the rate of disease transmission between vaccinated and infected individuals, γ is the
recovery rate, α is the vaccination rate, γ1 is the rate at which a vaccinated individual obtains immu-
nity. It was shown that the global dynamics of model (1.1) is completely determined by the basic
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reproduction number R0. That is, if R0 < 1, the disease-free equilibrium is globally asymptotically
stable, while if R0 > 1, a positive endemic equilibrium exists and it is globally asymptotically stable.
It was observed in [28] that vaccination has an effect of decreasing the basic reproduction number.

We all know that some infectious diseases, such as measles and mumps, will be immune to life
after being caught once, but not all infectious diseases will remain immune to death after being ac-
quired once. Neglecting to monitor those who have recovered may lead to a resurgence of the disease.
Therefore, it is necessary to consider the recurrence rate of the disease in the model.

Many previous models such as model (1.1) have constant coefficients. Assuming that the coefficient
is independent of the environment is not consistent with the actual situation. Parameters (death rate,
birth rate, etc.) are subject to changes in season, weather, food supply, etc. Incidence rates of many
infectious diseases, such as measles, chicken-pox, rubella, diphtheria and influenza, are periodic or
almost periodic in nature [29], therefore, nonautonomous systems are more realistic to reflect actual
problems. Recently, researchers have worked on the nonautonomous epidemic dynamical systems with
almost periodic parameters [30–37], the concept of almost periodicity was introduced by Bohr [38].

Motivated by the above work, in this paper, we consider the following nonautonomous SVIR epi-
demic model with relapse:

dS (t)
dt
= µ(t) − β(t)S (t)I(t) − (µ(t) + α(t))S (t),

dV(t)
dt
= α(t)S (t) − β1(t)V(t)I(t) − (µ(t) + γ1(t))V(t),

dI(t)
dt
= β(t)S (t)I(t) + β1(t)V(t)I(t) − γ(t)I(t) − µ(t)I(t) + k(t)R(t),

dR(t)
dt
= γ1(t)V(t) + γ(t)I(t) − µ(t)R(t) − k(t)R(t),

(1.2)

for t ∈ R+ = [0,+∞), with initial conditions:

S (0) > 0, V(0) > 0, I(0) > 0, R(0) > 0,

where µ(t), α(t), β(t), β1(t), γ(t), γ1(t), k(t) are positive almost periodic functions for t ∈ R, the ecologi-
cal meaning of the almost functions are described in Table 1.

Table 1. The ecological meaning of the functions.

Almost functions Ecological meaning
µ(t) Recruitment rate and natural death rate of the population
α(t) Vaccination rate of the population
β(t) The rate of disease transmission between S and I
β1(t) The rate of disease transmission between V and I
γ(t) The recovery rate
γ1(t) The rate at which a vaccinated individual obtains immunity
k(t) The recurrence rate

The paper is organized as follows: In section 2, some definitions and lemmas is presented. Section
3 is devoted to the permanence of the system (1.2). Section 4 is mainly to get the uniqueness and global
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attractivity of almost periodic solution of the system (1.2). Section 5 mainly analyzes the necessity of
adding the recurrence rate k in this model and discusses the relationship between the recurrence rate
k and the basic reproduction number R0. Some numerical simulations in Section 6 and discussions in
Section 7 are given to illustrate our analytical result.

2. Preliminaries

In this section, some definitions and lemmas will be presented.

Definition 1. [38, 39] A continuous function f : R → R is said to be almost periodic on R if for any
ϵ > 0, the set

T ( f , ϵ) ≡ {τ ∈ R : | f (t + τ) − f (t)| < ϵ, t ∈ R}

is relatively dense in R. i.e., for any ϵ > 0, it is possible to find a real number l = l(ϵ) > 0 with the
property that for any interval L with length l(ϵ) such that L ∩ T ( f , ϵ) , ∅.

Definition 2. [38, 39] A continuous function f : R+ → R is said to be asymptotically almost periodic
function if there exist an almost periodic function h(t) and a continuous function φ(t) defined on R+

with lim
t→∞
φ(t) = 0 such that

f (t) = h(t) + φ(t).

Similar to almost periodic functions, asymptotic almost periodic functions also have several equiv-
alent definitions:

Proposition 1. [38,39] Let f : R+ → R be a continuous function, f is asymptotically almost periodic
if and only if for any ϵ > 0, T (ϵ) ≥ 0, the set

T+( f , ϵ) ≡ {τ ∈ R+ : | f (t + τ) − f (t)| < ϵ, t ≥ T (ϵ), t + τ ≥ T (ϵ)}

is relatively dense in R+. i.e., for any ϵ > 0, it is possible to find a real number l = l(ϵ) > 0 with the
property that for any interval L ⊂ R+ with length l(ϵ) > 0 and T (ϵ) ≥ 0 such that L ∩ T+( f , ϵ) , ∅.

Lemma 1. [40] If a > 0, b > 0 and dx(t)
dt ≥ b − ax

(
dx(t)

dt ≤ b − ax
)
, where t ≥ t0 and x(t0) > 0, we have

lim
t→∞

infx(t) ≥
b
a

(
lim
t→∞

supx(t) ≤
b
a

)
.

Lemma 2. [41,42] If function f is nonnegative, integrable and uniformly continuous on [0,+∞], then
lim
t→∞

f (t) = 0.

3. Permanence

For convenience, we introduce some notations, in the following part of this paper, let g : R→ R be
a continuous bounded function, then g and g will be defined as

g = sup
t∈R

g(t), g = inf
t∈R

g(t).
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It is well known that an almost periodic function is bounded and uniformly continuous, thus we have

max{µ, α, β, β1, γ, γ1, k} < ∞.

Moreover, we always assume that

min{µ, α, β, β
1
, γ, γ

1
, k} > 0.

Theorem 1. The system (1.2) is permanent, it means that any solution (S (t),V(t), I(t),R(t)) of system
(1.2) satisfies

m1 ≤ lim
t→∞

infS (t) ≤ lim
t→∞

supS (t) ≤ M1,

m2 ≤ lim
t→∞

infV(t) ≤ lim
t→∞

supV(t) ≤ M2,

m3 ≤ lim
t→∞

infI(t) ≤ lim
t→∞

supI(t) ≤ M3,

m4 ≤ lim
t→∞

infR(t) ≤ lim
t→∞

supR(t) ≤ M4,

(3.1)

where M1 =
µ

µ+α
,M2 =

αM1
µ+γ

1
,M3 =

µ

µ
,M4 =

γ1 M2+γM3
µ+k ,m1 =

µ

βM2+µ+α
,m2 =

αm1

β1 M3+µ+γ1
,m3 =

km4

µ+γ
,

m4 =
γ

1
m2

µ+k
.

Proof. The first equation of system (1.2) gives that

S (t) = S (0)e
∫ t

0 ( µ(y)
S (y)−β(y)I(y)−µ(y)−α(y))dy,

where S (0) > 0. This implies that S (t) > 0 for all t > 0, similar results also hold for V(t), I(t) and R(t).
From the first equation of system (1.2), we have

dS (t)
dt
≤µ(t) − (µ(t) + α(t))S (t)

≤µ − (µ + α)S (t). (3.2)

By applying Lemma 1 to (3.2), we get

lim
t→∞

supS (t) ≤
µ

µ + α
≜ M1.

Thus, there exists a sufficiently small ϵ1 > 0 and T1 > 0 such that

S (t) ≤ M1 + ϵ1, t ≥ T1.

According to the second equation of system (1.2), we get

dV(t)
dt
≤α(t)S (t) − (µ(t) + γ1(t))V(t)

≤α(M1 + ϵ1) − (µ + γ
1
)V(t). (3.3)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7191–7217.



7196

By applying Lemma 1 to (3.3), we get

lim
t→∞

supV(t) ≤
α(M1 + ϵ1)
µ + γ

1

→
αM1

µ + γ
1

≜ M2(ϵ1 → 0).

So as ϵ1 → 0 there exists a sufficiently small ϵ2 > 0 and T2 > T1 such that

V(t) ≤ M2 + ϵ2, t ≥ T2.

Let N(t) = S (t) + V(t) + I(t) + R(t), then we get

dN(t)
dt
=µ(t) − µ(t)N(t)

≤µ − µN(t). (3.4)

By applying Lemma 1 to (3.4), we get

lim
t→∞

supN(t) ≤
µ

µ
≜ M3.

Then we have
lim
t→∞

supI(t) ≤ M3.

Thus, there exists a sufficiently small ϵ3 > 0 and T3 > T2 such that

I(t) ≤ M3 + ϵ3, t ≥ T3.

From the last equation of the system (1.2), we get

dR(t)
dt
≤ γ1(M2 + ϵ2) + γ(M3 + ϵ3) − (µ + k)R(t). (3.5)

By applying Lemma 1 to (3.5), we get

lim
t→∞

supR(t) ≤
γ1(M2 + ϵ2) + γ(M3 + ϵ3)

µ + k
→
γ1M2 + γM3

µ + k
≜ M4(ϵ2, ϵ3 → 0).

So as ϵ2 , ϵ3 → 0, there exists a sufficiently small ϵ4 > 0 and T4 > T3 such that

R(t) ≤ M4 + ϵ4, t ≥ T4.

Similarly, we can get the following inequation by using the above conclusions,

dS (t)
dt
≥ µ −

(
β(M2 + ϵ2) + µ + α

)
S (t). (3.6)

By applying Lemma 1 to (3.6), we get

lim
t→∞

infS (t) ≥
µ

β(M2 + ϵ2) + µ + α
→

µ

βM2 + µ + α
≜ m1(ϵ2 → 0).
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So as ϵ2 → 0 , there exists a sufficiently small ϵ5 > 0 and T5 > T4 such that

S (t) ≥ m1 − ϵ5, t ≥ T5.

According to the second equation of system (1.2), we get

dV(t)
dt
≥ α(m1 − ϵ5) −

(
β1(M3 + ϵ3) + µ + γ1

)
V(t). (3.7)

By applying Lemma 1 to (3.7), as ϵ5 → 0, we get

lim
t→∞

infV(t) ≥
α(m1 − ϵ5)

β1(M3 + ϵ3) + µ + γ1

→
αm1

β1M3 + µ + γ1

≜ m2(ϵ3, ϵ5 → 0).

So as ϵ3 , ϵ5 → 0, there exists a sufficiently small ϵ6 > 0 and T6 > T5 such that

V(t) ≥ m2 − ϵ6, t ≥ T6.

From the last equation of the system (1.2), we get

dR(t)
dt
≥ γ

1
(m2 − ϵ6) − (µ + k)R(t). (3.8)

By applying Lemma 1 to (3.8), we get

lim
t→∞

infR(t) ≥
γ

1
(m2 − ϵ6)

µ + k
→
γ

1
m2

µ + k
≜ m4(ϵ6 → 0).

Thus, there exists a sufficiently small ϵ7 > 0 and T7 > T6 such that

R(t) ≥ m4 − ϵ7, t ≥ T7.

From the third equation of the system (1.2), we get

dI(t)
dt
≥ k(m4 − ϵ7) − (µ + γ)I(t). (3.9)

By applying Lemma 1 to (3.9), we get

lim
t→∞

infI(t) ≥
k(m4 − ϵ7)
µ + γ

→
km4

µ + γ
≜ m3(ϵ7 → 0).

Thus, there exists a sufficiently small ϵ8 > 0 and T8 > T7 such that

I(t) ≥ m3 − ϵ8, t ≥ T8.

□
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4. Almost periodic solution

Theorem 2. Suppose that the system satisfies the following conditions:
µ − 2βM3 > 0,

µ − 2β1M3 > 0,

µ − 2βM1 − 2β1M2 > 0,

(4.1)

where M1,M2,M3 is given in (3.1), then let X(t) = (S 1(t),V1(t), I1(t),R1(t)) and Y(t) =

(S 2(t),V2(t), I2(t),R2(t)) are any two positive solutions of the system (1.2), we have

lim
t→∞
|X(t) − Y(t)| = 0.

Proof. From Theorem 1, it follows that for ϵ = max ϵi (i = 1, 2, ...8) and T ≥ T8 such that

m1 − ϵ < S j < M1 + ϵ, m2 − ϵ < V j < M2 + ϵ,

m3 − ϵ < I j < M3 + ϵ, m4 − ϵ < R j < M4 + ϵ, (4.2)

for all t ≥ T and j = 1, 2, consider the following Lyapunov function

Ṽ(t) = Ṽ1(t) + Ṽ2(t) + Ṽ3(t) + Ṽ4(t), (4.3)

where

Ṽ1(t) = |S 1(t) − S 2(t)|, Ṽ2(t) = |V1(t) − V2(t)|,
Ṽ3(t) = |I1(t) − I2(t)|, Ṽ4(t) = |R1(t) − R2(t)|.

We define a function σ(φ(t)) in the following way, the function φ(t) is supposed to be a real valued
scalar function,

σ(φ(t)) =


1, if φ(t) > 0; or if φ(t) = 0 and φ′(t) > 0,
0, if φ(t) = 0 and φ′(t) = 0,
−1, if φ(t) < 0; or if φ(t) = 0 and φ′(t) < 0.

Then, it can be obtained that |φ(t)| = φ(t)σ(φ(t)) and D+|φ(t)| = φ′(t)σ(φ(t)) where D+ denotes a right
hand Dini derivative, it follows that

D+Ṽ1(t)
=σ(S 1 − S 2)(S ′1 − S ′2)
=σ(S 1 − S 2)[−β(t)S 1I1 − (µ(t) + α(t))S 1 + β(t)S 2I2 + (µ(t) + α(t))S 2]
= − (µ(t) + α(t))|S 1 − S 2| − σ(S 1 − S 2)β(t)(S 1I1 − S 1I2 + S 1I2 − S 2I2)
= − (µ(t) + α(t))|S 1 − S 2| − σ(S 1 − S 2)β(t)I2(S 1 − S 2)
− σ(S 1 − S 2)β(t)S 1(I1 − I2)
≤ − (µ(t) + α(t))|S 1 − S 2| + β(t)I2|S 1 − S 2| + β(t)S 1|I1 − I2|.
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Similarly,

D+Ṽ2(t)
=σ(V1 − V2)(V ′1 − V ′2)
=σ(V1 − V2)[α(t)S 1 − β1(t)V1I1 − (µ(t) + γ1(t))(V1 − V2) − α(t)S 2 + β1(t)V2I2]
= − (µ(t) + γ1(t))|V1 − V2| + σ(V1 − V2)α(t)(S 1 − S 2)
− σ(V1 − V2)β1(t)(V1I1 − V2I1 + V2I1 − V2I2)
= − (µ(t) + γ1(t))|V1 − V2| + σ(V1 − V2)α(t)(S 1 − S 2) − σ(V1 − V2)β1(t)I1(V1 − V2)
− σ(V1 − V2)β1(t)V2(I1 − I2)
≤ − (µ(t) + γ1(t))|V1 − V2| + α(t)|S 1 − S 2| + β1(t)I1|V1 − V2| + β1(t)V2|I1 − I2|,

D+Ṽ3(t)
=σ(I1 − I2)(I′1 − I′2)
=σ(I1 − I2)[β(t)S 1I1 + β1(t)V1I1 − (γ(t) + µ(t))I1(t) − β(t)S 2I2

− β1(t)V2I2 + (γ(t) + µ(t))I2(t) − β(t)S 1I2 + β(t)S 1I2 − β1(t)V2I1

+ β1(t)V2I1 + k(t)(R1 − R2)]
= − σ(I1 − I2)(γ(t) + µ(t))(I1 − I2) + σ(I1 − I2)[β1(t)V1I1 − β1(t)V2I2

− β1(t)V2I1 + β1(t)V2I1] + σ(I1 − I2)[β(t)S 1I1 − β(t)S 2I2 − β(t)S 1I2

+ β(t)S 1I2] + σ(I1 − I2)k(t)(R1 − R2)
= − (γ(t) + µ(t))|I1 − I2| + σ(I1 − I2)β1(t)I1(V1 − V2) + σ(I1 − I2)β1(t)
× V2(I1 − I2) + σ(I1 − I2)β(t)S 1(I1 − I2) + σ(I1 − I2)β(t)I2(S 1 − S 2)
+ σ(I1 − I2)k(t)(R1 − R2)
≤ − (γ(t) + µ(t))|I1 − I2| + β1(t)I1|V1 − V2| + β1(t)V2|I1 − I2|

+ β(t)S 1|I1 − I2| + β(t)I2|S 1 − S 2| + k(t)|R1 − R2|,

D+Ṽ4(t)
=σ(R1 − R2)(R′1 − R′2)
=σ(R1 − R2)[γ1(t)V1 + γ(t)I1 − (µ(t) + k(t))R1 − γ1(t)V2 − γ(t)I2

+ (µ(t) + k(t))R2]
=σ(R1 − R2)γ1(t)(V1 − V2) + σ(R1 − R2)γ(t)(I1 − I2) − σ(R1 − R2)
× (µ(t) + k(t))(R1 − R2)
≤γ1(t)|V1 − V2| + γ(t)|I1 − I2| − (µ(t) + k(t))|R1 − R2|.

For t > T , we have

D+Ṽ(t)
≤ − (µ(t) − 2β(t)I2) |S 1 − S 2| − (µ(t) − 2β1(t)I1) |V1 − V2|

− (µ(t) − 2β(t)S 1 − 2β1(t)V2) |I1 − I2| − µ(t)|R1 − R2|

≤ −
[
µ − 2β(M3 + ϵ)

]
|S 1 − S 2| −

[
µ − 2β1(M3 + ϵ)

]
|V1 − V2|

−
[
µ − 2β(M1 + ϵ) − 2β1(M2 + ϵ)

]
|I1 − I2| − µ|R1 − R2|.
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When we choose ϵ → 0, the above relation still holds. Define ϕ = min{µ − 2βM3, µ, µ − 2β1M3, µ −

2βM1 − 2β1M2}. The above inequation takes the following form

D+Ṽ(t) ≤ −ϕ [ |S 1 − S 2| + |V1 − V2| + |I1 − I2| + |R1 − R2| ] .

Integrating the above inequation from T to t, we have

Ṽ(t) + ϕ
∫ t

T
Ṽ(y)dy ≤ Ṽ(T ) < +∞. (4.4)

It can be obtained from (1.2), (4.2), (4.3) that Ṽ(t) is uniformly continuous on (T,+∞). Then it can be
obtained by Lemma 2 that Ṽ(t)→ 0 as t → +∞. Otherwise, ϕ

∫ t

T
Ṽ(y)dy→ +∞ when t → ∞ which is

in contradiction with (4.4), then we get that

lim
t→∞
|S 1(t) − S 2(t)| = 0, lim

t→∞
|V1(t) − V2(t)| = 0,

lim
t→∞
|I1(t) − I2(t)| = 0, lim

t→∞
|R1(t) − R2(t)| = 0.

□

Theorem 3. Suppose all the conditions of Theorem 2 hold, then system (1.2) admits a unique almost
periodic solution, which is global attractive. As a result, any solution of (1.2) is asymptotically almost
periodic.

Proof. For convenience, let F = {µ(t), α(t), β(t), β1(t), γ(t), γ1(t), k(t)} and

T (F, ϵ) =
⋂
f∈F

T ( f , ϵ),

where T ( f , ϵ) is the set of ϵ-almost periods for f . Since µ(t), α(t), β(t), β1(t), γ(t), γ1(t), k(t) are almost
periodic functions, there exists a sequence {tn} with tn → ∞ as n→ ∞, such that

lim
n→∞

f (t + tn) = f (t), f ∈ F, t ∈ R. (4.5)

Let
Q(t) = (q1(t), q2(t), q3(t), q4(t)), t ≥ 0,

be a bounded positive solution of the model (1.2). Then from (4.5), we can obtain that Q(t + tn) is the
solution of the following system for t ∈ R+:

dS (t)
dt
=µ(t + tn) − β(t + tn)S (t)I(t) − (µ(t + tn) + α(t + tn))S (t),

dV(t)
dt
=α(t + tn)S (t) − β1(t + tn)V(t)I(t) − (µ(t + tn) + γ1(t + tn))V(t),

dI(t)
dt
=β(t + tn)S (t)I(t) + β1(t + tn)V(t)I(t) − γ(t + tn)I(t)

− µ(t + tn)I(t) + k(t + tn)R(t),
dR(t)

dt
=γ1(t + tn)V(t) + γ(t + tn)I(t) − µ(t + tn)R(t) − k(t + tn)R(t).

(4.6)
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Let τ∗ ∈ R+ ∩ T (F, ε), thus
| f (t + τ∗) − f (t)| < ε, f ∈ F, t ∈ R. (4.7)

Define W(t) as follows
W(t) = W1(t) +W2(t) +W3(t) +W4(t), t ≥ 0, (4.8)

where
Wi(t) = |qi(t + τ∗) − qi(t)| (i = 1, 2, 3, 4).

Since the Q(t) is the solution of system (1.2), it can be obtained that

D+W1(t)
=σ(q1(t + τ∗) − q1(t))(q1

′(t + τ∗) − q1
′(t))

=σ(q1(t + τ∗) − q1(t))[µ(t + τ∗) − β(t + τ∗)q1(t + τ∗)q3(t + τ∗) − µ(t)
− (µ(t + τ∗) + α(t + τ∗))q1(t + τ∗) + β(t)q1(t)q3(t) + (µ(t) + α(t))q1(t)]
=σ(q1(t + τ∗) − q1(t))(µ(t + τ∗) − µ(t)) + σ(q1(t + τ∗) − q1(t))
× [−β(t + τ∗)q1(t + τ∗)q3(t + τ∗) + β(t + τ∗)q1(t)q3(t) − β(t + τ∗)
× q1(t)q3(t) + β(t)q1(t)q3(t) − (µ(t + τ∗) + α(t + τ∗))q1(t + τ∗)
+ (µ(t + τ∗) + α(t + τ∗))q1(t) − (µ(t + τ∗) + α(t + τ∗))q1(t)
+ (µ(t) + α(t))q1(t)]
≤|µ(t + τ∗) − µ(t)| + σ(q1(t + τ∗) − q1(t))[−β(t + τ∗)q1(t + τ∗)q3(t + τ∗)
+ β(t + τ∗)q1(t)q3(t)] + q1(t)q3(t)|β(t) − β(t + τ∗)|
− (µ(t + τ∗) + α(t + τ∗))|q1(t + τ∗) − q1(t)|
+ q1(t)|µ(t) − µ(t + τ∗) + α(t) − α(t + τ∗)|
≤ε − β(t + τ∗)q3(t + τ∗)|q1(t + τ∗) − q1(t)| − β(t + τ∗)q1(t)|q3(t + τ∗) − q3(t)|
− (µ(t + τ∗) + α(t + τ∗))|q1(t + τ∗) − q1(t)| + 2εq1(t) + εq1(t)q3(t),

D+W2(t)
=σ(q2(t + τ∗) − q2(t))(q2

′(t + τ∗) − q2
′(t))

=σ(q2(t + τ∗) − q2(t))[α(t + τ∗)q1(t + τ∗) − β1(t + τ∗)q2(t + τ∗)q3(t + τ∗)
− (µ(t + τ∗) + γ1(t + τ∗))q2(t + τ∗) − α(t)q1(t) + β1(t)q2(t)q3(t)
+ (µ(t) + γ1(t))q2(t)]
=σ(q2(t + τ∗) − q2(t))[α(t + τ∗)q1(t + τ∗) − α(t + τ∗)q1(t) + α(t + τ∗)q1(t)
− α(t)q1(t) − β1(t + τ∗)q2(t + τ∗)q3(t + τ∗) + β1(t + τ∗)q2(t)q3(t)
− β1(t + τ∗)q2(t)q3(t) + β1(t)q2(t)q3(t) − (µ(t + τ∗) + γ1(t + τ∗))
× q2(t + τ∗) + (µ(t + τ∗) + γ1(t + τ∗))q2(t) − (µ(t + τ∗) + γ1(t + τ∗))q2(t)
+ (µ(t) + γ1(t))q2(t)]
≤α(t + τ∗)|q1(t + τ∗) − q1(t)| + q1(t)|α(t + τ∗) − α(t)| + q2(t)q3(t)
× |β1(t) − β1(t + τ∗)| − σ(q2(t + τ∗) − q2(t))β1(t + τ∗)[q2(t + τ∗)q3(t + τ∗)
− q2(t)q3(t + τ∗) + q2(t)q3(t + τ∗) − q2(t)q3(t)] − (µ(t + τ∗) + γ1(t + τ∗))
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× |q2(t + τ∗) − q2(t)| + q2(t)|µ(t) − µ(t + τ∗) + γ1(t) − γ1(t + τ∗)|
≤α(t + τ∗)|q1(t + τ∗) − q1(t)| − (β1(t + τ∗)q3(t + τ∗) + µ(t + τ∗)
+ γ1(t + τ∗))|q2(t + τ∗) − q2(t)| − β1(t + τ∗)q2(t)|q3(t + τ∗) − q3(t)|
+ q1(t)ε + q2(t)q3(t)ε + 2q2(t)ε,

D+W3(t)
=σ(q3(t + τ∗) − q3(t))(q3

′(t + τ∗) − q3
′(t))

=σ(q3(t + τ∗) − q3(t))[β(t + τ∗)q1(t + τ∗)q3(t + τ∗) + β1(t + τ∗)
× q2(t + τ∗)q3(t + τ∗) − (γ(t + τ∗) + µ(t + τ∗))q3(t + τ∗) + k(t + τ∗)
× q4(t + τ∗) − β(t)q1(t)q3(t) − β1(t)q2(t)q3(t) + (γ(t) + µ(t))q3(t) − k(t)q4(t)]
=σ(q3(t + τ∗) − q3(t))[β(t + τ∗)q1(t + τ∗)q3(t + τ∗) − β(t + τ∗)q1(t)q3(t)
+ β(t + τ∗)q1(t)q3(t) − β(t)q1(t)q3(t)] + σ(q3(t + τ∗) − q3(t))
× [β1(t + τ∗)q2(t + τ∗)q3(t + τ∗) − β1(t + τ∗)q2(t)q3(t) + β1(t + τ∗)q2(t)q3(t)
− β1(t)q2(t)q3(t)] + σ(q3(t + τ∗) − q3(t))[−(γ(t + τ∗) + µ(t + τ∗))q3(t + τ∗)
+ (γ(t + τ∗) + µ(t + τ∗))q3(t) − (γ(t + τ∗) + µ(t + τ∗))q3(t)
+ (γ(t) + µ(t))q3(t)] + σ(q3(t + τ∗) − q3(t))[k(t + τ∗)q4(t + τ∗)
− k(t + τ∗)q4(t) + k(t + τ∗)q4(t) − k(t)q4(t)]
≤q1(t)q3(t)|β(t + τ∗) − β(t)| + σ(q3(t + τ∗) − q3(t))β(t + τ∗)[q1(t + τ∗)
× q3(t + τ∗) − q1(t)q3(t + τ∗) + q1(t)q3(t + τ∗) − q1(t)q3(t)]
+ q2(t)q3(t)|β1(t + τ∗) − β1(t)| + σ(q3(t + τ∗) − q3(t))
× β1(t + τ∗)[q2(t + τ∗)q3(t + τ∗) − q2(t)q3(t + τ∗)
+ q2(t)q3(t + τ∗) − q2(t)q3(t)] − (γ(t + τ∗) + µ(t + τ∗))|q3(t + τ∗) − q3(t)|
+ q3(t)|γ(t) + µ(t) − γ(t + τ∗) − µ(t + τ∗)| + k(t + τ∗)|q4(t + τ∗) − q4(t)|
+ q4(t)|k(t + τ∗) − k(t)|
≤β(t + τ∗)q3(t + τ∗)|q1(t + τ∗) − q1(t)| + β1(t + τ∗)q3(t + τ∗)
× |q2(t + τ∗) − q2(t)| + (β(t + τ∗)q1(t) + β1(t + τ∗)q2(t) − γ(t + τ∗)
− µ(t + τ∗))|q3(t + τ∗) − q3(t)| + k(t + τ∗)|q4(t + τ∗) − q4(t)| + εq1(t)q3(t)
+ εq2(t)q3(t) + 2εq3(t) + εq4(t),

D+W4(t)
=σ(q4(t + τ∗) − q4(t))(q4

′(t + τ∗) − q4
′(t))

=σ(q4(t + τ∗) − q4(t))[γ1(t + τ∗)q2(t + τ∗) + γ(t + τ∗)q3(t + τ∗)
− µ(t + τ∗)q4(t + τ∗) − k(t + τ∗)q4(t + τ∗) − γ1(t)q2(t) − γ(t)q3(t)
+ µ(t)q4(t) + k(t)q4(t)]
=σ(q4(t + τ∗) − q4(t))[γ1(t + τ∗)q2(t + τ∗) − γ1(t + τ∗)q2(t)
+ γ1(t + τ∗)q2(t) − γ1(t)q2(t)] + σ(q4(t + τ∗) − q4(t))[γ(t + τ∗)q3(t + τ∗)

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7191–7217.



7203

− γ(t + τ∗)q3(t) + γ(t + τ∗)q3(t) − γ(t)q3(t)] + σ(q4(t + τ∗) − q4(t))
× [−µ(t + τ∗)q4(t + τ∗) + µ(t + τ∗)q4(t) − µ(t + τ∗)q4(t) + µ(t)q4(t)]
+ σ(q4(t + τ∗) − q4(t))[−k(t + τ∗)q4(t + τ∗) + k(t + τ∗)q4(t)
− k(t + τ∗)q4(t) + k(t)q4(t)]
≤γ1(t + τ∗)|q2(t + τ∗) − q2(t)| + q2(t)|γ1(t + τ∗) − γ1(t)| + γ(t + τ∗)
× |q3(t + τ∗) − q3(t)| + q3(t)|γ(t + τ∗) − γ(t)| − (µ(t + τ∗) + k(t + τ∗))
× |q4(t + τ∗) − q4(t)| + q4(t)|µ(t) − µ(t + τ∗)| + q4(t)|k(t) − k(t + τ∗)|
≤γ1(t + τ∗)|q2(t + τ∗) − q2(t)| + γ(t + τ∗)|q3(t + τ∗) − q3(t)|
− (µ(t + τ∗) + k(t + τ∗))|q4(t + τ∗) − q4(t)| + (q2(t) + q3(t) + 2q4(t))ε.

Then, let M = max{Mi}(i = 1, 2, 3, 4), we obtain

D+W(t)
= − µ(t + τ∗) |q1(t + τ∗) − q1(t)| − µ(t + τ∗)|q2(t + τ∗) − q2(t)|
− µ(t + τ∗)|q3(t + τ∗) − q3(t)| − µ(t + τ∗)|q4(t + τ∗) − q4(t)| + ε
+ 2εq1(t)q3(t) + 3εq1(t) + 2εq2(t)q3(t) + 3εq2(t) + 3εq3(t) + 3εq4(t)
≤ − µW(t) + 12εM + 4εM2 + ε. (4.9)

Integrating both sides of (4.9) from t to T (T > T8), and let ε̃ = 24εM+8εM2+2ε
µ

we get

W(t) ≤
12εM + 4εM2 + ε

µ
+

W(T ) −
12εM + 4εM2 + ε

µ

 e−µt

=
1
2
ε̃ +

W(T ) −
12εM + 4εM2 + ε

µ

 e−µt.

It can be obtained that lim
t→∞

(
W(T ) − 12εM+4εM2+ε

µ

)
e−µt = 0. Then there exists T̃ > T such that for all

t > T̃ , ∣∣∣∣∣∣∣
W(T ) −

12εM + 4εM2 + ε

µ

 e−µt
∣∣∣∣∣∣∣ < 1

2
ε̃.

Thus, we get that
W(t) < ε̃.

Then, in view of (4.8), for all t > T̃ ,

|qi(t + τ∗) − qi(t)| < ε̃, i = 1, 2, 3, 4.

Therefore, τ∗ ∈ T+(qi, ε̃), which means

T (F, ε) ∩ R+ ⊂ T+(qi, ε̃).
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Thus, according to the Proposition 1, T+(qi, ε̃) is relatively dense in R+ and qi(t) is the asymptotically
almost periodic solution of (1.2). Then there is an almost periodic function qi1(t) defined on R and a
continuous function qi2(t) defined on R+ with lim

t→∞
qi2(t) = 0, such that

qi(t) = qi1(t) + qi2(t), t ∈ R+.

We denote
Q(t) = Qap(t) + Qe(t), t ∈ R+,

where Qap(t) = (q11(t), q21(t), q31(t), q41(t)), Qe(t) = (q12(t), q22(t), q32(t), q42(t)).
Now we prove that Qap(t) is an almost periodic solution of the system (1.2) for t ∈ R. Since qi1(t) is

almost periodic function, there exist a sequence {tn} with tn → ∞ as n→ ∞ such that

lim
n→∞

qi1(t + tn) = qi1(t), t ∈ R,

and
lim
n→∞

qi2(t + tn) = 0, t ∈ R+.

Then we get lim
n→∞

qi(t + tn) = qi1(t) for t ∈ R+, i = 1, 2, 3, 4.Moreover,

lim
n→∞

q̇i(t + tn)

= lim
n→∞

lim
h→0

qi(t + tn + h) − qi(t + tn)
h

= lim
h→0

lim
n→∞

qi(t + tn + h) − qi(t + tn)
h

= lim
h→0

qi1(t + tn + h) − qi1(t + tn)
h

=q̇i1.

From (4.5), for t ∈ R, we get

q̇11(t) = lim
n→∞

q̇1(t + tn)

= lim
n→∞

[µ(t + tn) − β(t + tn)q1(t + tn)q3(t + tn)

− (µ(t + tn) + α(t + tn))q1(t + tn)]
=µ(t) − β(t)q11(t)q31(t) − (µ(t) + α(t))q11(t).

Similarly, for t ∈ R,

q̇21(t) = lim
n→∞

q̇2(t + tn)

=α(t)q11(t) − β1(t)q21(t)q31(t) − (µ(t) + γ1(t))q21(t),
q̇31(t) = lim

n→∞
q̇3(t + tn)

=β(t)q11(t)q31(t) + β1(t)q21(t)q31(t) − γ(t)q31(t) − µ(t)q31(t) + k(t)q41(t),
q̇41(t) = lim

n→∞
q̇4(t + tn)

=γ1(t)q21(t) + γ(t)q31(t) − (µ(t) + k(t))q41(t).
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Thus, we get that Qap(t) is an almost periodic solution of system (1.2) for t ∈ R.
Let H(t) = (S ∗(t),V∗(t), I∗(t),R∗(t)) be another solution of system (1.2). By Theorem 2, we get

lim
t→∞
|H(t) − Qap(t)| = 0,

which implies that the unique almost periodic solution Qap(t) is global attractive. □

5. Analysis of the recurrence rate k

In this section, we discuss the necessity of adding the recurrence rate k in this model. It is well
known that the basic reproduction number R0 is the threshold value of the model, which shows that the
disease persists or extinct in the population. Therefore, the relationship between R0 and k can be used to
reflect the influence of k on this system. We consider the following autonomous model corresponding
to model (1.2): 

dS (t)
dt
= µ − βS (t)I(t) − (µ + α)S (t),

dV(t)
dt
= αS (t) − β1V(t)I(t) − (µ + γ1)V(t),

dI(t)
dt
= βS (t)I(t) + β1V(t)I(t) − γI(t) − µI(t) + kR(t),

dR(t)
dt
= γ1V(t) + γI(t) − µR(t) − kR(t),

(5.1)

for t ∈ R+, where the parameters are all positive constants. It’s easy to get the disease free equilibrium
of the system (5.1),

E0 = (S 0,V0, I0,R0) =
(
µ

µ + α
,

αµ

(µ + γ1)(µ + α)
, 0,

γ1αµ

(µ + k)(µ + γ1)(µ + α)

)
.

Then let x = (I,V,R, S )T , thus the system can be written as:

dx
dt
= F (x) − V (x),

where

F (x) =


βS I + β1VI

0
0
0

 ,V (x) =


(γ + µ)I − kR

β1VI + (µ + γ1)V − αS
(µ + k)R − γ1V − γI
βS I + (µ + α)S − µ

 .
The Jacobian matrices of F (x) and V (x) at the disease free equilibrium E0 are respectively,

DF (E0) =
(
F3×3 A

0 0

)
,DV (E0) =

(
V3×3 B

C µ + α

)
,

where,

A =


βI
0
0

 , B =


0
−α

0

 ,C = (
βS 0 0 0

)
,
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the non-negative matrix F for the appearance of the new disease and the matrix V for the transition
terms are given by

F =


βS 0 + β1V0 0 0

0 0 0
0 0 0

 ,V =

γ + µ 0 −k
β1V0 µ + γ1 0
−γ −γ1 µ + k

 . (5.2)

By the next-generation operator method [43], the basic reproduction number of model (5.1) is calcu-
lated

R0 =ρ(FV−1)

=

(
βµ

µ + α
+

β1αµ

(µ + γ1)(µ + α)

)
(µ + γ1)(µ + k)

(µ + k)(µ + γ)(µ + γ1) + kγ1β1V0 − kγ(µ + γ1)
.

To get the sensitivity of R0 to k, following Chitnis and Hyman [44], the normalised forward sensi-
tivity index with respect to k is given by

Ak =

∂R0
R0

∂k
k

=
k

R0

∂R0

∂k
. (5.3)

Remark 1. The sensitivity index is to assess the relative change in state variables when a parameter of
the model changes. If Ak is positive, the value of the reproduction number will increase as k increases.
Similarly, if Ak is negative, the value of the reproduction number will decrease as k increases. In next
section, we will give some parameter values to calculate Ak, and verify our analysis by numerical
simulations, see Figures 4 and 5.

For non-autonomous model (1.2), due to the complexity of the model, we use numerical simulation
to reflect the impact of the recurrence rate on the model. See Figures 6 and 7 in the next chapter.

6. Numerical simulation

In this section, to illustrate the analytic results obtained above, we have presented some simulations
of system (1.2) and system (5.1).

6.1. Almost periodic solutions of system (1.2)

Example 1. We choose parameter values as follows:

µ = 0.1, β = 0.02, α = 0.3, γ1 = 0.49, γ = 0.03, β1 = 0.01, k = 0.1. (6.1)

Then we get that µ = µ = 0.1, β = β = 0.02, α = α = 0.3, γ = γ = 0.03, γ
1
= γ1 = 0.49, β

1
= β1 =

0.01, k = k = 0.1. All the sufficient conditions given in Theorem 2 for system (1.2) are well satisfied as
µ − 2βM3 = 0.06 > 0,

µ − 2β1M3 = 0.08 > 0,

µ − 2βM1 − 2β1M2 ≈ 0.09 > 0.
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Figure 1. Solution curves for the model (1.2) with parametric values in (6.1). (a) The initial
value Q0 = (0.5, 0.8, 0.2, 0.3). (b) The initial value Q0 = (1, 0.3, 0.5, 0.6).

Using the parameter values in (6.1) to draw figures of the solution of model (1.2), we get Figure 1(a)
and 1(b), and their corresponding initial values are (0.5, 0.8, 0.2, 0.3) and (1, 0.3, 0.5, 0.6), respectively.
It can be seen from 1 that as time goes by, all solutions tend to be a constant, which reflects the the
model has a unique globally attractive positive almost periodic solution.

Example 2. We choose parameter values as follows:

µ = 0.5 +
1
10

(sin
√

2t + cos
√

7t)2, β = 0.02 +
1

40
(sin
√

2t + cos
√

7t)2,

α = 0.5 +
1

10
(cos
√

3t)2, β1 = 0.01 +
9

400
(sin
√

3t + cos3t)2,

γ1 = 0.1 +
1
10

(cos
√

7t)2, γ = 0.1 +
1

100
cos3t,

k = 0.2 +
1

10
cos
√

3t. (6.2)

Then we get that µ = 0.5, µ = 0.9, β = 0.02, β = 0.12, α = 0.5, α = 0.6, γ = 0.09, γ = 0.11, γ
1
=

0.1, γ1 = 0.5, β
1
= 0.01, β1 = 0.1, k = 0.1, k = 0.3. All the sufficient conditions given in Theorem 2

for system (1.2) are well satisfied as
µ − 2βM3 ≈ 0.068 > 0,

µ − 2β1M3 = 0.14 > 0,

µ − 2βM1 − 2β1M2 = 0.14 > 0.

Then the model has a unique globally attractive positive almost periodic solution. Next, we use numeri-
cal simulations to verify our conclusion. The parameter values are shown in (6.2). For the convenience
of observation, we have drawn 4 figures to reflect the curves of each solution when the initial values are
different. It can be seen from Figure 2 that the solution is globally attractive. It can also be seen that
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for different initial values, as time goes by, S 1, S 2, S 3; V1,V2,V3; I1, I2, I3; R1,R2,R3 tends to the same
curve, respectively. The numerical simulation in Figures 2 and 3 strongly support the consequence.
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Figure 2. Numerical solutions of system (1.2) for the initial value Q0 = (0.5, 0.8, 0.2, 0.3),
(1, 0.3, 0.5, 0.6), (2, 1, 1.5, 1.3). (a) (b) (c) and (d) show that although the initial values are
different, as time goes by, S 1, S 2, S 3; V1,V2,V3; I1, I2, I3; R1,R2,R3 tends to the same curve,
respectively.

6.2. Simulation related to the recurrence rate k

For the autonomous system (5.1), from (5.3), take the parameter values as in (6.1), we get

Ak =
k

R0

∂R0

∂k
≈ 0.06 > 0.

By Remark 1 in Section 5, we know that R0 will decrease as k decreases, which implies that reducing
the recurrence rate k is very helpful to control the spread of infectious diseases.
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Figure 3. Almost periodic solution of system (1.2) with parametric values in (6.2).

Next, we give numerical simulations to verify our views. Change the parameter k while keeping
other parameters fixed as in (6.1). Figure 4 shows the effect of recurrence rate on the number of
infectious people. It is easy to see that the values of k have a significant effect on the number of
infectious people. As the value of k decrease, the value of I decrease. Figure 5 shows the effect of
recurrence rate on the number of recovered people. It is easy to see that as the value of k decrease, the
value of R increase. If we want to control an infectious disease, we certainly hope that the number of
infectious people will decrease and the number of recovered people will increase. These two figures
tell us that when k decreases, the disease can be well controlled, which is very consistent with our
analysis.

For the nonautonomous system (1.2), we change the parameter k(t) while keeping other parameters
fixed as in (6.2). It has similar conclusions with the autonomous model. Figures 6 and 7 show that when
k decreases, the number of infectious people decreases, the number of recovered people increases,
respectively. This also verifies that it is necessary to consider the recurrence rate in the model.

6.3. Simulation related to the vaccination rate α

For the autonomous system (5.1), let β = 0.5, change the parameter α while keeping other parame-
ters fixed as in (6.1). Figure 8 shows the effect of vaccination rate on the number of infectious people.
It is easy to see that the values of α have a significant effect on the number of infectious people. As
the value of α increase, the value of I decrease. Figure 9 shows the effect of vaccination rate on the
number of recovered people. It is easy to see that as the value of α increase, the value of R increase.
These two figures tell us that increasing the vaccination rate of the disease can control the spread of
the disease.

For the nonautonomous system (1.2), let β(t) = 1.5 + 1
40 (sin

√
2t + cos

√
7t)2, change the parameter

α(t) while keeping other parameters fixed as in (6.2). It has similar conclusions with the autonomous
model. Figures 10 and 11 show that when α(t) increases, the number of infectious people decreases, the
number of recovered people increases, respectively. This shows that it is very meaningful to consider
the vaccination rate in the model.
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Figure 4. Dependence of I on the parameter k. (a) The initial value Q0 = (0.5, 0.8, 0.2, 0.3).
(b) The initial value Q0 = (1, 0.3, 0.5, 0.6).
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Figure 5. Dependence of R on the parameter k. (a) The initial value Q0 = (0.5, 0.8, 0.2, 0.3).
(b) The initial value Q0 = (1, 0.3, 0.5, 0.6).

7. Discussion

In this paper, we have formulated a nonautonomous SVIR epidemic model with relapse. As is
known to us all, there are many disease shows seasonal behavior, taking account of seasonality in epi-
demic model is so important. Therefore, all the parameters in this paper are almost periodic functions.
Firstly, we have proved the model (1.2) is permanence. Secondly, we have derived sufficient conditions
required for existence, uniqueness and globally attractive of almost periodic solution of this system.
Moreover, we have deduced that the almost periodicity of time evolution for all the populations is
ensured when model parameters satisfy the conditions of Theorem 2.
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Figure 6. Dependence of I on the parameter k(t). (a) The initial value Q0 =

(0.5, 0.8, 0.2, 0.3). (b) The initial value Q0 = (1, 0.3, 0.5, 0.6).
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Figure 7. Dependence of R on the parameter k(t). (a) The initial value Q0 =

(0.5, 0.8, 0.2, 0.3). (b) The initial value Q0 = (1, 0.3, 0.5, 0.6).

From Figures 1–3, it is easily observed that as long as the parameter satisfies the condition of
Theorem 2, the equation has a globally attractive almost periodic solution, and this solution is unique.

From Figures 4–7, it is easily observed that the number of infectious people and the number of
recovered people are significant affected by k. The larger k is, the greater number of infectious people
in equilibrium. This tells us that we should not only pay attention to susceptible people but also pay
more attention to those who have recovered.

From Figures 9–11, it is easily observed that when the vaccination rate increases, the number of in-
fectious people will decrease and at the same time the number of recovered patients will increase. This
tells us that the government should increase publicity to strengthen people’s awareness of vaccination,
thereby increasing the vaccination rate.
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Figure 8. Dependence of I on the parameter α. (a) The initial value Q0 = (0.5, 0.8, 0.2, 0.3).
(b) The initial value Q0 = (1, 0.3, 0.5, 0.6).
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Figure 9. Dependence of R on the parameter α. (a) The initial value Q0 = (0.5, 0.8, 0.2, 0.3).
(b) The initial value Q0 = (1, 0.3, 0.5, 0.6).

Then, we choose parameter values as follows:

µ = 0.2 +
1

10
sin
√

7t, β = 2 −
1

10
sin3t,

α = 0.3 +
1
2

(cos
√

2t + sin
√

5t)2, β1 = 0.5 +
1
10

sint,

γ1 = 0.3 +
1
2

(cos
√

2t)2, γ = 0.1 + (sin
√

2t)2,

k = 0.2 +
1

10
cos
√

3t. (7.1)
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Figure 10. Dependence of I on the parameter α(t). (a) The initial value Q0 =

(0.5, 0.8, 0.2, 0.3). (b) The initial value Q0 = (1, 0.3, 0.5, 0.6).
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Figure 11. Dependence of R on the parameter α(t). (a) The initial value Q0 =

(0.5, 0.8, 0.2, 0.3). (b) The initial value Q0 = (1, 0.3, 0.5, 0.6).

Obviously, µ = 0.1, µ = 0.3, β = 1.9, β = 2.1, α = 0.3, α = 2.3, γ = 0.1, γ = 1.1, γ
1
= 0.3, γ1 =

0.8, β
1
= 0.49, β1 = 0.51, k = 0.1, k = 0.3.All the sufficient conditions given in Theorem 2 for system

(1.2) are well satisfied as 
µ − 2βM3 = −12.5 < 0,

µ − 2β1M3 = −2.96 < 0,

µ − 2βM1 − 2β1M2 ≈ −5.06 < 0.

Parameter values in this example fail to satisfy condition (4.1) which we have mentioned in Theorem 2.
But Figure 12 shows that the model has a unique globally attractive positive almost periodic solution,
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Figure 12. Almost periodic solution of system (1.2) with parametric values in (7.1).

which means condition (4.1) is sufficient but not necessary for Theorems 2 and 3. This problem cannot
be solved at present, we shall conduct further research on this issue in the future.
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