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Abstract: Chemical Reaction Optimization (CRO) is a simple and efficient evolutionary optimization
algorithm by simulating chemical reactions. As far as the current research is concerned, the algorithm
has been successfully used for solving a number of real-world optimization tasks. In our paper, a
new real encoded chemical reaction optimization algorithm is proposed to boost the efficiency of
the optimization operations in standard chemical reactions optimization algorithm. Inspired by the
evolutionary operation of the differential evolution algorithm, an improved search operation mechanism
is proposed based on the underlying operation. It is modeled to further explore the search space of the
algorithm under the best individuals. Afterwards, to control the perturbation frequency of the search
strategy, the modification rate is increased to balance between the exploration ability and mining ability
of the algorithm. Meanwhile, we also propose a new population initialization method that incorporates
several models to produce high-quality initialized populations. To validate the effectiveness of the
algorithm, nine unconstrained optimization algorithms are used as benchmark functions. As observed
from the experimental results, it is evident that the proposed algorithm is significantly better than the
standard chemical reaction algorithm and other evolutionary optimization algorithms. Then, we also
apply the proposed model to address the synthesis problem of two antenna array synthesis. The results
also reveal that the proposed algorithm is superior to other approaches from different perspectives.

Keywords: chemical reaction optimization; application; optimization

1. Introduction

It is prevalent to solve the optimization problems in our life, which is generally done by selecting a set
of variables to reach an optimal value while satisfying a set of constraints. For instance, antenna arrays
are a typical global optimization problem that is important for detecting and processing signals from
different directions. The goal of antenna array synthesis is to generate a physical layout of the array in
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which the radiation pattern is as close as possible to the desired pattern. Unfortunately, most optimization
problems are always nonlinear, non-differentiable, and multipolar. Numerous optimization methods
have been proposed for solving these optimization problems. Classical optimization methods, including
gradient methods and alternating projection methods, are constantly being proposed. Nevertheless, it
is known that classical optimization methods require a fixed point that is fairly near to the final value,
otherwise they are likely to get trapped in local optimal. Moreover, the quality of the solution strongly
depends on the estimation of the initial values. However, the goodness of the final solution scheme
of the algorithm mostly depends on the setting of the initial scheme. If the initial solution falls in
the worse region of the solution, then the search will only be conducted to find the best solution in
the worse solution region. Considering the shortcomings of these techniques, evolutionary algorithms
are the best choice for solving large-scale optimization problems since evolutionary algorithms are
population-based search algorithms with high convergence rates and have been successfully used
for large-scale optimization problems extensively [1, 2]. Therefore, different kinds of evolutionary
algorithms, such as particle swarm optimization algorithms (PSO) [3,4], ant colony optimization (ACO),
biogeography-based optimization (BBO) [5–8], animal migration optimization (AMO) [9, 10], cuckoo
search algorithm (CS) [11–13], and artificial bee colony (ABC) [14], have been adopted to handle
antenna arrays, especially on large-scale optimization problems.

Recently, chemical reaction optimization (CRO) [15] is a population-based heuristic evolutionary
algorithm that simulates molecular collisions in chemical reactions. The algorithm simulates the
intermolecular interactions of molecules from a high-energy state into a low-energy state to explore the
global optimal solution in the search space. To achieve efficient performance and extensive applications
of the algorithm, different variations of the CRO algorithm were proposed successively to enhance the
performance of the traditional CRO algorithm. In addition, there are many works that focus on the
applications of CRO algorithms; for instance, Lam and Li [16] developed a real-coded CRO, called
RCCRO for addressing continuous optimization problems. The experimental results indicate that the
average performance of RCCRO is superior to other algorithms. In [17], the authors developed a double
molecular structure-based chemical reaction optimization (DMSCRO) method and the CRO scheme is
employed to outline the directed acyclic graph jobs scheduling in heterogeneous computing systems.
Xu et al. [18] developed a hybrid chemical reaction optimization framework to solve the DAG-based
task scheduling problem. It combines the novel heuristic approaches and a proposed selection strategy.
Dam et al. [19] proposed a new method that integrates the chemical reaction optimization scheme with
the unified tabu search heuristic method for solving the capacitated vehicle routing problem.

Lam and Li [20] solved the peer to peer live streaming with chemical reaction optimization and
experimental results demonstrate that CRO beats many commonly-used techniques for containing popu-
lation transitions in the system applications. In [21], Lam and Li used chemical reaction optimization to
resolve the grid scheduling problem. Experimental results indicate that the proposed algorithm surpasses
many existing evolutionary methods for the majority of cases tested. Truong et al. [22] introduced a
chemical reaction optimization algorithm (CROG) coupled with a greedy strategy to tackle the quadratic
allocation problem. The algorithm also proposes a design method for the update operator and a param-
eter tuning method. Unfortunately, it is difficult for these approaches to balance the exploitation and
exploration capability of CRO algorithms simultaneously. Therefore, it is necessary to develop new
optimization strategies for chemical reaction optimization to further enhance the performance of the
algorithms.
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To address these issues, we propose a new realistic encoded chemical reaction optimization algo-
rithm that can boost the performance of traditional chemical reaction algorithms. First, inspired by
the search mechanism in differential evolution algorithms, we propose a modified chemical reaction
optimization (MCRO) model based on the optimal solution in the population. Then, to further im-
prove the performance of the algorithm, the perturbation frequency of individuals is manipulated by
increasing the modification rate of individuals and balance the exploitation and exploration ability
of the algorithm. Moreover, to further accelerate the convergence of the algorithm, we assemble the
stochastic initialization, opposition learning methods, and generalized opposition learning methods to
obtain a new population initialization method. Finally, to demonstrate the superiority of the proposed
algorithm, the algorithm is compared with several benchmark functions and applied on two antenna
arrays. Based on the experimental results, it can be observed that our proposed algorithm is superior to
other state-of-the-art algorithms from several perspectives.

2. Chemical reaction optimization

2.1. The basic concept of the CRO

Chemical Reaction Optimization (CRO) is an evolutionary algorithm first published by Lam and Li
in [22, 23], which simulates the collision of molecules in a chemical reaction. For each molecule, its
molecular structure is similar to the optimization problem and the molecule denotes the solution to the
problem under consideration. Potential energy (χ) is the objective function value and kinetic energy (η)
can be interpreted as the tolerance of the system, which accepts a solution that is worse than the current
one. This approach can assist the solution to be partially replaced locally. Assuming that the numerator
is ω, χ can be calculated as follows: χω = f (ω).

2.2. Elementary reactions

In a standard CRO, the algorithm simulates four different types of chemical reactions, comprising
on-wall ineffective collision, decomposition, inter-molecular ineffective collision, and synthesis. They
are mainly employed to control the redistribution of energy between molecules and buffers in the
solution. Among them, single operations include wall ineffective collisions and disintegration, and the
rest are multiple operations.

When a molecule strikes the wall of a container and then bounces away, the on-wall ineffective
collision reaction is invoked. The process will have some change. The molecular structure ω and χ will
change to a generated molecular ω′ in the neighborhood of ω if the condition is satisfied under Eq 1.

χω + ηω ≥ χω′ (1)

After an invalid collision at the wall, a certain fraction of the η of the transformed molecule is withdrawn
to the buffer. Then, the η of the new molecule ω′ can be as follows:

ηω′ = (χω + ηω − ηω) × a (2)

where a ∈ [ηLR, 1], ηLR is a statistical parameter that limits the maximum percentage of η that can be lost
at each time. As long as there is enough χ at the beginning, it is possible for a molecule with lower χ to
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transform into a molecule with higher χ , corresponding to a poorer solution. Following the collision,
the molecule has fewer η.

The decomposition collision reaction results from a molecule hitting a wall, which then breaks
one molecule into several molecules. Assume that ω produces ω′1 and ω′2, i.e., ω → ω′1 + ω

′
2. Any

mechanism, which can generate ω′1 and ω′2 from ω, is allowed. The algorithm considers two cases for
the decomposition reaction: first, each molecule needs enough energy to complete the decomposition.
The χ of the resulting molecule is denoted by the following:

ηω′1 =
(
χω + ηω − χω′1 − χω′2

)
× q

ηω′2 =
(
χω + ηω − χω′1 − χω′2

)
× (1 − q)

(3)

Based on the above analysis, the following conditions need to be satisfied for molecular decomposition:

χω + ηω ≥ χω′1 + χω′2 (4)

where q is a random number that takes values in the range [0, 1]. Meanwhile, the algorithm considers
another condition:

ηω′1 =
(
χω + ηω − χω′1 − χω′2 + buffer

)
× k1 × k2

ηω′2 =
(
χω + ηω − χω′1 − χω′2 + buffer

)
× k3 × k4

(5)

χω + ηω + buffer ≥ χω′1 + χω′2 (6)

where k1, k2, k3 and k4 are random numbers which take values in the range of [0,1]. The buffer can be
defined as below:

buffer = χω + ηω − χω′1 − χω′2 + bu f f er − ηω′1 − ηω′2 (7)

Null collisions between molecules happen when two or more molecules collide with each other and
then separate. The energy conservation condition can be expressed in the following way:

χω + ηω + ηω1 + ηω2 ≥ χω′1 + χω′2 (8)

Then the η of two transformed molecules can be described as follows:

ηω′0 =
(
χω + ηω + ηω1 + ηω2 − χω′1 − χω′2

)
× q

ηω′2 =
(
χω + ηω + ηω1 + ηω2 − χω′1 − χω′2

)
× (1 − q)

(9)

where q is a random number that takes values in the range [0, 1].
The synthesis is the opposite of decomposition. Synthesis occurs when a molecule collides and bond

together. The reaction conditions that allow the synthesis reaction are description below:

χω + ηω + ηω1 + ηω2 ≥ χω′ (10)

Then the η for the new molecule is considered by the following method.

ηω′ = χω + ηω + ηω1 + ηω2 − χω′ (11)

To address the continuous optimization problem more efficiently, Lam and Li proposed a real coded
version of CRO, namely RCCRO. Subsequently, a similar modified neighborhood search approach was
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used. Among them, the Gaussian distribution model was proposed to generate perturbations to search
continuous space neighborhood. Their update method can be characterized here below:

ω′(i) = ω(i) + N
(
0, σ2
)

(12)

where σ holds the step size and determines the efficiency of the algorithm. Because different problems
have different characteristics, various σ should be adopted. In the algorithm, the neighborhood method
will be employed for one-wall and intermolecular ineffective collision. The framework of the algorithm
is shown in Figure 1. In summary, the CRO algorithm starts with the initialization. Then if it is an
inter-molecular ineffective collision, the single molecule reaction is employed. Otherwise we will carry
out the bimolecule reaction. In terms of the single molecule reaction, if the composition condition
is satisfied, then it will conduct the decomposition, otherwise, it will conduct the on-wall ineffective
collision. In terms of the bimolecular reaction, if the synthesis condition is met, the synthesis reaction is
conducted, otherwise the inter-molecular ineffective collision reaction is conducted. After these steps,
new minimum points are checked. If the stopping criterion is not matched, then the above steps will be
repeated. Otherwise, the global minimum point is obtained.

3. Modified chemical reaction optimization (MCRO)

3.1. Initial population

For evolutionary algorithms, population initialization is a crucial component. The goodness of
population initialization directly influences the final convergence speed of the algorithm and the quality
of the optimal solution. In fact, most algorithms use random initialization to generate the initial
population in the absence of a priori information. Moreover, it is difficult to guarantee the quality of
initialized population solutions by individual population initialization methods. Therefore, this paper
proposes a new initialization method to generate the initial population by fusing random initialization,
opposition-based learning initialization [24] and generalized opposition learning initialization [25]. This
method can enhance the performance of CRO by preventing premature convergence to local optimal.
Table 4 summarized the framework of this method. Figure 2 depicted the difference between the random
population initiation and the opposition-based population initialization discussed above.

3.2. A modified search equation

Differential evolution algorithm (DE) [26] is an efficient stochastic search method which was
originally proposed mainly for solving continuous optimization problems. Its simple structure and
ease of completion allowed the algorithm to be quickly applied to different optimizations and achieve
impressive performance. The algorithm also has the identical evolutionary process as other evolutionary
algorithms. In the algorithm, we can see that the algorithm consists of three main processes: mutation,
crossover and selection. At the beginning of the algorithm, a mid-autumn is generated using a random
initialization, followed by the operations of mutation, crossover and selection to generate a new
population. It is worth noting that several different variation operations have been proposed in the DE
algorithm, such as:

DE/best /1 : Vi = Xbest + F · (Xr1 − Xr2) (13)

where i ∈ {1, · · · ,NP} and r1 and r2 are random integer indices selected from {1, · · · ,NP} that are
different from each other. F is a scaling factor or amplification factor. Xbest , the base vector to be
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Figure 1. The framework of the CRO algorithm.

perturbed, is the best individual in the current population and indicates the best information in the
population.

In fact, the information about the best individuals in the current population is very useful for the
whole population, and if the information is used wisely it is possible to accelerate the convergence
rate of the population. For the strategy "DE/best/1", the best solution can explore the movement of
the current population. Based on DE algorithm and the property of CRO, we propose a novel search
mechanism to improve CRO:

vi j = xbest j + φi j

(
xi j − xb j

)
(14)

where φi j denotes the scaling factor that controls the speed of optimization of the algorithm. It is calcu-
lated at the beginning of each generation. If rand < rand, then φi j is equal to 5× (rand − rand)×(rand−
rand), otherwise, φi j equals to randn. We can note that "rand" denotes a random number generated from
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Figure 2. The difference between the random population initiation and above mentioned
opposition based population initialization.

the range of [−1, 1], i ∈ {1, 2, · · · ,NP}, and j ∈ {1, 2, · · · ,D} are randomly chosen indexes, "randn"
denotes a number generated through a Gaussian distribution with mean "0" and standard deviation "1".

To control the frequency of perturbation, it makes the algorithm can solve the difficult problem
better. A control parameter, the modification rate (MR), is proposed, which serves mainly to generate a
candidate position vi j from the current memory of xi j as described below:

vi j =

 xbest + φi j

(
xi j − xb j

)
, if ri j ≤ MR

xi j otherwise
(15)

where rij denotes a random number generated from the range of [−1, 1]. This new rule is similar with
the binomial crossover of the DE algorithm, which can enhance the potential diversity of the population.

3.3. Boundary restrictions

For evolutionary algorithms, the setting of bounds is crucial. During the search process, the
individuals in the part of MCRO algorithm can easily move to the boundary of the whole search
space, which renders many of the solutions invalid. Therefore, it is important to restrict the individuals
around the boundary to the search space once again. In other words, if most of the individuals are on
the boundary, it is difficult for the algorithm to find the optimal solution to the problem, which will
necessarily make the algorithm fall into local optimal solutions and make the whole population very
easy to lose the population diversity. To address this problem, we propose to use the following rule for
the setting of off-boundary individuals:

xi =

{
xmin + mod ((xmin − xi) , (xi − xmin))
xmax − mod ((xi − xmax) , (xmax − xmin))

(16)
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Procedure A new initialization approach
Begin

Randomly initialize each individual in population x.
Set the individual counter i=1, j=1
for i = 1→ NP do

for j = 1→ D do
oxi, j = xmin, j + xmax, j − xi, j

end for
end for
Set the individual counter i = 1, j = 1
for i = 1→ NP do

for j = 1→ D do
ooxi, j = xmin, j + xmax, j − xi, j

end for
end for
The fitness of each individual was assessed and the most suitable individual for NP from

{X(NP) ∪ OX(NP) ∪ OOX(NP)} was selected as the initial population.
End

3.4. Time complexity analysis

In this section, the time complexity analysis of the proposed MCRO algorithm for the benchmark
function optimization is analyzed. The time mainly depends on the searching loop. At first, the time
complexity of the initialization method is O(NP × D), where NP is the population size and D is the
number of variables. Then for each iteration in the loop, the time is mainly spent in evaluating the
fitness of each individual, which also costs O(NP × D). Therefore, the time complexity of MCRO is
O((I + 1)(NP × D)), where I is the number of iterations for the optimization process.

4. Results

4.1. The benchmark functions optimization by MCRO

To validate the effectiveness of the MCRO algorithm proposed in this paper, we first applied the
algorithm to solve nine standard global optimization algorithms that are widely used. To ensure the
fairness of the algorithm comparison, we did not modify any of the problems, which are tabulated in
Table 1. As can be observed from the table, the first five problems are unimodal global optimization
problems, where f05 is a noisy quadratic function. The remaining problems are all multimodal global
optimization problems. It is worth noting that the local minima of these problems are increasing as the
size of the problem increases, which is the reason why the difficulty of solving the problem increases
with the size of the problem.

To illustrate the superiority of the MCRO algorithm proposed in our paper, we compared the MCRO
algorithm with the standard CRO, the Differential Evolution algorithm (DE), the Adaptive Differential
Evolution (jDE) [27] and the Modified Artificial Bee Colony algorithm (MABC) [28]. Across the
experiments, the algorithms were computed with a maximum number of functions of 150,000 and
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Table 1. Benchmark functions based in our experimental study.

Test Function D Range optimum
f01 =

∑n
i=1 x2

i 30 [-100,100 ] 0
f02 =

∑n
i=1 |xi| +

∏n
i=1 |xi| 30 [-10,10] 0

f03 = maxi {xi |, 1 ≤ i ≤ D} 30 [-100,100] 0
f04 =

∑D
i=1

(
⌊xi + 0.5⌋2 30 [-100,100] 0

f05 =
∑D

i=1 ix4
i + random[0, 1) 30 [-1.28,1.28] 0

f06 =
1

400

∑D
i−1 x2

i −
∏D

i=1 cos
(

xi√
i

)
+ 1 30 [-32,32] 0

f07 = −20 exp
(
−0.2

√
1
D

∑D
i−1 x2

i

)
− exp

(
1
D

∑D
i=1 cos 2πxi

)
+ 20 + e 30 [-600,600] 0

f08 =
π
D

{
10 sin2 (πyi) +

∑D−1
i=1 (yi − 1)2

[
1 + 10 sin2 (πyi + 1)

]
+(yD − 1)2 +

∑D
i=1 u (xi, 10, 100, 4)

}
yi = 1 + xi+1

4 u (xi, a, k,m) =


k (xi − a)m xi > a
0 −a < xi < a
k (−xi − a)m xi < −a

30 [-50,50] 0

f09 = 0.1
{
10 sin2 (πyi) +

∑D−1
i=1 (yi − 1)2

[
1 + 10 sin2 (πyi + 1)

]
+ (yD − 1)2

}
+
∑D

i=1 u (xi, 10, 100, 4) 30 [-50,50] 0

50 independent experiments were conducted for each problem, and their average values were finally
compared as the final results. To compare fairly, the parameter of different algorithm can be set as
follows: for the CRO algorithm, the population size NP is 20, KELossRate is 0.1, Molecoll is 0.2,
InitialKE is 1000, and the value of decThres and synThres is 150000 and 0, respectively. The value
of MR is 0.2. For the DE algorithm, the population size is 100, F is 0.3 and CR is 0.7. The parameter
of the jDE is the same with the paper [27]. For modified artificial bee colony algorithm (MABC), the
parameters of this algorithm are identical to the paper [28]. The results are listed in Table 2. From
Table 2, we can observe that the results of MCRO are better than the other algorithms while Figure 3
shows the 2D plot of f07.

4.2. Array pattern synthesis using MCRO

To further demonstrate the effectiveness of the MCRO algorithm proposed in this paper, the proposed
algorithm is applied to two different antenna array problems, including reconfigurable Antenna Array
and linear antenna. To enable a fair comparison of the algorithms, the same number of function
calculations is necessary. Therefore, in this paper, we use the same number of function evaluations
for each algorithm as the final termination condition. As a result, we can evaluate the performance of
the algorithms by the results of different algorithms and finally illustrate the efficiency of the proposed
algorithm.

4.2.1. Synthesis of reconfigurable antenna-array

In this section, we applied our proposed MCRO to address the reconfigurable dual-beam antenna
array. In this problem, when the phase distribution of the array is suitably modified, the amplitude
distribution can produce pencil-shaped or sector power patterns. In addition, to reduce the effect of
coupling between elements, an additional term is incorporated in the objective function [29]. Therefore,
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Table 2. Performance comparisons of DE, jDE, MABC, CRO and MCRO.

F DE jDE MABC CRO MCRO

f01 6.1695e-14±
4.7200e-14

2.0141e-28±
4.1612e-28

1.9244e-
39±4.3030e-39

6.7348e-
007±2.1237e-
007

5.5207e-71
±1.0949e-70

f02 4.2283e-07
±3.0823e-07

1.6421e-17±
1.0644e-17

6.8088e-18±
1.5132e-17

0.00213.6637e-
004

3.1288e-
43±3.9422e-43

f03 0.0458 ±0.0809 0.8695± 0.7707 13.3649 ±

3.6487
0.0097±0.0035 2.7781e-10 ±

2.2871e-10
f04 0± 0 0±0 0 ± 0 0±0 0± 0
f05 0.0096±0.0021 0.0063±0.0014 0.0311 ± 0.0083 0.0036±0.0013 0.0083± 0.0023
f06 1.3524e-13

±7.7685e-14
0±0 2.9016e-08±

6.4883e-08
4.7687e-
07±1.5030e-007

0±0

f07 7.8443e-08±
3.1063e-08

7.9936e-15±0 2.8747e-06 ±

6.4281e-06
0.0024±4.2876e-
004

1.6520e-14±
5.9448e-15

f 08 3.5919e-15
±2.2490e-15

4.6115e-30
±5.3009e-30

2.3631e-07
±5.2841e-07

0.1371±0.3257 1.6222e-32 ±

7.0698e-34
f 09 4.7192e-14

±3.9138e-14
5.5873e-
29±7.6744e-29

1.4035e-09
±3.1382e-09

7.5513e-
006±5.3363e-
006

7.0479e-31 ±

7.6213e-31
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Figure 3. 2D Ackley function.

we can optimize the amplitude-excitation dynamic range (ARD) to minimize the mutual coupling
problem [30, 31]. Then, the objective function to be optimized in this paper is defined as below.

Ec(P) =
3∑

i=1

(
P(p)

i,d − P(i)
i

)2
+

4∑
i=1

(
P(s)

i,d − P(s)
i

)2
+ ADR (17)

where ADR denotes the amplitude-dynamic ratio. Based on the above description, it can be noticed that
the algorithm can motivate the difference between the amplitudes by optimizing the ADR. Meanwhile,
we can reveal that the difference between ADR and amplitude is linear, and minimizing the ADR is
accompanied by a smaller difference between amplitudes. Therefore, in this paper, we optimize the
reconfigurable antenna-array by optimizing the effect of coupling.

Table 3. The results of Experimental I and Experiment I with ADR.

Element Number
Experiment I Experiment I with ADR
Amplitude Phase[ deg.] Amplitude Phase[deg.]

1/20 0.129861 -10.6276 0.149815 -0.80199
2/19 0.174584 -25.4484 0.149813 -38.653
3/18 0.255019 -36.7229 0.154374 -29.1362
4/17 0.331274 -64.5232 0.256851 -71.1288
5/16 0.367296 87.84077 0.307724 -72.5951
6/15 0.556305 108.9342 0.412374 -97.438
7/14 0.652548 -80.0141 0.483299 97.30298
8/13 0.737711 -87.0023 0.564111 53.28282
9/12 0.831561 -13.7764 0.616299 -106.146
10/11 0.868279 43.79851 0.645976 88.67032
ADR 6.68 4.31
Fitness value 0.16 0.04
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Table 4. Performance comparison of MCRO with G3-GA, DE, jDE, MABC and MCRO.

Exp-I without ADR Exp-I with ADR
fitness ADR fitness

G3-GA 0.16 4.4137 0.1028
DE 0.16 4.3470 0.04
jDE 0.36 4.40 0.10
MABC 0.16 4.31 0.06
MCRO 0.16 4.31 0.04

In order to efficiently design the above reconfigurable antenna array problem, we use our algorithm
MCRO algorithm to tackle the problem. We compare the MCRO algorithm with some other algorithms
including G3-GA, DE, jDE, MABC and MCRO. In the MCRO algorithm, the population size is 20 and
the number of function computations is 20000, and the value of MR is 0.7. The rest of the parameters are
the same as those of the previous global optimization algorithm. The experimental results are tabulated
in Tables 3 and 4, mainly to determine the amplitude and phase excitation patterns for the dual-beam
optimization. From these tables, we can see that the MCRO algorithm is superior to other algorithms,
especially for reconfigurable antenna array designs with coupling effects. For the problems without
coupling effects, we can find that most of these algorithms can find the optimal solutions. For problems
with coupling effects, we can find that MCRO gives the best ADR and fitness values. These results
show that our proposed algorithm is superior to other evolutionary algorithms. Figures 4 and 5 show
the optimized excitation pattern and the dual-beam pattern, respectively. Figure 5 shows the design
parameters that satisfy both pencil and sector beams. Figures 6 and 7 show the same case as Figures 4
and 5.

Figure 4. Amplitude and phase excitation without coupling effect.
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Figure 5. Dual-beam array patterns without coupling effect.

Figure 6. Dual-beam array patterns with coupling effect.
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Figure 7. Dual-beam array patterns with coupling effect.

4.3. Synthesis of linear antenna

In this section, we applied our proposed MCRO to address the linear antenna. To design of a linear
antenna array [32], let us assume that we have 2N isotropic radiators placed symmetrically along x-axis.
The objective function of side lobe suppression is:

f1 =
∑

i

1
∆ϕi

∫ ϕii

ϕii

∣∣∣AF(ϕ)2
∣∣∣ dϕ (18)

And for null control:
f2 =
∑

k

|AF (ϕk)|2 dϕ (19)

where ∆ϕi is the bandwidth to be restrained as ϕui − phili, ϕk is the null direction. To optimize both
objectives simultaneously, we sum Eqs 18 and 19 and complete their sum to make the objective function
that our algorithm needs to optimize.

In order to elaborate the efficiency of the proposed MCRO algorithm, we came to test the reduction
of the level of the side lobes in the linear array. Concurrently, we ran each algorithm independently
for 25 times in each problem. The termination condition for each run of each algorithm was 5 × 104

number of function evaluations. All other parameters of the algorithms were consistent with the previous
experiments. Meanwhile, the same number of function evaluations is applied to the other algorithms to
construct a fair experiment.

In this section, we design an array of 26 elements that has minimum SLL in bands [0◦,82◦ ] and
[98◦,180◦ ] and null direction in 20◦. Tables 5 and 6 summarize the results of the eight different
evolutionary algorithms. From these tables, it can be viewed that our proposed MCRO algorithm is to
be superior to other algorithms. Also, Figure 8 summarizes the array patterns of MCRO algorithm with
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other algorithms. From Figure 8, it can be seen that MCRO can suppress the generation of side lobes to
the maximum extent. Moreover, it also obtains the minimum gain in the 20circ null.

Figure 8. 13-element array for minimum SLL [0◦,82◦] and [98◦,180◦] and NULL 20◦.

Table 5. Geometry of the 26 element linear array, normalized numbers with respect to λ/2
and null at 20o.

MCRO 0.301 0.939 1.98 2.012 3.367 3.541 5.284 7.049 4.590 8.021 6.093 10.881 9.411

MABC 0.330 0.979 1.821 2.039 3.267 2.897 4.151 6.574 7.749 4.880 5.799 9.544 10.909

DE 0.472 1.049 2.090 2.058 2.897 3.799 4.825 6.318 5.373 7.475 8.61 10.231 11.558

jDE 0.338 1.252 1.527 1.527 2.743 3.077 4.341 6.834 8.475 5.132 10.25 7.954 11.614

Table 6. Mean final objective function value, standard deviation, best, worst, median, and the
Rank.

Algorithm MCRO DE jDE MABC
Mean 0.01194 0.02763 0.02356 0.0177
Best 0.00921 0.01984 0.01736 0.0131
Median 0.01219 0.02915 0.02319 0.0167
Worst 0.01488 0.03396 0.02982 0.0224
std 0.00209 0.00368 0.00443 0.0039
Rank 1 4 3 2

5. Conclusions

In this paper, a new evolutionary search strategy is employed to enhance the performance of the
algorithm. Moreover, we present a new population initialization by fusing stochastic initialization,
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opposition learning method, and generalized opposition learning method. It is worth noting that our
proposed algorithm is simple in structure and easy to implement. To demonstrate the superiority of our
proposed MCRO algorithm, we used nine benchmark functions as test functions. The results show that
the proposed algorithm significantly outperforms the other algorithms. In addition, the algorithm was
tested on the synthesis problem of two antenna arrays. We analyzed and evaluated the experimental
results and compared them with other evolutionary optimization algorithms. In terms of the algorithm’s
performance, our algorithm is significantly better than the other algorithms. In the future, we would like
to apply our proposed algorithm MCRO to solve other antenna arrays, such as circular antenna arrays.
More quantifiable experiments on those arrays are expected. Besides, we will focus on exploring other
strategies such as multiobjective mechanism to enhance the efficiency of the algorithm. Meanwhile,
other evaluation criteria will be computed to estimate the performance of those extended algorithms.
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