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Abstract: After the introduction of drastic containment measures aimed at stopping the epidemic con-
tagion from SARS-CoV2, many governments have adopted a strategy based on a periodic relaxation
of such measures in the face of a severe economic crisis caused by lockdowns. Assessing the impact
of such openings in relation to the risk of a resumption of the spread of the disease is an extremely
difficult problem due to the many unknowns concerning the actual number of people infected, the ac-
tual reproduction number and infection fatality rate of the disease. In this work, starting from a SEIRD
compartmental model with a social structure based on the age of individuals and stochastic inputs that
account for data uncertainty, the effects of containment measures are introduced via an optimal control
problem dependent on specific social activities, such as home, work, school, etc. Through a short time
horizon approximation, we derive models with multiple feedback controls depending on social activi-
ties that allow us to assess the impact of selective relaxation of containment measures in the presence
of uncertain data. After analyzing the effects of the various controls, results from different scenarios
concerning the first wave of the epidemic in some major countries, including Germany, France, Italy,
Spain, the United Kingdom and the United States, are presented and discussed. Specific contact pat-
terns in the home, work, school and other locations have been considered for each country. Numerical
simulations show that a careful strategy of progressive relaxation of containment measures, such as that
adopted by some governments, may be able to keep the epidemic under control by restarting various
productive activities.

Keywords: epidemic modelling; uncertainty quantification; social structure; optimal control;
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1. Introduction

The first wave of infection in Western countries has been characterized by the implementation of
unprecedented measures, including generalized lockdowns, based on social distancing to dampen the
epidemic curve. Since many activities have been hit hard, various intermediate phases have been care-
fully considered, with some activities that can be resumed, regulating the reintegration of workers, for
example through indicators measuring the impact of work activities on potential infections, increasing
prevention measures, or through so-called immunity passports. It seems essential to build mathemat-
ical models that can provide realistic scenarios that will help us understand how to deal with these
complex dynamics.

Among the many controversial aspects are, for example, the reopening of schools, sport activities
and other social activities at different levels, which, while having less economic impact, have a very
high social cost. Indeed, it is clear that it is difficult for the population to sustain an excessively
long period of lockdown. It is therefore of primary importance to analyze the impact of relaxing the
control measures put in place by many countries in order to make them more sustainable on the socio-
economic front, keeping the reproductive rate of the epidemic under control and without incurring
health risks [1-8]. We also highlight the importance of social media and information to citizens in the
mitigation of the epidemic curve through lockdown strategies, see e.g., [9, 10].

The problem is clearly very challenging, traditional epidemiological models based on the assump-
tion of homogeneous population mixing are inadequate, since the whole social and economic structure
of the country is involved [11-17]. On the other hand, interventions involving the whole population
allow to use mathematical descriptions in analogy with classical statistical physics drawing on the
statistical characteristics of a very large system of interacting individuals [18-24].

A further problem that cannot be ignored is the uncertainty present in the official data provided by
the different countries in relation to the number of infected people. The heterogeneity of the procedures
used to carry out the disease positivity tests, the delays in recording and reporting the results, and the
large percentage of asymptomatic patients (in varying percentages depending on the studies and the
countries but estimated by WHO at an average of around 80% of cases) make the construction of
predictive scenarios affected by high uncertainty [25-27]. As a consequence, the actual number of
infected and recovered people is typically underestimated, causing fatal delays in the implementation
of public health policies facing the propagation of epidemic fronts.

In this research, we try to make a contribution to these problems starting from a description of
the spread of the epidemic based on a compartmental model with social structure in the presence
of uncertain data. The presence of a social characteristic such as the age of individuals is, in fact,
essential in the case of the COVID-19 outbreak to characterize the heterogeneity of the impact of
infection in relation to age. In addition, the model allows to take into account the specific nature of
the different activities involved through appropriate interaction functions derived from experimental
interaction matrices [28-32] and to systematically include the uncertainty present in the data [25, 26,
33-36].

The latter property is achieved by increasing the dimensionality of the problem adding the possible
sources of uncertainty from the very beginning of the modelling. Hence, we extrapolate statistics by
looking at the so-called quantities of interest, i.e., statistical quantities that can be obtained from the
solution and that give some global information with respect to the input parameters. Several techniques

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7161-7190.



7163

can be adopted for the approximation of the quantities of interest. Here, following [37] we adopt
stochastic Galerkin methods that allow to reduce the problem to a set of deterministic equations for the
numerical evaluation of the solution in presence of uncertainties [38—40].

The main assumption made in this study is that the control measures adopted by the different coun-
tries cannot be described by the standard compartmental model but must necessarily be seen as exter-
nal actions carried out by policy makers in order to reduce the epidemic peak. Several studies in this
direction have been focused on control procedures aimed at optimizing the use of vaccinations and
medical treatments [41-47] and only recently the problem has been tackled from the perspective of
non-pharmaceutical interventions [37,48-52]. For this purpose we derive new models based on multi-
ple feedback controls that act selectively on each specific contact function and therefore social activity.
Based on the data in [32] this allows to analyze the impact of containment measures in a differentiated
way on family, work, school, and other activities.

In the proposed approach, the classical epidemiological parameters that define the rate of reproduc-
tion of the infectious disease are therefore estimated only in the regime prior to the first lockdown and
define an estimate of the reproductive rate in the absence of control. At this stage the estimation mainly
serves to calibrate the model parameters and its variability will then be considered in the intrinsic un-
certainty of these values. In particular, this makes it possible to introduce the role of the asymptomatic
population without adding additional compartments but directly via the stochastic component in the
number of infected persons. The control action is then estimated in the first lockdown phase using
available data. On the modelling front, we next focus our interest on the phase following the first
lockdown period, in which social characteristics become essential to quantify the impact of possible
decisions of the policy maker.

This makes it possible to carry out a systematic analysis for several countries and to observe the
different action of the control in line with the observed dynamics and the measures taken by their
governments. Of course, a realistic comparison between countries is an extremely difficult problem
that would require a complex phase of renormalization of the data according to the different recording
and acquisition methods used. In an attempt to provide comparative results altered as little as possible
by assumptions that cannot be justified, we decided to adopt the same criteria for each country and
therefore the scenarios presented, although based on realistic values, maintain a primarily qualitative
rather than quantitative nature.

We present different simulation scenarios for various countries where the first wave of the epi-
demic showed some similarities, including Germany, France, Italy, Spain, the United Kingdom and the
United States analyzing the effects of relaxing the lockdown measures in a selective way on the various
social activities. Although the choice of which specific activities to reopen remains mainly a politi-
cal decision, numerical simulations show that a progressive loosening strategy in subsequent phases,
as adopted by some governments, may be capable to keep the epidemic under control by restarting
various productive activities.

The rest of the manuscript is organized as follows. In Section 2 we introduce a SEIRD compart-
mental model with social structure and with uncertainties where interaction matrices depend on various
social activities. A selective control mimicking containment measures in relation to a specific social
activity and in presence of model uncertainty is derived in Section 3. Next, in Section 3.2 we propose
various numerical experiments based on several countries highlighting the importance of the social
structure to evaluate possible relaxations of social distancing policies in relation to specific social ac-
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tivities. Finally, we end the manuscript with some concluding remarks and future developments.

2. The epidemiological model

The starting model in our discussion is a SEIRD-type compartmental model with a social structure
and uncertain inputs. The presence of a social structure is in fact essential in deriving appropriate
sustainable control techniques from the population for a protracted period, as in the case of the recent
COVID-19 epidemic. In addition we include the effects on the dynamics of uncertain data, such as the
initial conditions on the number of infected people or the interaction and recovery rates. This permits
to include the role of the asymptomatic population directly in the uncertainty.

2.1. A socially structured compartmental model with uncertainty

The heterogeneity of the social structure, which impacts the diffusion of the infective disease, is
characterized by a € A C R, representing the age of the individual [13, 14]. We assume that the rapid
spread of the disease and the low mortality rate allows to ignore changes in the social structure, such as
the aging process, births and deaths. Furthermore, we introduce the random vector z = (zy,...,24) €
R4 whose components are assumed to be independent real valued random variables taking into account
various possible sources of uncertainty in the model. We assume to know the probability density
p(z) : R% — Rﬁfz characterizing the distribution of z.

We denote by s(z, a, ), e(z,a, ), i(z,a,t), r(z,a,t) and d(z, a, t) the densities at time ¢ > 0 of suscep-
tible, exposed, infectious, recovered and dead individuals, respectively in relation to their age a and the
source of uncertainty z. The density of individuals of a given age a and the total population number N
are deterministic conserved quantities in time, i.e.,

s(z,a,t)+e(z,a,t)+i(z,a,t) + r(z,a,t) +d(z,a,t) = f(a), ff(a)da =N.
A

Hence, the quantities

S(z,t) = fs(z,a, t)da, E(z,t) = fe(z,a,t) da, 1(z,t) = fi(z, a,t)da,
A A A

R(z,1) = f r(z,a,t)da, D(z,t)= fd(z, a,t)da,
A A

denote the uncertain fractions of the population that are susceptible, exposed, infectious, recovered and
dead respectively.

In a situation where changes in the social features act on a slower scale with respect to the spread
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of the disease, the socially structured compartmental model with uncertainties follows the dynamics

%s(z, a,t) = —s(z,a,t);[ fA,Bj(z, a, a*)i(z’;*’t) da,

d : (z,a.,1)

Ee(z, a,t) = s(z,a,t) ;{ Aﬁj(z, a,a.) N da, — 0(z,a)e(z,a,r1)

d. j : (2.1)
Et(z, a,t) = o(z,a)e(z,a,t) — (y(z,a) + a(z, a))i(z,a, t)

d%r(z, a,t) =vy(z,a)i(z,a,t)

ditd(z, a,t) = a(z,a)i(z,a,t),

with initial condition s(z, a,0) = so(z, a), e(z,a,0) = ey(z,a), i(z,a,0) = iy(z,a), r(z,a,0) = ro(z,a)
and d(z,a,0) = dy(z,a). In (2.1) we assume age-dependent contact rates 8;(z,a,a,) > 0, j € A,
representing transmission rates among individuals related to a specific activity characterized by the set
A, such as home, work, school, etc., y(z,a) > 0 is the recovery rate which may be age dependent,
o(z,a) > 0 is the transition rate of exposed individuals to the infected class, and a(z,a) > O is the
disease-induced death rate of infectious individuals.

In the following, we introduce the usual normalization scaling

s(z,a,t e(z,a,t (z,a,t
( )—>S(z,a,t), ( )—>e(z,a,t),( )

— i(z,a,1),

b d 2 4
ME8D g, an), % - d(z,a,1), f f@a)da=1,
A

and observe that the quantities S (¢), E(¢), I(t), R(t) and D(¢) satisfy the uncertain SEIRD dynamics

d .
TS (@) =~ > | Biwa.a)s@a iz a1 da.da

jeﬂ AXA

%E(z, )= ;ﬂ Axlfj(z’ a,a,)s(z,a,i(z,a.,t)da.da — fA o(z,a)e(z,a,t)da
il(z, 1) = fo-(z, a)e(z,a,t)da — f(y(z, a)+ a(z,a))i(z,a,t)da (2.2)
dt A A

d :

ER(Z, 1) = j:\'y(z, a)i(z,a,t)da

d :
ED(Z, 1) = ];\ a(z,a)i(z,a,t)da.

We refer to [12—-15] for analytical results concerning model (2.1) and (2.2) in a deterministic setting.

Before entering the discussion of the control problem that formalizes the action of a policy maker
aimed at reducing the epidemic impact, we discuss the role of the uncertainty in the model and how it
relates to other compartmental models including the asymptomatic population.
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2.2. Relationship to compartmental models including undetected infectious

One of the main difficulties in mathematical modelling of the COVID-19 epidemic is due to the
presence of a large number of undetected (asymptomatic) infected individuals. This has motivated the
construction of various models in which the infected population is subdivided into further compart-
ments with different roles in the spread of the disease [3, 8,49, 59]. To clarify the relationships to such
models, let us consider model (2.2) in absence of a social structure and social activities

%S (z,t) = —B()S(z,Hl(z, 1)

%E (z,1) = B(2)S (z,DI(z, 1) — 0(DE(z, 1),

%1 (z,1) = 0(DE(Z, 1) — (¥(2) + a(2)(z, 1), (2.3)
d

ER(Z’ D =vy@I(z,1),

d
d_tD(Z’ D = a(2)I(z,1),

and with a one-dimensional random input z € R distributed as p(z). Furthermore, for a function F(z, r)
we will denote its expected value as F(¢) = E[F(-, t)]. Now, starting from a discrete probability density
function

p=PZ=z), Y p=1

we have F(t) = }_, piFs, with F; = F(z;). Taking the expectation in (2.3), we can write

d >

50 =5 ;ﬁkpklkm

d ~ ~ n . _ n

—ED =50 Zﬁkpklk(n - EQ) Z e

—1<r> E(1) Z Fipi - Z(n + a)pei(1),
k=1

Ek(t) = Z)’kpklk(t),

—D(r) Z apeli(t),

with By = SBc/S, 6« = Exo/E, k = 1,...,n. For example, in the case n = 2, by identifying I, = p, I,
and I, = p,I, with the compartments of detected and undetected infectious individuals, assuming
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0 = 0, and denoting p; = p we can write

%S_(t) =-=8(n (511d(f) +521u(’))

dit E@) = 5) (Bilu(d) + Bl () — 5E ()
%Id(t) = GpE®®) — (1 + apla(),
10 = 51~ D - 02 + a1,
% R(t) = y11,(t) + v, L(1),

a% D) = an (1) + anl (),

which has the same structure of a SEIARD-type compartmental model including the undetected (or the
asymptomatic) class [3, 8].

3. Multiple control of structured compartmental model
In order to characterize the action of a policy maker introducing a control over the system based

on selective containment measures in relation to a specific social activity we consider the following
optimal control setting

mm J(u) := f RS, (-, 0)]dt + = Z ff vi(a,Dluj(a,a., H*da da.dt, 3.1
AXA
where u = (uy,...,u) is a vector of controls acting locally on the interaction between individuals of

ages a and a,, the function v;(a, t) > 0 is a selective penalization term and R[-] is a suitable statistical
operator taking into account the presence of the uncertainties, and (S, 1), s.t. o(S,I) > 0, is a
function characterizing the policy maker’s perception of the impact of the epidemic.

Examples of such operator that are of interest in epidemic modelling are the expectation with respect
to uncertainties

RIS, D(, 0] = E[Y(S, D, 0] = f W(S, I)(z,1) p(z)dz (3.2)
R%

or relying on deterministic data which underestimate the number of infected

RIY(S, D(, 0] = (S, I)(2o, 1), (3.3)

where z, is a given value such that I(zy,f) < I(z,1), for all z € R% and t > 0. Concerning the
perception function, in the sequel we will consider two relevant examples given by a convex function
underestimating the number of infected

>1, (3.4)

WS, D@ 1) = c’q(;’ 2
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and a concave function overestimating such number

In(1 + 71(z, 1))

WS, N(z,1)=C san

> 0, (3.5)
with C > 0 a suitable renormalization constant. The function in (3.4) has been introduced in [37] and
we will rely on the same arguments in deriving the corresponding feedback controlled model, whereas
the function in (3.5) permits to recover as feedback controlled models well-known epidemic models
with nonlinear transmission rates [45, 60].

In (3.1) the set U C R* is the space of admissible controls u;, j € A defined as

U = {u eREO < I(uj)(a,t) < min{M, min I (B;)(z,a,1)}, ¥ (a,t), M > O} ,

where

I(uj)a,t) = ! f uj(a,a., 1)i(z,a.,t)da,,

I(Z, t) A
1
I(ﬁ/)(z9 a, t) = mf/\ﬁj(z’aa a*)i(z’ Cl*,t) da*~

Note that, here we are considering less restrictive conditions on the space of admissible controls than
those considered in [37]. The above minimization is subject to the following dynamics

_S(Z a,t) = -s(z,a, Z)Z f(ﬂj(z a,a.) — uja, a*,t))l(z s ) da,
jeA
—e(Z a,t) = s(z,a, I)Zf(ﬂ](z a,a,) — uja, a*,;))l(z att) da. 56

JjeA

—o(z,a)e(z,a,t)

%i(z, a,t) = o(z,a)e(z,a,t) — (y(z,a) + a(z, a))i(z, a, t),

where for simplicity we omitted the equations for r(z, a, t) and d(z, a, t) since they do not affect directly
the above system.

Solving the above optimization problem, however, is generally quite complicated and computation-
ally demanding when there are uncertainties as it involves solving simultaneously the forward problem
(3.1)—(3.6) and the backward problem derived from the optimality conditions [37]. Furthermore, the
assumption that the policy maker follows an optimal strategy over a long time horizon seems rather
unrealistic in the case of a rapidly spreading disease such as the COVID-19 epidemic.

3.1. Feedback controlled compartmental models with uncertainty

In this section we consider short time horizon strategies which permits to derive suitable feedback
controlled models. These strategies are suboptimal with respect the original problem (3.1)—(3.6) but
they have proved to be very successful in several social modeling problems [18-20,23]. To this aim, we
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consider a short time horizon of length 4 > 0 and formulate a time discretize optimal control problem
through the functional Jj,(u) restricted to the interval [¢, ¢ + h], as follows

rl}g} Jyw) = RIW(S G, 0), It + h))] + % ;{ foA vi(a,tluj(a,a., t)|2dada*, (3.7)

subject to
s(z,a,t+ h) = s(z,a,t)
—hs(z,a,t) Zf(ﬁj(z, a,a,) — uj(a,a., t)) i(z,a,,t)da,
JjeA A
e(z,a,t+h) =e(z,a,r1)

+hs(z, a0 )’ f (/2. a.a.) - uj(a,a..1) i(z.a.. )da.
A

JjEA

(3.8)

— ho(z,a)e(z,a,t),

i(z,a,t+h) =i(z,a,t) + ho(z,a)e(z,a,t + h) — h(y(z,a) + a(z,a))i(z, a,t).

Recalling that the macroscopic information on the infected is

I(z,t+h)=1(z,t)+h f o(z,a)e(z,a,t+h)da—h f(y(z, a) + a(z,a))i(z,a,t)da
A A
we can derive the minimizer of J, computing V,J,(u) = 0 or equivalently

OJy(m)
0uj a

0, jeA

Using (3.7) we can compute

[&P(S(-’ 0,1(,1+h)
R
(91/!1'

= Vj(a, t)uj(a’ ay, t)a

where we assumed IR [y(-, -)]/0u; = R [&p(-, )/ 0u j], to obtain the following nonlinear identities
Vj(a9 t)uj(aa Ay, t) = th[O-(7 Cl)S(’, a, Z)l(a Ay, t)all//(S (.’ t)’ I(a I+ h))]

The above assumption on R[] is clearly satisfied by (3.2) and (3.3). Introducing the scaling v;(a,t) =
h’k i(a, a.,t) we obtain the instantaneous control

uj(a,a,t) = Rlo(-,a)s(-,a, D)i(-, a., )0 (S (-, 1), I(-, t + h))]. 3.9

1
kj(a,a.)
Now, passing to the limit for 4~ — 0 into the discrete system (3.8) we obtain the feedback controlled
system (3.6) with the instantaneous control term (3.9).

Let us now, report explicit expressions of the control term for the perception function (3.4) and
(3.5). In the convex case we have

Rlo(-, a)s(:, a, Di(-, a., I (-, 1)), (3.10)

uj(a’ a*» t) =

C
Kj(a’ Cl*)
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whereas in the logarithmic case

1
R y ) ’t ] "y *’t .
arany | T D@D 4 D TR )
In the sequel we will restrict our attention to feedback controlled models of the form (3.10) with g = 1.
In this framework there is no bias in the perception of the infectious disease from the policy maker.
Furthermore, we will consider the operator R[:] given by (3.3) and corresponding to the number of
reported cases.

(3.11)

uj(a,a,,t) =

Remark 1. To understand the action of the feedback controls (3.10)-(3.11), let us consider the simplest
case of a standard SEIRD model without age dependence, specific social interactions and uncertainty.
In this simplified setting, it is easy to verify that the corresponding feedback controlled model has the
same SEIRD structure with the modified transmission rate

Gop-— aS (IO (S (1), 1(1))

b= (3.12)
K
that takes the specific form
B=p- CoS It :ﬁ(l B S(t)I(t)q), (3.13)
K K
in the case (3.4) assuming C = /o, and
B=B- Coll) __ 5 (3.14)

k(1 +7I0) 1 +7I@)’

in the case (3.5) taking 7 = 1/k, C = B/o. Interestingly enough, the resulting nonlinear incidence
rates (3.12)-(3.13)-(3.14) embedding the action of feedback controls correspond to the ones considered
in [37,62] and [45, 56, 60], respectively. Other nonlinear incidence rates may be obtained similarly by
considering different perception functions, see [62] and the references therein.

3.2. Application to the COVID-19 outbreak

In this section, we first present a comparison between different control strategies considering both a
SEIR and SIR compartmentalization. In fact, since the compartment of deceased individuals, although
representing an aspect of fundamental importance in the evaluation of the impact of a pandemic, does
not influence the dynamics of infection for simplicity will not be considered in the subsequent analy-
sis. We then focus on the application of the feedback controlled models with uncertain data, that takes
into account the presence of unreported symptomatic and asymptomatic cases, to the first wave of the
COVID-19 pandemic in different countries. Details of the stochastic Galerkin method used to deal
efficiently with uncertain data may be found in [37,39]. The data concerning the actual number of in-
fected, recovered and deaths in the various country have been taken from the Johns Hopkins University
Github repository [58] ad for the specific case of Italy from the Github repository of the Italian Civil
Protection Department®. The social interaction functions §; have been reconstructed from the dataset

*Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile. GitHub: COVID-19 Italia - Monitoraggio situazione,
https://github.com/pcm-dpc/COVID-19, 2020
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of age and location specific contact matrices related to home, work, school and other activities in [32].
Finally, the demographic characteristics of the population for the various country have been taken from
the United Nations World Populations Prospects’. Other sources of data which have been used include
the Coronavirus disease (COVID-2019) situation reports of the WHO? and the Statistic and Research
Coronavirus Pandemic (COVID-19) from OWD?,

3.3. Containment in homogeneous social mixing

In the first test case, we will not attempt to analyze the data in a quantitative setting, but will compare
the behaviour of the feedback controlled models with different controls of the form defined in (3.10)-
(3.11). Furthermore, to simplify the modeling we neglect any dependence on uncertainties and we
consider the case of homogeneous social mixing.

In the SEIR case we consider a population of size N = 60-10° where at time ¢ = 0 the initial number
of exposed is given by E(0) = % and the number of susceptible is S (0) = %, whereas 1(0) = R(0) = 0.
To exemplify the possible evolution of the pandemic we consider 8 = 0.25, y = 0.1, corresponding to
a recovery rate of 10 days, so that Ry = 2.5. Furthermore, we assume a latency period of 3.32 days,
leading to o = 0.3012, see [3].

In Figure 1 we report the dynamics of infected and recovered based on the activation of the control
in the time frame ¢ € [60,200], meaning that the control is activated after 60 days the first exposed
and after 200 days we suppose that all the restrictions are cancelled. We may easily observe how
the delation of social restrictions leads for both controls to a restart of the epidemic and therefore
to a second wave of infection. Both the controls have comparable costs but the perception function
W (S,I) = CI?/q is more capable to flatten the curve of infection. After the deactivation of the control
we may observe how the number of recovered for large times does not significantly change with respect
to the unconstrained dynamics.

We perform a similar test in the case of SIR compartmentalization. Therefore we assume a popula-
tion of the same size N = 60 - 10° of the previous test where at time ¢ = 0 the initial number of infected
i1s 1(0) = # and S(0) = % We considered epidemiological parameters that are compatible with the
ones considered above and leading to Ry = 2.5, i.e., 8 = 0.25 and y = 0.1. We remark that in presence
of a SIR-type compartmentalization we obtain a feedback control compatible with (3.10) with o = 1
for a perception function ¥(S, ) = CI?/q, whereas in the logarithmic case we can derive a feedback
control compatible with (3.11) with o = 1, we point the interested reader to [37] for more details. In
Figure 2 we report the dynamics of infected and recovered with an activation of the control in the time
interval [60, 200]. Interestingly, the logarithmic perception function is in this case more effective in the
reduction of the number of recovered, that is the total number of infected of the population.

3.4. Model calibration

Estimating epidemiological parameters is a very difficult problem that can be addressed with dif-
ferent approaches [33, 35,36]. In the case of COVID-19 due to the limited number of data and their
great heterogeneity is an even bigger problem that can easily lead to wrong results. Here, we restrict
ourselves to identifying the deterministic parameters of the model through a suitable fitting procedure,

"https://population.un.org/wpp/
*https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
Shttps://ourworldindata.org/coronavirus
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Figure 1. Evolution fo the fraction of infected (left) and recovered (right) based on the
two different feedback controls defined in (3.10) with ¢ = 1 (first row) and (3.11) (second
row) for the SEIR model with homogeneous mixing. We considered different penalizations
k = 102,107, The choice k = +oo corresponds to the unconstrained case. Bottom figure:
evaluation of the cost functional J for the introduced controls.
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k = 102,107, The choice k = +oo corresponds to the unconstrained case. Bottom figure:
evaluation of the cost functional J for the introduced controls.
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considering the possible uncertainties due to such estimation as part of the subsequent uncertainty
quantification process. For this reason in the sequel we will neglect the presence of the exposed popu-
lation and thus consider the feedback controlled SIR model.

More precisely, we have adopted the following two-level approach in estimating the parameters.
In the phase preceding the lockdown we estimated the epidemic parameters, and hence the model
reproduction number Ry, in an uncontrolled regime. This estimate was then kept in the subsequent
lockdown phase where we estimated as a function of time the value of the control penalty parameter.
Both these two calibration steps were analyzed under the assumption of homogeneous mixing.

Thus, we solved two separate constrained optimization problems. First we estimated S, > 0 and
Y. > 0 in each country by solving in the uncontrolled time interval ¢ € [f, ,] a least square problem
based on minimizing the relative L? norm of the difference between the reported number of infected /(r)
and recovered R(¢), and the theoretical evolution of the unconstrained model 1(r) and R(¢). In details,
we considered the following minimization problem

min [(1 = OI0) — IOl + OIRO = ROl |
ByeR+

where 6 € [0, 1] is a penalization parameter and || - |2, ) denotes the relative L? norm over the time
horizon [z, s]. It is worth to remark that the lack of reliable informations concerning the recovered
in early stages of the disease suggests to adapt the model mainly to the curve of infectious and to
introduce the uncertainty in the reproductive number using this estimated value as an upper bound of
the reproduction number.

Due to the heterogeneity of the data between the different countries, we constrained the value of

B € [0, 1] and the value of y € [%, %] Indeed, according to clinical studies, time to viral clearance
during the early phases of the epidemic, i.e., the time from the first positive test to the first negative
test, can approximately span from 10 to 24 days, see [3,57,61]. We highlight that in some references
shorter mean infectious times have been suggested [66].

At the end of this optimization procedure, we obtain the values ., y. for each country reported
in Table (1). The results have been obtained by averaging the optimization outputs with penalization
factors § = 1072 and § = 107°, respectively. The choice of small values for @ is due to the increased
heterogeneity in data for recovered in this early stages of the epidemic.

Next, we estimate the penalization k = «(¢) > 0 in time by solving in the controlled time interval
t € (t,,1.] for a sequence of unitary time steps ¢; the corresponding least square problems in [t,—k;, t;+k,],
ki, k. > 1 integers, and where for the evolution we consider the values 5, and vy, estimated in the first
optimization step using the curve of infectious. In details we solve the following minimization problem

Jmin [ (1= OO = IOty + AR = RON2 oty |
over a window of seven days (k; = 3, k, = 4) for regularization along one week of available data. For
consistency we performed the same optimization process used to estimate 8 and y, namely using two
different penalization factors and then averaging the results. These optimization problems have been
solved testing different optimization methods in combination with adaptive solvers for the system of
ODEs. The results reported have been obtained using the Matlab functions fmincon in combination
with ode45.
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Table 1. Model fitting parameters in estimating attack values for the COVID-19 outbreak
before lockdown in various countries.

Germany  France Italy Spain UK US
Mar5-Mar22 Mar5-Mar 17 Feb24-Mar9 Mar 5-Mar 14  Mar8-Mar23 ~ Mar 7-Mar 19

B. 03134 0.3164 0.3101 0.3686 0.2698 0.3716
v. 0.0483 0.0483 0.0494 0.0400 0.0482 0.0481
R;  6.487 6.5525 6.2710 9.2150 5.6010 7.7155

The corresponding time dependent values for the controls as well as results of the model fitting
with the actual trends of infectious are reported in Figure 3. The trends have been computed using a
weighted least square fitting with the model function k(¢) = ae”(1 — e).

For some countries, like France, Spain and Italy after an initial adjustment phase the penalty term
converged towards a peak and has just started to decrease. This is consistent with a situation in which
data concerning the number of reported infectious needs a certain period of time before being affected
by the lockdown policy and can also be considered as an indicator of an unstable situation where
reducing control could lead to a potential restart of the infectious curve. The penalty terms for the
US and the UK clearly indicates that the pandemic was still in its growing phase. In the case of
Germany the dynamics highlight a significative decrease in the penalization term, this fact is coherent
with the timely implementation of social distancing measures. Note that, see figure 3, the behavior
of the model is able to fairly realistically describe the observed data for a time window of about one
month after calibration. On the other hand, a larger time window, up to the end of June, clearly presents
significant deviations from the expected behavior due to the restart of the pandemic wave as in France,
Spain and the US or a drop down in the number of cases as in Italy and the UK.

3.5. Estimating actual infection trends with uncertain data

Next we focus on the influence of uncertain quantities on the controlled system with homogeneous
mixing. According to recent results on the diffusion of COVID-19 in many countries the number of
infected, and therefore recovered, is largely underestimated on the official reports, see e.g., [25, 26].
One possible way to understand this is based on a renormalization process of the reported data based on
the estimated infection fatality rate (IFR) of COVID-19. Although estimating the true IFR is generally
hazardous while an epidemic is underway, some studies have estimated an overall IFR around 1.3%
with an age dependent credible interval [64, 65]. In the sequel we consider a range spanning between
0.9% —2.0%. On the contrary the current fatality rate (CFR) may vary strongly from country to country
accordingly to the differences in the number of people tested, demographics, health care system. One
way to have in insight in the uncertainty of data is to use the estimated IFR ranges as normalization
factors for the current data reported of total cases /. This is done computing an estimated number of
total confirmed cases as I, = 100 x D,/IFR, where D, is the total number of confirmed deaths. The
results of the variations f, /I, for the various countries are summarized in Figure 4 and are directly
proportional to the CFR of the country. We are aware that the estimate obtained is certainly coarse,
nevertheless it allows to get an idea of the disagreement between the data observed and expected in the
various countries and therefore to be able to define a common scenario between the various countries.
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Figure 3. Model behavior with fitting parameters and actual trends in the number of reported
infectious using the estimated control penalization terms after lockdown over time in the
various countries.
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reported cases. The country specific values are given on the top of each red bar, the average
value of ¢ = 8.56 is reported as a dashed green line.

As discussed in [37] a parameter estimation based on the previous fitting has some limitations and
in particular overestimates the reproduction rate in the early phase of the pandemic. For this purpose,
to have an insight on global impact of uncertain parameters we consider a two-dimensional uncertainty
z = (21, 7) with independent components such that

I(Z9 O) = 10(1 +/-1Zl)’ R(Za O) = RO(l +,uZl)’ m> 0 (315)

and
B(z) = B. — apzs, Y(@) = Y. + ay20, ag,ay, >0 (3.16)

where z;, 7, are chosen distributed as symmetric Beta functions in [0, 1], iy and r( are the initial number
of reported cases and recovered taken from [57] and ., y. are the fitted values given in Table 1. In
the following we will consider u = 2(c — 1) common for all countries such that E[/(z,0)] = cI(0),
E[R(z,0)] = cR(0) where ¢ = 8.56, the average value from Figure 4.

From a computational viewpoint we adopted the method developed in [37] based on a stochastic
Galerkin approach. The feedback controlled model has been computed using an estimation of the total
number of susceptible and infected reported, namely we have the control term

u(t) = —%S ADI(1), (3.17)
where S ,(7) and 7,(¢) are the model solution obtained from the registered data, and thus /,(¢) represents
a lower bound for the uncertain solution /(z, t).

In Figure 5 we report the results concerning the evolution of estimated current infectious cases from
the beginning of the pandemic in the reference countries using z; ~ B(10,10) and ag = @, = 0. In
the inset figures the evolution of total cases is reported. The expected number of infectious is plotted
with blue continuous line. Furthermore, to highlight the country-dependent underestimation of cases
we report with dash-dotted lines both the expected evolutions, where the uncertain parameter ¢ > 0
varies from country to country accordingly to the numbers on the top of the red bars in Figure 4.
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certain data in as in (3.16). The 95% and 50% confidence levels are represented as shaded
and darker shaded areas respectively. The green zones denote the interval between the first
day the 50% confidence band and the expected value fall below 1.

In Figure 6 we report the evolution of reproduction number R, for the considered countries under the
uncertainties in (3.16) obtained with ag = 0.03, @, = 0.05 and z, ~ B(2, 2). It has been reported, in fact,
that deterministic methods based on compartmental models overestimate the effective reproduction
number [63]. The reproduction number is estimated from

B(z2) — u@)x(t > 1)

Roleeas 1) = ¥(z2)

being the control u(¢) defined in (3.17) and 7 is the country-dependent lockdown time. The estimated
reproduction number relative to data is reported with x-marked symbols and represents an upper bound
for Ry(z», t). The first day that the 50% confidence interval and the expected value fall below 1 is high-
lighted with a shaded green region. We can observe how the model estimates that for most countries
in the first days of April the reproduction number R, has fallen below the threshold of 1. On the other
hand, in the UK and the US the same condition was reached between the end of April and the begin-
ning of May. In realistic terms these dates should be considered as overestimates as they are essentially
based on observations without taking into account the delay in the data reported.

3.6. Relaxing control on the various social activities

We analyze the effects of the inclusion of age dependence and social interactions in the above
scenario. The number of contacts per person generally shows considerable variability depending on
age, occupation, country, in relation to the social habits of the population. However, some universal
features can be extracted, which emerge as a function of specific social activities.

More precisely, we consider the social interaction functions corresponding to the contact matri-
ces in [32] for the various countries. As a result we have four interaction functions characterized by
A = {F, E, P,O}, where we identify family and home contacts with 8, education and school contacts
with B, professional and work contacts with 8p, and other contacts with 8,. These functions have
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Figure 7. The total contact interaction function 8 = B + B + Bp + Bo taking into account
the contact rates of people with different ages. Family and home contacts are characterized
by Br, education and school contacts by SBg, professional and work contacts by Sp, and other
contacts by Bo.

been reconstructed over the age interval A = [0, @max], @max = 100 using linear interpolation. We report
in Figure 7, as an example, the total social interaction functions for the various countries. The func-
tions share a similar structure but with different scalings accordingly to the country specific features
identified in [32].

In order to match the age-structured model with the homogeneous mixing model the social functions
were normalized using the previously estimated parameters S, and 7y, in accordance with

Be = 1 Z Bj(a,a.)dada,, Ye = ! fy(a)da. (3.18)
A

2
amaxL jeA AXA Amax

We considered both a uniform and an age-related recovery rate [67,68] as a decreasing function of the
age in the form
@) =7y, +Ce™™, (3.19)

with r = 5 and C € R such that (3.18) holds. Clearly, this choice involves a certain degree of arbi-
trariness since there are not yet sufficient studies on the subject, nevertheless, as we will see in the
simulations, it is able to reproduce more realistic scenarios in terms of age distribution of the infected
without significantly altering the behaviour relative to the total number of infected.

In a similar spirit, to match the single control applied in the extrapolation of the penalization term
k(t) to age dependent penalization factors «;(a, ) we redistribute their values as

win) [, Bi(a,a.)da,
Sieawi®) [ Bila.a.) dada,

where w;(f) > 0, are weight factors denoting the relative amount of control on a specific activity. In
the lockdown period accordingly to other studies [32] we assume wg = 1.5, wy = 0.2, wp = 0.5,

k™, jeA

-1
ki(a,t)” =
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Figure 8. Age distribution of infected using constant and age dependent recovery rates as in
(3.19) at the end of the lockdown period in different countries.

wo = 0.6, namely the largest effort of the control is due to the school closure which as a consequence
implies more interactions at home. Work and other activities are equally impacted by the lockdown. In
particular, these initial lockdown choices make it possible to have a good correspondence between the
infectivity curves expected in the age dependent case and in the homogeneous mixing case. Therefore,
these values have been set homogeneously for each country and correspond to the situation in the
first lockdown period. We will discuss possible changes to these choices following a relaxation of the
lockdown in the different scenarios presented below.

We divided the computation time frame into two zones and used different models in each zone,
in accordance with the policy adopted by the various countries. The first time interval defines the
period without any form of containment, the second the lockdown period. In the first zone we adopted
the uncontrolled model with homogeneous mixing for the estimation of epidemiological parameters.
Hence, in the second zone we compute the evolution of the feedback controlled age dependent model
(3.10) with matching (on average) interaction and recovery rates (3.18) and with the estimated control
penalization «(¢). The initial values for the age distributions of susceptible have been taken from the
specific demographic distribution of each country. More difficult is to get the same informations for
the infected, since reported data are rather heterogeneous for the various country and the initial number
of individuals is very small (we selected a time frame where the reported number of infectious is larger
than 200). Therefore, we tested the available data against a uniform distribution. As there were no
particular differences in the results, we decided to adopt a uniform initial distribution of the infected
for all countries. In Figure 8 we report the age distribution of infected computed for each country at the
end of the lockdown period using an age dependent recovery and a constant recovery. The differences
in the resulting age distributions are evident. In subsequent simulations, to avoid an unrealistic peak of
infection among young people, we decided to adopt an age-dependent recovery [67].

3.6.1. Scenario 1: Relaxing lockdown measures at different times

In the first scenario we analyze the effects on each country of the same relaxation of the lockdown
measures at two different times. The first date is country specific accordingly to current available
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Figure 9. Scenario 1: Effect on releasing containment measures in various countries at two
different times. In all countries after lockdown we assumed a reduction of individual controls
on the different activities by 20% on family activities, 35% on work activities and 30% on
other activities by keeping the lockdown over the school.
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Figure 10. Scenario 2 - school: Effect on releasing containment measures for school activi-
ties in various countries at two different times. Family, work and other activities are relaxed
by 5% for each 10% release of the school activity.

informations, the second is June 1st for all countries. For all countries we assumed a reduction of
individual controls on the different activities by 20% on family activities, 35% on work activities and
30% on other activities without changing the control over the school. The behaviors of the curves of
infected people together with the relative 95% confidence bands are reported in Figure 9.

The results show well the substantial differences between the different countries, with a situation in
the UK and US that highlight that the relaxation of lockdown measures could lead to a resurgence of
the infection. On the contrary, Germany and, to some extent Spain, were in the most favorable situation
to ease the lockdown without risking a new start of the infection.

3.6.2. Scenario 2: Impact of school and work activities

In order to highlight the differences in the infection dynamics according to the choices related to
specific activities, such as school and work, we have considered the effects of a specific lockdown
relaxation in these directions. Precisely for each country we have identified a range for such loosening
which gives an indication of the maximum allowed opening of the activities before a strong departure
of the infection.

It was assumed to relax the lockdown of the school with a mild resumption of family, work and other
activities interactions by 5% for each 10% release of the school. The results are reported in Figure 10.
Next, we perform a similar relaxation process oriented towards productive activities with a reduction
of control on such activities at various percentages. Here we assumed no impact on school activities
and a mild impact on family and other activities with a loosening at 5% for each 10% release of the
work. The results are given in Figure 11. In both cases, the results show different infection dynamics
in the selected countries as a consequence of the relaxation of lockdown policies. In particular, in the
UK and USA any relaxation could determine a strong restart of the epidemic.
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Figure 11. Scenario 2 - work: Effect on releasing containment measures for productive
activities in various countries at two different times. School is kept in lockdown. Family, and
other activities are relaxed by 5% for each 10% release of the productive activity.
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Figure 12. Scenario 3: Relaxing lockdown measures in a progressive way in two subsequent
phases while keeping the epidemic peak under control. In the second phase only productive
activities are restarted and partially home interactions and other activities. In a third phase
school activities are also partially reopened (see Table 2).
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Table 2. Scenario 3: Progressive relaxation of lockdown measures for different countries as
specific control reduction percentages. Results are reported in Figure 12.

Germany France Italy Spain
Phase 2 - Phase 3 Phase 2-Phase 3 phage 2 - Phase 3 Phase 2 - Phase 3

Home 30%-60% 10%-25%  10%-15%  20%-25%
School  0%—-60% 0%-30% 0%—-20% 0%—-40%
Work  70%-80%  35%-45%  40%-50%  60%—-70%
Other 30%-60%  10%-25%  10%-20%  20%—45%

3.6.3. Scenario 3: Restarting activities while keeping the curve under control

One of the major problems in the application of very strong containment strategies, like lockdown
measures, is the difficulty in maintaining them over a long period, both for the economic impact and
for the impact on the population from a social point of view.

The results presented in Section 3.6.2 that the impact of relaxation policies may strongly differ one
country from another.

In this latter scenario, we consider a strategy based on a two-stage opening of the blocking measures
with a progressive approach. This possibility is analyzed for the four countries where the infection
curve appears less sensitive to relaxation policies, 1.e., Germany, Spain, France, and Italy. For each
country we have selected a progressive lockdown relaxation focused mainly on the opening of produc-
tive activities in the second phase and with a partial reprise of school activities in the third phase. The
reduction of the controls are now country specific and the values are reported in Table 2. In Figure 12
we plot the resulting behavior for the expected number of current infectious. The simulations show that
for all these countries, the relaxation of containment measures was possible while keeping the infection
curve under control. However, timing and intensity of the relaxation choices play a fundamental rule
in the process.

4. Conclusions

In order to contain epidemic dynamics, it is essential to have models capable of describing the im-
pact of non pharmaceutical interventions, such as lockdown policies, based on specific social charac-
teristics of the country and the containment actions implemented. In this work, aware of the complexity
of the problem, we have tried to provide a suitable modeling context to describe possible scenarios in
this direction. More precisely, with the help of a SEIARD-type compartmental model that incorporates
specific feedback controls on social interactions that can describe the selective action of a government
in opening certain activities such as home, work, school, and other activities, we can simulate their im-
pact with respect to the course of the epidemic. In particular, in an effort to take into account the high
uncertainty in the data, the model has been formalized in the presence of uncertain input parameters
that allow to explore hypothetical scenarios with appropriate confidence bands. Applications to the
first wave of the COVID-19 pandemic in several countries, including Germany, France, Italy, Spain,
the United Kingdom, and the United States, were considered taking into account the specific contact
patterns at home, work, school, and other activities for each country. The results show situations with
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different levels of sensitivity to a hypothetical reopening of certain activities. Although the scenarios
presented, in order to compare different realities, are largely hypothetical situations, they highlight
very well the impact of the possible loosening of restrictions in different social activities in the various
countries. In particular, the reopening of social activities if done in a careful and progressive way, for
some of the countries considered, like Germany, France, Italy and Spain, does not lead to a restart of
the infection. Further studies are being conducted on geographical dependence through spatial vari-
ables [53-55]. This would make it possible to characterize control measures on a local rather than
global basis.
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