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Abstract: Computer Assisted Diagnosis (CAD) based on brain Magnetic Resonance Imaging 

(MRI) is a popular research field for the computer science and medical engineering. Traditional 

machine learning and deep learning methods were employed in the classification of brain MRI 

images in the previous studies. However, the current algorithms rarely take into consideration the 

influence of multi-scale brain connectivity disorders on some mental diseases. To improve this 

defect, a deep learning structure was proposed based on MRI images, which was designed to 

consider the brain’s connections at different sizes and the attention of connections. In this work, a 

Multiscale View (MV) module was proposed, which was designed to detect multi-scale brain 

network disorders. On the basis of the MV module, the path attention module was also proposed 

to simulate the attention selection of the parallel paths in the MV module. Based on the two 

modules, we proposed a 3D Multiscale View Convolutional Neural Network with Attention (3D 

MVA-CNN) for classification of MRI images for mental disease. The proposed method 

outperformed the previous 3D CNN structures in the structural MRI data of ADHD-200 and the 

functional MRI data of schizophrenia. Finally, we also proposed a preliminary framework for 

clinical application using 3D CNN, and discussed its limitations on data accessing and reliability. 

This work promoted the assisted diagnosis of mental diseases based on deep learning and provided 

a novel 3D CNN method based on MRI data. 
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1. Introduction 

In the past few decades, Computer Aided Diagnosis (CAD) for mental disease has become an 

evolving research field of computer science and medical engineering. However, MRI-based machine 

learning diagnostic methods are still being explored, especially for mental disorders, such as attention 

deficit hyperactivity disorder (ADHD) and schizophrenia. ADHD is a neurodevelopmental disorder 

characterized by attention deficits, impulsiveness, and executive dysfunction. Schizophrenia (SZ) is a 

serious chronic mental illness. Now, the diagnosis of these diseases is often based on interviews, 

history and clinical symptoms. However, early and accurate diagnosis of them can facilitate treatment 

planning and improve disease outcomes. Improvement of machine learning based on medical markers, 

such as neuroimages, can facilitate the diagnosis of individuals [1]. 

Magnetic Resonance Imaging (MRI) is a kind of neuroimaging method that accurately measures 

hemodynamic changes caused by neural activities in the brain, and generates three-dimensional neural 

images [2]. The researches of cognitive neuroscience based on MRI mainly focus on using statistical 

analysis to locate brain function and analyze brain networks [3]. CAD generally classifies neuroimages 

through supervised machine learning methods to determine whether subjects have certain neurological 

diseases. However, due to the high dimension and low sample size of MRI images, the performance 

of some traditional machine learning algorithms in MRI image data classification are poor [4]. Some 

studies improved the performance of MRI data classification by improving the machine learning 

algorithm [5,6]. These methods can be generally divided into two kinds: traditional machine learning 

methods and deep learning methods. 

Traditional machine learning methods, such as support vector machine (SVM) [7] and back 

propagation neural network (BPNN) [8], can be used to diagnose mental disease by classifying 

designed features in MRI images. Since a large number of mental diseases have been found to be 

closely related to brain network disorders, some studies have proposed the automatic diagnosis 

methods of machine learning based on brain network. For example, Khazaee et al. proposed a graph-

theory-based machine learning approach for identifying different brain networks in healthy subjects 

and Alzheimer's disease patients [9,10]. The method extracts the optimal features from the MRI 

connection matrix graph measurements, and inputs them to support vector machine for classification. 

Similarly, Al-Zubaidi et al. extracted connection parameters from 90 brain regions, and used linear 

support vector machine sequence with forward floating selection strategy to classify the hunger and 

satiety states of subjects [9]. 

Traditional machine learning methods have some limitations due to their inability to correlate the 

relationships among local voxels in MRI images. However, deep learning, especially, the 

Convolutional Neural Network (CNN) integrates the location correlation between features, feature 

extraction and feature selection with machine learning algorithms, and its classification performance 

in medical images is also outstanding. Deep learning methods have been used in the diagnosis of 

chronic kidney disease [10], coronary cardiac disease [11] and mental diseases [12,13], chronic 

myocardial infarction [14], prostate cancer [15] and even the COVID-19 [16]. These applications 

include extensive automated segmentation of lesion sites. For example, a deep learning framework for 

the diagnosis of chronic myocardial infarction was proposed by Zhang et al., which extracts local and 

global motion features, and relates them in late gadolinium enhancement MRI images [14]. This 

framework got excellent performance, but only with nonenhanced cardiac cine MRI images. 

Some mental diseases are difficult to be directly judged from neuroimages, but the convolution 
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operation in CNN can extract local features of the adjacent voxels, so as to combine the complex 

features applied to disease classification. The CNN-based approach has been shown to be effective in 

classifying mental disorders in a number of studies. Saman et al. classified the brain MRI images of 

subjects by using CNN with LeNet-5 structure [17,18] to judge whether the subjects suffered from 

Alzheimer’s disease. A convolutional neural network was proposed by Zhao et al. [19] based on 3D 

convolutional kernels, which can accurately classify brain functional networks reconstructed by 

whole-brain fMRI signals, and this network has a good classification performance in the application 

of fMRI images from the Human Connectome Project (HCP). To reduce the influence of irrelevant 

part of MRI images, Zou presented a multi-modality CNN architecture combing fMRI and structural 

MRI (sMRI) for distinguishing the neuroimages between healthy subjects and subjects with Attention 

deficit hyperactivity disorder (ADHD) [20]. The network extracts useful features from sMRI and fMRI, 

and assists in automating ADHD diagnosis. A 3D CNN structure with multiple dilated convolution 

kernels and its associated computational framework were also proposed, which can be applied to 

structural MRI (sMRI) and functional MRI (fMRI) classification [21]. The proposed method has a 

good performance in the classification tasks of ADHD and schizophrenia. 

However, most deep learning algorithms based on neuroimaging for diagnosing mental diseases 

did not consider the influence of brain connectivity disorders on some mental illnesses. There are 

evidences that some psychiatric disorders result in the changes or disruptions in the structure or 

functional connections. For example, it has been found that SZ often resulted in a disorder of 

connectivity between the areas of large-scale brain networks, such as the medial parietal, the premotor, 

and the cingulate regions [22]. Similarly, ADHD has also been found to have disorders of brain 

functional connections in the frontal lobe, insula and sensorimotor systems [23,24]. Therefore, the 

deep learning model’s ability to learn long-distance and short-distance structural and functional 

connections of a brain determines the performance of its recognition of mental diseases. 

In this study, the proposed method is mainly applied to the automatic diagnosis of cognitive 

disorders, such as schizophrenia (SZ) and ADHD. 

In this paper, a deep learning structure was proposed based on MRI images, which was designed 

to consider the brain's connections at different sizes and the attention of connections. We proposed a 

3D Multiscale View Convolutional Neural Network with Attention (3D MVA-CNN) based on 

ResNetXt [25,26] and Sqeeze-and-Excitation (SE) [27]. ResNetXt is a transformation of ResNet [28]. 

ResNetXt uses a number of parallel residual blocks, which makes the network deeper and wider. This 

wide structure is suitable for analyzing the whole-brain MRI images that have a mass of features 

(voxels). We first modified ResNetXt into a 3D structure to make it suitable for fMRI data. Then, the 

proposed Multiscale View (MV) module, on the one hand, uses the multi-scale convolutional kernel 

to extract the effective features of coarse-grained and fine-grained voxel activities in MRI images, so 

as to improve the sensitivity of the algorithm to the disorders of long-distance and short-distance brain 

connectivity. On the other hand, SE determines the importance of the features extracted by 

convolutional kernels in different scales dynamically. Similarly, we proposed a path attention module 

to dynamically assign weights for each parallel path in MV module. We tested the proposed model on 

a self-scanned fMRI dataset for schizophrenia, and a MRI dataset from ADHD-200 [29]. The results 

showed that the proposed 3D MVA-CNN has a better performance than some other 3D CNN structures 

in both two datasets. The main contributions of this study are list as follows: 

1) A 3D Multiscale View Convolutional Neural Network with Attention was proposed, which 

considered the brain's connections at different sizes and the attention of them. 
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2) The proposed method was tested on an fMRI dataset for schizophrenia and an MRI dataset for 

ADHD, and outperformed other commonly-used 3D CNN methods. 

3) We also presented a framework for clinical application based on the proposed model and 

discussed the feasibility and limitations of the framework. 

The remainder of this paper is organized as follows. In Section II, we will first describe the 

research works related to the method proposed in this paper. In Section III, we will introduce our 

proposed 3D MVA-CNN. In Section IV, we will describe the experiments, and discuss the results. 

Finally, in Section V, we will give the conclusion of this study. 

2. Related works 

The proposed 3D MV-CNN is based on ResNetXt and Sqeeze-and-Excitation (SE). In this section, 

the details of ResNetXt and SE will be introduced. 

2.1. ResNetXt 

The traditional methods make CNN networks deeper or wider to improve the performance of a CNN 

for classification task. But usually, the number of hyperparameters will increase along with the deepening 

or widening. The increasing number of hyperparameters often leads to the complex design and computation. 

However, the ResNetXt was designed to make networks wider without much extra cost. 

 

Figure 1. The comparison between ResNet block and ResNetXt block. (a) A ResNet block 

with three convolutional layers. (b) A ResNetXt block with 32 paralleled paths. Each path 

in ResNetXt block has the same number of convolutional layers as ResNet block. These 

layers generate smaller feature maps. All the small feature maps are finally concentrated 

in the last concentrating layer. 

The structure of ResNetXt block is shown in Figure 1(b). This structure consists of several parallel 

blocks of residuals. The concept of Cardinality is introduced to represent the number of parallel and 

independent residual paths. 

The ResNetXt block is equivalent to the ResNet block in Figure 1(a). Resnet residual paths are 

divided into multiple residual paths in ResnetXt, in which the number of channels in ResNet residual 
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paths is averaged among all residual paths in Resnet. Compared with ResNet, the structure of 

ResNetXT can improve the efficiency of feature extraction while keeping the number of network 

parameters similar. 

2.2. Squeeze-and-Excitation 

Attention mechanisms have been widely used in the field of deep learning automated diagnosis. 

For example, the dilated attention network in the left atrium anatomy and scar segmentations was 

proposed by Yang et al., which learns the feature maps for left atrial scars [30]. And the feature pyramid 

attention was applied by Liu et al. in a fully convolutional network for automatic prostate zonal 

segmentation, which was combined with a modified ResNet50, Feature Pyramid Attention and 

Decoder [31]. In this work, attention mechanism is applied to the weight assignment of parallel paths 

in recognition networks by using the Squeeze-and-Excitation. 

The Squeeze-and-Excitation is one of the classic implementations for the feature-channel-based 

attention mechanism implementation, as shown in Figure 2.  

SE module first squeezes the feature maps obtained from the convolution layer to obtain the 

channel-level global features. Then the excitation operation is done to the global features, which learns 

the relationship between various channels, and obtains the weights of different channels. Finally, the 

weights of different channels are multiplied by the feature maps from original channels to get the final 

features. In essence, the SE module does attention or gating operation on channel dimension. This 

attention operation enables the model to pay more attention to channel features with more information, 

while suppressing those features that are not important. SE modules are generic, which means they 

can be embedded into existing network architectures. 

 

Figure 2. The Squeeze-and-Excitation module. 

3. Methods 

In this paper, a 3D MVA-CNN model for MRI data classification is proposed. It is also 

proposed that the classification model can be applied to the classification of multiple fMRI images 

generated by a single fMRI scan. Therefore, the method proposed in this paper can not only 

identify the mental diseases related to brain structure, but also identify the mental diseases caused 

by the changes of brain function. 
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There are two main improvements in the application of 3D MVA-CNN in automatic diagnostic 

classification of MRI data proposed in this paper. Firstly, the network structure named Multiscale View 

similar as ResNetXt was proposed, which applies convolutional kernels with different scales to 

enhance the sensitivity of the network model to the disorders of brain functional networks of different 

scales. On the other hand, an attention mechanism similar to the SE module was applied to scale the 

feature maps generated by the pathways of convolutional layers at different scales, so as to enhance 

the attention degree of network model to a feature. 

3.1. Multiscale view module 

The concept of multi-view was used in the artery-specific calcification analysis [32], 

quantification of coronary artery stenosis [33], left ventricle detection [34] and echocardiographic 

sequences segmentation [35]. Multi-view in these works mostly means that multiple different types of 

two-dimensional images are input into deep neural networks at one time, and fused. For example, 

Zhang et al. used axial, coronal and sagittal views in a multi-task learning network for artery-specific 

calcification analysis [32].  

In this work, we designed a Multiscale View module (MV module) to make neural networks more 

sensitive to the correlations between regions with different distances. The multiscale views didn’t mean 

the multi input to the network, but were the parallel convolutional layers with different kernels. 

Different sizes of convolution kernel could extract features of different fields of view. MV module was 

shown in Figure 3. This module parallels multi paths similar to the regular ResNetXt block.  

 

Figure 3. Multiscale View module. The Multiscale View module is the extension of simple 

ResNetXt block, which parallels multi paths with convolutional layers with different size 

of kernels. These paths with different kernels could help the 3D CNN find more disordered 

patterns of brain networks. 

This module separates multiple parallel paths from the feature maps output from the previous 

convolutional neural layer, in which each path has the same number of convolutional layers and each 
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convolutional layer has the same feature maps, but the sizes of the convolutional kernels on different 

paths are different. There are two convolutional layers on each path, in which the first convolutional 

layers map the input images with N channels to images with N/M channels, where N is the number of 

channels of the output results of the previous layer, and M is the number of paths. The second 

convolutional layers convolve the output image of the previous layer with the same number of channels. 

Finally, the output results on all paths are 3D images with N/M channels and the same size. The images 

on each path are concatenated along the channel dimension and combined into a 3D image with N 

channels. In the first convolutional layers, strides = 2 × 2 × 2, meaning that the sizes of input images 

are reduced by half. The sizes of the convolutional kernel in the second convolutional layer are 2i + 1, 

where i is the order number of the parallel path, so each path uses 3 × 3 × 3, 5 × 5 × 5 and other sizes 

of the convolutional kernels to achieve multi-scale feature extraction. 

3.2. Path attention 

 

Figure 4. The proposed MV module with path attention. Three steps, Path Squeeze and 

Path Excitation, are included in path attention. The final M weights are used to scale 

features in M paths. Finally, the output in each path concatenates together. 

We designed an attention mechanism, called Path Attention, for channel weight selection of MV 
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module by imitating the attention mechanism of SE module. 

The design of path attention is shown in Figure 4. This module is used in conjunction with the 

MV module to dynamically assign weights to parallel paths in the MV module. This module has two 

parts: Path Squeeze and Path Excitation. 

The purpose of the Path Squeeze operation is to gather the global features of each channel resulted 

from the previous convolution operation. The Path Squeeze operation first squeezes the 3D feature 

map of each channel with a pooling layer and obtains an average feature. A feature graph set with N 

channels can be pooled to obtain N feature values, each of which represents the global feature of the 

corresponding channel. Then, a full connection layer with a ReLU activation is used to transform the 

global features of N channels into M values, where M is the number of parallel paths in the MV module. 

The purpose of Path Excitation is to convert M features to the attention levels (weights) of M 

paths. There is a full connection layer with a Sigmoid activation. The full connection layer converts M 

features to M weights between 0–1.  

Finally, M weights will be provided to M paths of the MV module, and multiplied by the first 

convolutional output on each path to scale the output features. The MV module with path attention is 

called MVA module in this paper. 

4. Experiments and results 

Two experiments were conducted to compare several deep learning methods with proposed MVA-

CNN in the classification of fMRI images for SZ and sMRI images for ADHD. The results indicated 

that the proposed method could outperform other deep learning structures in mental disease automatic 

diagnosis based on fMRI and sMRI data. 

4.1. Datasets 

In Experiment 1, we used ADHD-200 dataset to test the proposed method. The ADHD-200 data 

set includes sMRI and fMRI images of about 800 subjects, which were spontaneously provided by 

eight scientific research institutions, including Brown University, University of Pittsburgh, New York 

University Medical Center, Peking University, etc. In the experiment, 587 sMRI images provided by 

some institutions were selected for training and testing, involving 441 healthy subjects’ images and 

146 patients’ images, each with the size of 121 × 145 × 121 voxels. 

In Experiment 2, we tested the proposed method in a self-collected fMRI dataset of SZ. We scanned 

the EPI resting fMRI images using a 3-T GE MRI scanner. The repetition time (TR) was 2000 ms, and 

the echo time (TE) was 30 ms. Each image was scanned 50 in slices. 28 healthy and 28 patient subjects 

participated in the experiment (age range: 15–44, healthy subjects: 17 females and 11 males, patients: 

14 females and 14 males), 50 resting MRI images of each subject were used in classification. Totally 

2800 fMRI images were used in classification. During MRI scanning, the subjects were asked to lie in 

the MRI scanner and stay awake without any action. The subjects’ heads were fixed by four sponges. 

The images were processed using SPM8 (https://www.fil.ion.ucl.ac.uk/) and MATLAB 

(Mathworks, Natic, MA) software. Images were realigned, co-registered and normalized on the 

Montreal Neurological Institute (MNI) template. All images are normalized and reshaped into the size 

of 61 × 73 × 61 voxels. 
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4.2. Experiment setup 

 

Figure 5. The 3D MVA-CNN structure used in the two experiments. Here, the details of 

the first MVA module are expanded and drawn out. Due to space, we did not expand the 

following three MVA modules. In order to reduce overfitting and the memory usage, a 

small number of feature graphs were used in the structure. 

In both experiments, the 3D MVA-CNN structure we used is shown in Figure 5, in which four 

continuous MVA modules are used, and the number of parallel paths in each Module M is 3. Because 

the sample size used in the two experiments is not very large, the complex model is easy to cause 

overfitting. We reduced the number of feature maps in 3D MVA-CNN and other models in the 

experiments to reduce model complexity and memory consumption. Only 160k trainable parameters 

were used in the 3D MVA-CNN structure. The experiment will calculate the classification accuracy, 

sensitivity, specificity and AUC of the proposed method, and compare with the performances of 

ResNet, ResNetXt, VGGNet, AlexNet, SparseNet [36] and Inception-V3 [37]. The paired t test was 
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also employed to check whether the AUC score of the proposed method was significantly different 

from those of other models. We also compared the performance of 3D MVA-CNN with 2 times of 

feature maps to test the effect of model complexity on classification performance. 

All models were adjusted to accommodate the preprocessed sizes of MRI images in experiments. 

All the convolutional layers were transformed into convolutional layers with 3D cores, and all the 

pooling layers were transformed into pooling layers with 3D convolutional kernels. Similar to 3D 

MVA-CNN, the feature maps in these models were reduced to avoid overfitting. The layers in ResNet 

and ResNetXt were reduced to fit the size of MRI images. 

Five-fold cross validation was used in both experiments. Experiments were conducted to compare 

the average measures of cross-validation results. In the ADHD-200 dataset, 470 images were used for 

training and 117 for testing in each validation. 353 samples of healthy subjects and 117 samples of 

patients were used in training. And 88 samples of healthy subjects and 29 samples of patients were 

used in the testing phase. Due to the small number of patient samples, the patient samples from the 

training set were oversampled prior to training. In Experiment 2, datasets were divided according to 

subjects. In each validation, 2,300 fMRI images of 23 patients and 23 healthy subjects were used for 

training, and the remaining 500 images of 5 healthy subjects and 5 patients were used for testing. 

A normal distribution was used to initialize the weights in the networks, and the learning rate was 

set to 10–5. RMSProp was used as the optimizer, and the classification cross entropy was used as the 

loss function for all models. Each training iteration contains 100 epochs, and the batch size is 16. 

Experiments were performed in software environment: Centos 7.5 64bit, python 3.6, pytorch 1.9.0 and 

hardware environment: Intel Xeon E5 2680 V3, RAM 64G, and a NVIDIA GeForce RTX 3090 GPU. 

4.3. Results 

4.3.1. Experiment 1 

In Experiment 1, the classification results of seven deep learning models are shown in Table 1. 

And the confusion matrix of all the models is shown in Figure 6. As shown in Table 1 and Figure 6, it 

can be seen that although we have achieved the balance of the sample size by over-sampling the 

samples of the patient class, the predicted results were still more biased to the healthy subject class. 

This might be because that although oversampling increased the number of samples, it did not 

extend the diversity of samples, so it did not completely eliminate the bias of the classifier in 

training. Compared with the other models, the 3D MVA-CNN method achieved the highest average 

accuracy of 78.8%, the highest average sensitivity of 38.1% and the highest average AUC of 69.7%. 

Although the specificity of ResNetXt is higher than that of 3D MVA-CNN, it might be the cause 

of over-fitting, which output healthy labels in almost all the predictions. The bias made its 

specificity approach to 100% but the sensitivity too low. This conclusion can also be easily seen 

in Figure 6(e). According to the paired t test results, it could be found that the AUC of 3D MVA-

CNN was significantly higher than all other models except for ResNet (T (4) = 2.765, p = 0.051). 

Although compared with ResNet, the P value of the proposed model was not significantly less than 

0.05, it was very close to 0.05. Overall, 3D MVA-CNN has the best performance among the seven 

models in Experiment 1 with the acceptable evaluation time. 
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Figure 6. The confusion matrices of seven models in Experiment 1. (a) The confusion 

matrix of the 3D MVA-CNN. (b) The confusion matrix of the VGGNet. (c) The confusion 

matrix of the AlexNet. (d) The confusion matrix of the ResNet. (e) The confusion matrix 

of the ResNetXt. (f) The confusion matrix of the SparseNet. (g) The confusion matrix of 

the Inception-V3. 

Table 1. The results of seven models in Experiment 1. 

Model Avg. 

Accuracy 

Avg. 

Sentivity 

Avg. 

Specificity 

Avg. 

AUC 

Running 

time (per 

epoch) 

Inference 

time (per 

sample) 

t 

value 

p value 

VGGNet 70.2% 16.4% 88.2% 56.8% 42 s 0.13 s 9.333 < 0.001* 

AlexNet 72.4% 21.9% 89.1% 59.2% 46 s 0.14 s 6.823 0.002* 

ResNet 68.5% 37.7% 78.9% 63.8% 76 s 0.24 s 2.765 0.051 

ResNetXt 75.5% 7.5% 98.2% 47.8% 62 s 0.20 s 7.011 0.002* 

SparseNet 57.9% 44.9% 65.1% 61.2% 92 s 0.29 s 6.383 0.003* 

Inception-V3 72.4% 30.1% 82.8% 33.1% 85 s 0.27 s 9.513 < 0.001* 

3D MVA-

CNN 
78.8% 38.1% 92.3% 69.7% 81 s 0.26 s / / 

3D MVA-

CNN with 2x 

feature maps 

71.1% 31.0% 81.8% 60.9% 119 s 0.38 s / / 

We also compared the results of 3D MVA-CNN on the ADHD dataset with those reported in 

the previous studies, as shown in Table II. All these studies used deep learning method to train and 

classify the selected data from ADHD-200 dataset. Among them, only sMRI data from ADHD-200 

dataset was used in the study of Zou [38] and Wang [21], while sMRI and fMRI data were used in 

the study of Sen [22] and Sina [39]. The sample size used in this study was similar to that used in 

these studies. We used the same data as [40] did. It was found that our proposed 3D MVA-CNN 

was able to achieve the highest classification accuracy using only sMRI data, even though some of 

the methods proposed in the previous studies were able to integrate the features of sMRI and fMRI. 
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Table 2. Comparison between 3D MVA-CNN and previous methods. 

Model Accuracy Data Combination 

Zou et al. 2017 [22] 65.9% sMRI 

Sen et al. 2018 [21] 68.9% sMRI + fMRI 

Sina et al. 2016 [39] 70.0% sMRI + fMRI 

Wang et al. 2019 [40] 76.6% sMRI 

3D MVA-CNN 78.8% sMRI 

4.3.2. Experiment 2 

Table 3. The results of seven models in Experiment 2. 

Model Avg. 

Accuracy 

Avg. 

Sentivit

y 

Avg. 

Specificit

y 

Avg. 

AUC 

Running 

time (per 

epoch) 

Inference 

time (per 

sample) 

t value p value 

VGGNet 68.6% 64.8% 72.3% 78.7% 82 s 0.05 s 2.803 0.049* 

AlexNet 71.0% 75.1% 66.1% 75.6% 84 s 0.05 s 4.531 0.011* 

ResNet 54.1% 45.4% 61.8% 56.7% 149 s 0.10 s 21.063 < 0.001* 

ResNetXt 69.5% 72.5% 67.2% 66.5% 122 s 0.08 s 8.826 < 0.001* 

SparseNet 79.6% 77.2% 81.8% 81.2% 182 s 0.12 s 3.279 0.031* 

Inception-V3 57.9% 50.6% 65.1% 54.6% 168 s 0.11 s 17.576 0.001* 

3D MVA-

CNN 

84.2% 79.4% 88.6% 84.3% 164 s 0.11 s / / 

3D MVA-

CNN with 2x 

feature maps 

77.8% 80.0% 75.6% 79.1% 225 s 0.15 s / / 

The comparison results of seven models in Experiment 2 are shown in Table 3 and Figure 7. The 

scores were at the sample level and not aggregated to the subject level. It can be seen that for fMRI 

data of schizophrenia, the proposed 3D MVA-CNN is far superior to other models in all measurements, 

with an average accuracy of 88.2%, an average sensitivity of 79.4%, an average specificity of 88.6%, 

and an AUC of 84.3%. The AUC of 3D MVA-CNN was significantly higher than those of all other 

models, which means a big improvement of the proposed method. In Figure 7, it is also easy to find 

from the confusion matrix that the proposed 3D MVA-CNN performed best for schizophrenia fMRI 

classification. While ResNet and Inception-V3 performed worst, although both of them were reported 

to have excellent performance for 2D image classification. In addition, in both experiments, the 3D 

MVA-CNN models with fewer features performed better than the models with more features. This 

indicates that the proposed model may perform better when the structure is relatively simple. The 

results of the proposed 3D MVA-CNN in the two experiments are higher than those of other commonly 

used CNN networks. This result indicates that the 3D MVA-CNN proposed in this paper has a good 

performance in the application of mental disease classification based on MRI data. Both ADHD and 

schizophrenia were involved in our study, which have been found to be strongly associated with brain 

network disorders. The experimental results also illustrate that the multi-size path mechanism of the 

multiscale view module and the attention selection mechanism for multi-size paths of the path attention 

module designed in this study are helpful to improve the sensitivity of deep convolutional neural 
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network to brain network changes. 

 

Figure 7. The confusion matrices of seven models in Experiment 2. (a) The confusion 

matrix of the 3D MVA-CNN. (b) The confusion matrix of the VGGNet. (c) The confusion 

matrix of the AlexNet. (d) The confusion matrix of the ResNet. (e) The confusion matrix 

of the ResNetXt. (f) The confusion matrix of the SparseNet. (g) The confusion matrix of 

the Inception-V3. 

The proposed CNN method can also be applied in practical clinical application and research 

under certain conditions. To this end, we also designed a preliminary clinical application 

framework, as shown in Figure 8. However, there are three limitations to this framework needing 

to be improved in the future: 

1) Although the ideal data access method is to obtain the scanned MRI images directly through a 

data interface, it is necessary to get the data interface from the MRI scanner manufacturer, which might 

be difficult (① in Figure 8). Therefore, a feasible solution is that the doctors manually download MRI 

images and upload them to a server running the CNN model (② in Figure 8). 

2) As the accuracy of such algorithms is far from 100%, the output results could only be used as 

a reference. Doctors still need to make a final judgment based on the results of the model and other 

assessments. Further improving the diagnostic performance and the interpretability of the model would 

realize more accurate computer-aided diagnosis in the future. 

3) At present, the deep learning automated diagnosis method based on multi-modal or multi-

sequence MRI input has become an important research direction in the interdisciplinary field of 

artificial intelligence and medical engineering [41]. However, the input and fusion of multi-modal MRI 

data have not been considered in the proposed method. The proposed approach may have the potential 

to process multimodal MRI data due to its inherent parallel feature selection paths. In the future, we 

would carry out further research on this issue. 
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Figure 8. The preliminary clinical application framework for the proposed CNN method. 

5. Conclusions 

In this paper, we proposed a 3D Multiscal View Convolutional Neural Network with Attention 

(3D MVA-CNN) for automatic diagnosis of mental disease based on brain MRI data. 3D MVA-

CNN is based on RexNetXt, with the addition of our proposed Multiscale View module and path 

attention, which is transformed into 3D convolutional network. The Multiscale View module is 

similar to the ResNetXt block. However, it can detect brain functional connections or activity 

associations of brain regions at different scales by allocating convolutional layers with diffe rent 

sizes of convolutional kernels to each parallel path. Path attention for MV module implements 

Path selective attention mechanism, and the design concept is similar to Squeeze-and-Excitation. 

It provides dynamic weights for the parallel paths of the MV modules through the path squeeze 

and path excitation operations. It increases the network sensitivity to the connection between brain 

regions at a certain scale. Finally, we tested 3D MVA-CNN on the sMRI dataset of ADHD-200 

and the fMRI dataset of schizophrenia collected by ourselves. The results show that the application 

of our proposed 3D MVA-CNN has excellent performance in the structural MRI and functional 

MRI data classification of mental diseases related to brain network disorders. This work further 

advances the application of deep learning methods based on neuroimaging in the diagnosis of 

neurological diseases. 
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