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Abstract: Near-optimization is as sensible and important as optimization for both theory and
applications. This paper concerns the near-optimal control of an avian influenza model with saturation
on heterogeneous complex networks. Firstly, the basic reproduction number R, is defined for the
model, which can be used to govern the threshold dynamics of influenza disease. Secondly, the near-
optimal control problem was formulated by slaughtering poultry and treating infected humans while
keeping the loss and cost to a minimum. Thanks to the maximum condition of the Hamiltonian function
and the Ekeland’s variational principle, we establish both necessary and sufficient conditions for the
near-optimality by several delicate estimates for the state and adjoint processes. Finally, a number of
examples presented to illustrate our theoretical results.
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1. Introduction

Avian influenza is an animal disease, it caused by avian influenza A virus. Avian influenza
generally targets specific species, but the virus can infect humans by crossing species barriers in rare
cases. For example, avian influenza virus AH5N1 and AH5N7. Since the first outbreak of avian
influenza AH5N1 in Hong Kong in 1997, the virus has infected more than 400 people worldwide,
with a mortality rate close to 60% [1]. In 2013, the avian influenza AH7NO crossed the species barrier
for the first outbreak in mainland China. More than 400 people have been infected, and the mortality
rate is close to 40% [1]. Avian influenza has not only brought serious threat to human health, but also
caused human psychological panic. And it caused a huge blow to the national economy. Therefore, to
provide effective control and prevention strategies, mathematical models and methods have been
widely adopted to study the epidemiological characteristics of infectious diseases.
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The mathematical dynamics method can describe the internal mechanism of infectious disease
transmission by establishing a mathematical model. Kermack and McKendrick [2-4] established the
famous compartmental model, a ”threshold theory” was proposed to distinguish the prevalence of the
disease. Liu and Ruan [5] constructed two bird-to-human avian influenza models with different
growth laws of the avian population, and proved the globally asymptotic stability. Gourley et al. [6]
established a patch model with delay to investigate the role of migratory birds in the spread of HSN1
avian influenza, they proved globally asymptotic stability of the disease-free equilibrium. Bourouiba
et al. [6] established a delayed avian influenza model to investigate the role of migrating birds in the
spread of avian influenza. S. Iwami et al. [7] constructed a mathematical model to explain the spread
of avian influenza and mutant avian influenza. Tuncer and Martcheva [8] addressed the question of
modeling the periodicity in cumulative number of human cases of HSN1. Three potential drivers of
influenza seasonality were investigated. Hu [9] constructed an avian influenza model with nonlinear
incidence and analyzed the stability of the model, as follows:

S, S o,
dc;t - A“S‘ 11+—W ~ HaS as

q m = Oala = Hala,

% :Ah_%_”hsh’ (1.1)
% B % = Yuln = Ondn = s

% = Yudp = HnRn,

in model (1.1), S, and I, denote the sizes of susceptible poultry and infectious poultry. S, I, and
R;, denote the sizes of susceptible human, infectious human, recovery human, respectively. ; +;1 7 [10]
describes the saturation due to the protection measures of the poultry farmers when the number of
infective poultry increases. Similarly, as the number of the infective human individuals increases, the
susceptible human population may tend to reduce the number of contacts with infective infective avian
population per unit time due to the psychological effect, so we use a nonmonotone incidence function
to describe the transmission of the virus from infective poultry to susceptible human; that is, %
[11,12]. All parameters are assumed non-negative and their meanings are described as follows: A, and
A, denote the recruitment rate of poultry and human population, respectively; A, and A, represent the
infected rate of poultry and human population, respectively; u, and p; represent the natural mortality
rate of poultry and human population, respectively; d, and ¢, represent the mortality due to disease in
poultry and human population, respectively; y;, denotes recovery rate of infected human population.
The model (1.1) is a time-dependent ordinary differential system. But in fact, the spread of
infectious diseases are significantly affected by the spatial heterogeneity, for example, spatial position,
water resource availability and other factors. There is increasing evidence that the spatial diffusion
has significant impact on the spread of infectious diseases. Tang [13] investigated an avian influenza
epidemic model with diffusion and nonlocal delay, this model describes the transmission of avian
influenza among birds and human; especially the asymptomatic individuals in the latent period have
infectious force. Lin [14] introduce two moving boundaries, which are called free boundaries, to

describe the avian influenza virus transmitting in the habitat.
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However, all the above models are obtained under the assumption that all individuals are uniformly
mixed, which means they have the same contact rate with other individuals in the region. That is,
the mixture between individuals are homogeneous, but, the contact between poultry-to-poultry, and
poultry-to-human are obviously heterogeneous [15] in reality. In order to reflect the heterogeneity
of contacting between individuals, it is of great significance to explore the spread of avian influenza
on coupled networks. Zhan [16] had studied the coupling dynamics between epidemic spreading and
relevant information diffusion.

On the other hand, as is known to all that avian influenza has posed huge economic burden which
primarily includes opportunity loss, health care related expenditures, loss of employment and so on.
Because of resource limitations, it is very necessary to formulate optimal control strategies which can
prevent wide spreading of infectious diseases at minimum cost. Therefore, we introduce the
slaughtering for poultry and treatment for humans as control variables, and establish an optimal
control problem to decrease the number infected poultry and humans. Mathematically, the optimal
control is obtained by solving the state equation and adjoint equation or the Hamilton-Jacobi-Bellman
equation. In fact, for a complex system, such equations have difficulties giving analytic solutions.
Optimal controls may not even exist in many situations, while near-optimal controls always exist.
Many more near-optimal controls are available than optimal ones. Therefore, in this paper, we explore
the near-optimal controls, aiming to slaughter poultry and treat infected humans while keeping the
loss and cost to a minimum. The main contributions of this paper are as follows:

e An avian influenza model with spatial diffusion on complex networks is established.

e We define the basic reproduction number of virus and show that it is a threshold for viral
persistence or extinction.

e The necessary and sufficient conditions of near-optimal control are presented.

The rest of this paper is organized as follows. In section 2, we construct an avian influenza model
with spatial diffusion on complex networks, In section 3, we discuss the well-posedness of the system.
We compute the basic reproduction number of the avian influenza model in section 4. In section 5,
we analyze the sufficient and necessary conditions for the near optimal control. In section 6, several
numerical simulations are given to demonstrate the theory results. Finally, we give a brief conclusion
and future work in section 7.

2. Model formulation

We will use the following notations in this paper:

e | - |: the norm of an Euclidean space;

e f.: the partial derivation of f with respect to x;

e ys: the indicator function of a set S';

e (: generally refers to all arbitary normal numbers.

Considering the heterogeneity of the contact between poultry-to-poultry and poultry-to-human, we
introduce one-way-coupled networks into avian influenza model. There are two separate networks,
A and H. Network H consists of humanity, where each node represents an individual, and each
connection between two individuals represents direct contact between them. Network ‘A is composed
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of poultry population. And there is a connection from subnetwork (A to subnetwork H. We express in
degrees (i, j) that there are i edges connected to subnetwork A and j edges connected to subnetwork
H. And it is expressed in degrees (i,-) that i edges are connected to subnetwork A, and any edges
are connected to subnetwork H. The same degree (-, j) indicates that any edge is connected to the
subnetwork A and j edges are connected to the sub-network /. Then, model (1.1) can be written as

ds () 0,(1)
Y = Ay = (DS () ——— — 1, S A0),
0 (@) ”’()1+al®u(t) HaS 7 (1)
dl® (1) 0,1
L] . a
—— = A, ()S ¢ () ————— — 0,17 (1) — u A (1),
o = S0 T = D) w0
dsi (1) @(1)
i,j woh ah h
=A,—Aup(HS () —————— — w, S (D), 2.1
= M A DS 0 s~ S 2.1)
dll (1) (1)
BT A (DS () —— () = ST () — wn I (1
dt ah(])Sw( )1 + C}fz@ah(t) ’yh l,_]( ) 6]’[ l,]( ) /’lh l,j( )7
dRﬁj(t) h h
d Yuli (D) — pnR; (),

©,(?) denotes the infection probability of susceptible poultry nodes with the degree i in contact with
the infected poultry nodes. ®,,(#) denotes the infection probability of susceptible human nodes with
the degree j in contact with the infected poultry nodes. In the uncorrelated networks, ®,(¢), ®,,() can
be written as

n 1 n
2Pl D), Oud) = 7o D ipaC, DI,
a j:1

i=1

1
0,0 =
0=

Where <k>a:Zi=1 lpa(la ')7 <k>ah:Zj:1 Jpa(" J)a pa(la '):ijl pa(la J)’ pa('a J):Zizl pa(la J)’ pa(l’ .]): N
NO=X0 X 8¢+ Xiny Xy I The stability of equilibrium points is often governed by a threshold
called the basic reproduction number R,. The basic reproduction number R, of model (2.1) is obtained

by using the method in the reference [17], where

o]
a

A L Adda (P
R = /1(1 a 5" :—_.7
’ ua(6a+ua)<k>a; Dbt ) = Gt ) D

where (i?) = Y, ?p,(i, ). The parameters of the coupling network are described in Table 1.
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Table 1. The parameters of the coupling network are described in model (2.1).

Parameter Description

NlXj The number of nodes with degree (i, j) on subnet X

Si j(lz j) The number of susceptible (infected) nodes with degree (i, j) on subnet A
S f.fj(lfj) The number of susceptible (infected) nodes with degree (i, j) on subnet H
Rffj The number of recovered nodes nodes with degree (i, j) on subnet H
Pa(i,)(pa(-, j)) The boundary degree distribution of subnet A

(kYo ({kYan) The average of nodes in subject A connected to subnet A(H)

A Q) = A, Poultry to poultry transmission rate of degree i

Aan(J) = Aanj Poultry to human transmission rate of degree j

In general, the individual disperses randomly in the habitat. Therefore, we consider not only the
individuals activity in temporal dimension, but also the distribution of the individual in the spatial and
the dynamic characteristic of the avian influenza. Considering spatial spreading, Kim et al. [18]
investigated a diffusive epidemic model, this model describes the transmission of avian influenza
among birds and humans. (We assume that susceptible individuals, infectious individuals and
recovered individuals move spatially randomly.) In view of the fact that the spatial diffusion and
environmental heterogeneity are important factors in modeling the spread of many diseases, with
reference [19], an extended version of the avian-human model can be described by

os?. Lo oSs?. ®
i,J L] a a a
- —Dy—=—=) = ANs — (DS}, —————— —u.S{ ., t>0, Q,
ot Z@xk( k@xk) (l) M1+ @ K b ~ X e
or. & s or¢ o
i,j l] a
——§ o= Da) = A, S"——éal?’.— JY >0, xeQ,
ash. L g AN
i,j 1,] ~Nch h
—E —(Gri—=) = Ay, — (DS Oup, — S -, t>0, Q, 2.2

a h l alh
= —Z 7 i a”) = Aa(DS! @ = all; = Sulll, = pally, 1> 0, x€Q,

RN 5 _ OR"
i.j z : i,J h
7 _ — (G, —=) = I - u R , t> 0, € Q,
0xk( Y (?xk) n e '

because the removed population has no effect on the dynamics of S h and I”,

l 7o

model (2.2) can be
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decoupled to the following model

oS¢ . ]

®
T z: lJ _ a a a
axk lk ) - A (l)Sljl—@)a —/.laSl], t>0, xeQ,
ore. g al¢ ®
L] i,J a
— - ; = 1,08 ——————— = 6,17, — u, ¢, t>0, xeQ,
ot zlak( o) = ST e, T Ot T Haly o (2.3)
oS’ ! P aSh_ .
2¥) . h
- Y —(Gyi—) =Ny — Au(HS"0, ST >0, xeQ,
Y Ez (9xk( kj 6xk) n = Aan(NS 7 Oan — S i ; x
h i h
i § —(Gy, aI”)— Aar(DS T @an = vul}; = Sul}; = pl}y, 1> 0, x €Q
(9xk / 8 LJ iy i,j i,j? s s

where S¢, 1= S¢ (1, x), IY; 1= I{(t, %), Sﬁj = Sf.fj(t, x), Iffj = Ifj(t, X, x=0Lx,,x) €eQcRLQ
is the spatial habitat in R! with smooth boundary 6Q, Q = {x||x;| < L}, L is constant, k = 1,2,--- ,[;
Dy := Dy(t,x) > 0, Gy; := Gyj(t,x) > 0 denote the transmission diffusion operator, A, := Ay(x),

Ah = Ah(.X), /la(l) = /la(i)(x), /lah(j) = /lah(j)(-x)» Ha = ,ua(_x)’ Hn = l-lh(x)’ Oq := 6a(x)’ Op = 6h(-x)a
and vy, := y,(x) are positive Holder continuous functions on Q.

n

D ipai, MLt %) 1= Oy, Oun(t,x) =

i=1

Q,(t, x) =

1 &,
o Zl JPals DI, %) = O,
J:

1
(kYa
the initial conditions are given by S¢,(0,x) = ¢y;, I/ (0,x) = ¢, Sffj(O, x) = ¢35, Ifj((), X) = ¢uj,
peR,, xe 5, i,j=1,2,--- ,n,where R, = {x € R: x > 0}. For x € Q, with homogeneous Neumann
boundary conditions

OSUtx)  OSU(Lx) ISL(X) DSt N
on _( ox; ~ ox,  dx ) 120, X €08
5I?j(t, X) (9]?1.(1‘, X) allf‘j(t, X) (9]“ (l‘ XN\T
’ :( ’ s . g, ——— ) t>0,x€39,
on 0x, 0x; 0x; 2.4
5ng(l‘, X) (?Sﬁj(t, X) &S'gj(t, X) (?Sh (t XNT 0 50 24
on _( ox, | ox, ~° ox ) 120, X €08

O %) _ (Ol 0 xS e
s, = ’ Py : ST, _— =V, t ’ € ’
on ( Ox 0x, 27 ) o

where Q is a bounded smooth domain in @l, OQ and Q are the boundary and the closure of Q, n is the
outer normal vector of Q. Let X := C(Q,R*) be the Banach space with the supremum norm || - ||.
Define X* := C(Q,R%"). The symbol V is the gradient operator.

3. Well-posedness of the system

In this section, we will focus on the existence and uniqueness of the global solutions of model (2.3).
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Lemma 3.1. For every initial value function ¢ = (¢1;, ¢ai, $3j, $a;) € X7, the solution U(t,x;¢) =

(87, x5 10, 17 (1, x5 20), Sffj(l, X, $3;), Ii}fj(t, X; ¢4;)) of model (2.3), satisfies that

l!l)rg SMP(SZJ(Z', X3 ¢li) + I:f](t’ X3 ¢2i) + Sff](ta X3 ¢3j) + Il/,lj(t7 X5 ¢4J)) < C

where C is a normal constant.

Proof. Let

W) = f (5200010 + 12,0302+ 8105 9) + 10, )
Q

W(t) :f(asﬁfj(f, x; ¢1i) . oL (t, x; $2:) . a8} (1, x; ¢3)) . oI (1, x; ¢4j))dx
o

dt ot ot ot
) l e ) h ! h
9 l] 0 d ol
—(D; - G — (G, —
f(Za * ox, Z:‘ﬁ kZ o kj@x +;8xk( kjaxk)

+ Ao — oS = Oadl; = pall; + Ny — ST = yull; — Sul} —uhlffj)dx

! oS¢ . ! oI¢. ! oS ! oI".
< Dy—2 Dy—2 Gij—2 G2
_fg(;( i >+;( kan)+;( g >+;( )

+ Ao+ A= ST = pndi; = S~ ﬂh’fj)dx

= f (Ag + Ap)dx — 1, W(1),
Q

where |Q| represents the volume of (2, we can obtain

Jo (A + Apdx
lim W(t) < 22—
>0 th

In other words, there is a positive constant C such that lim,_,., W(#) < C. This proof is complete.

O

Next, we will focus on the existence and uniqueness of the global solutions of model (2.3) by

semigroup.

Theorem 3.2. For every initial value function ¢ = (¢1;, ¢ai, $3j, $a;) € X', model (2.3) has a unique
solution U(t, x; ¢) = (S“ (t, x; d11), ”(t X; ), Sf’](t xX; $3), ”(t X; ¢4;)) with U(0, x; ¢) = ¢ and the

semiflow ¥, : X* — X+ generated by (2.3) is defined by

V(@) = (SE,(t, 2 8). 1 (, 55 8), S 2 (0, 3, ), IV (8, 3, 9), Vx € Q, 12 0.

Furthermore, the semiflow ¥, : X* — X* is point dissipative and the positive orbits of bounded subsets

of X* for ¥, are bounded.
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Proof. Suppose T1(t), T2(1), T3j(t), T4(t): C(ﬁ R) — C(ﬁ, R) be the C, semigroups associated
with Yo 2Das) = e o ZDais) = Wa + 60y i =Gy —
Z/i:l %(ija%) — (up + 05 + i) subject to the Neumann boundary condition, respectively. It then
follows that 7 (¢):=(71:(t), T2:(t),73,(t), T4,(1)), it is strongly positive and compact for each 7 > 0 [20].
For every initial value functions ¢=(¢;(x),¢2:(x),$3;(x), ¢4j(x))e X", we define F=(F;,F5;,F3;,F4)):
Xt — X by Fi@® = Ay = D0 egi=, Fu@®) = ADgni(x) e,
F3i()(x) = Ap — Aan())P3(0)Oun(t, X, $2:), Faj(@)(x) = Aan(J)P3;(x)Oun(t, X, ¢2;). The model (2.3) can
be rewritten as the integral equation

Ut =7T0¢ + f T(t—s)FU(s))ds,
0

where U(1) = (S{, I, ST, It )" Ttis easy to show that lim,_q+ dist(¢+hF(¢),X*) = 0,Y$ € X*. By
in [21], model (2. 3) has a unlque positive solution (S“ (t, x; d1,), l](t X; 421), Slhj(t X; ¢3/), l](t X; ¢4/))
on [0,7,) X Q, where 0 < 7, < co. In what follows, we prove that the local solution can be extended
to a global one, that is 7, = oco. For this purpose, by a standard argument, we only need to prove that
the solution is bounded in [0, 7,) X Q. To this end, we let ij(t, X) = Sffj(t, X) + Ifj(t, X), Nf”j(t, X) =

S Qj(t, X) + I (1, x) + R! (, x). Then N{ (1, x), and N}',(t, x) satisfy the following system

ON? (z NG 8 ON“ (z x)
Z T P ) = Aa = HaNEy(1,2) = 8l 0. ) >0, xeQ,
k=
éW?1 tx) K o aNh (1, %)
LJ h h h
T kZ:; c’)_xk(Gk]—ax ) = Ap = N (8, %) = yali (8, %) = 6ul (1, X), t>0, xeQ,
N{;(0,x) = $¢,(0,x) + I{,(0,x) > 0, N! (0 x) = 87,0,x) + I 0, x) + R (0, x) > 0, xeQ,
DydN;(t,x) - n =0, ijaNh (t,x)-n= >0, x€dQ.
3.1)

Thank to [22], model (3.1) admits a unique positive steady state E° which is globally asymptotically
stable in C(€2, R). It follows that U(t, x; ¢) = (S“ (t, x; ), lj(t x; @), Sfj(t x; @), l](t X; ¢)) is bounded
on [0, 7.) X Q, which implies the Theorem. O

4. Threshold dynamics

In the rest of this subsection, we first define the basic reproduction number of virus and show that it
is a threshold for viral persistence or extinction.

It follows from Theorem 3.2 model (2. 3) with (2. 4) admits a unique disease free steady state, E° =
(S“O S“O e ij)j, 0,0,---,0,8" §H0 ... §H00,0,---,0), linearizing (2.3) with (2.4) at E°, we get

1>~ 2 in’
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6460

the following linear cooperative system for /¢, and I!

ij? component

. ) ol°.
L] LI\ . a0 a a
—- - E (9_xk(Dik6_xk) = 4(DS70, = 6.1} ; — pal} ), >0, xeQ,

h 1 h
ot =l 0.Xk / (9xk L] L] L] i,j
alfj(t, X) (all-‘fj(t, X) alffj(t, X) 6[3}_([, x) )T (4.1)

, R =0, t>0, 0Q,
on 0x; 0x> 0x; el
all.hj(t, X) 6If’j(t, X) 6Ifj(t, X) all.hj(t, XN\T 0 0 20

: = : D) : P ’ = s t D) D)
on ( 0x 0x, ox; ) el

70, %) = ¢oi, 1140, x) = ¢y

Substituting I¢; = &'y (x), I!; = 'p;(x), into (4.1), ¥i(x) € C(Q,R™), ¢;(x) € C(Q,R™), we obtain
the following eigenvalue problem,

o). ADSH &

ax, (k) ; ipa(l, Wi(X) — 0atfi(X) — uatpi(x), xeQ,
Ld By, Aan(HS™ &

Ejpj(x) — kz; 8_xk(ka (g;(:)) = ikm o] Z: JPaCs DU (%) = Y i(X) = S i(X) — (%), x € Q,
= £

!
0

Ei(x) — —(D;

kZ:; 0xk k

Ni(x) _ (Oi(x) Oi(x) Wi(x\"
on _( ox, ~ Ox, =’ 0x; ) =0, x €00,
pj(x)  (0pj(x) Op;(x) dp;(0\"
on _( ox; ~ O0x, U 0x; ) =0, x € 00,
Yi(x) = ¢ai, 9j(X) = Pa,
4.2)

which is a cooperation system. By a similar argument in [39], it follows that (4.2) admits a unique
principal eigenvalue &(E®) with a strongly positive eigenfunction (i;(x), ¢;(x)). Denote by I'(¢) the
solution semigroup of (4.1) on C(Q, R?") with generator B := B+ F,

[ W+ 80+ A(DSOFA) A,D)S f(n) 0 - 0
B = /la(n)S:flf)jf (1) W, + A%+ /l:a(n)S flf)j £f(n) 0 : 0
(1S Hg(1) aE Aan(1)S ¥ g(n) wyp+ At 0 ’
SOl e S e 0 o wrah
ipa(i,’)

— — N — N JPaC)) —_yl 0 4 h_vl @ il
where wq = =g =04, Wy = —pp=04, fi) = Z5=, 8()) = 57, A = Xy 50Dz &7 = X1 50 Gkjgars
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B =diag(w, + &Y, ,w, + A, wy, + 2w+ AT = diag(a?, - ,AZ,A’I",~~- , AT — vy,
[ (DS - (DS f(m) 0 - 0
F= //lla(n)S:Z;Of(l) Aa(n)S:f‘,;Of(n) 0 0
ah(l)S. hgl) - ﬂah(l)S. 18(m) 0 --- 0
ah(n)S hog(l) ah(”)S hog(n) 0 0

We further let T'(7) : C(ﬁ, R>) — C(ﬁ, R?") be the Cy-semigroup generated by operator B, we know
that both B and —V are cooperative for any x € Q, which implies that I'(¢) is a positive semigroup
in the sense that f(t)C(ﬁ RZ”) ccC (ﬁ RZ”) Further from [27] and the fact that both 8 and B are
resolvent-operators, it then follows that the next generation operator is £ := —FB~!, given by £L(¢) =
fo F)L(Ne(x)dt, ¢ € C(Q,R*), x € Q. Then L is well-defined, continuous, and positive operator on
C (Q, R?"), which maps the initial infection distribution ¢ to the distribution of the total new infections
produced during the infection period. We follow the procedure in [28] to define the spectral radius of
L as the basic reproduction number

Jo ADS {958 Ty ipali, Wpidx

Ro=rd) = rFBD = suplll A € o) = o o DS ) + (o + ol
o ! : ' ¢

Lemma 4.1. Ry — 1 and &)(E°) have the same sign. The steady state E° is asymptotically stable if
Ro < 1, and it is unstable Ry > 1.

Proof. The method was the same as that in reference [26,27]. |

Theorem 4.2. (i)If Ry < 1 then the disease-free equilibrium E° is globally asymptotically stable.
(ii)If Ry > 1, then there exists € such that any positive solution of model (2.3) satisfies

lim sup [[(S (¢, ), I{ (8, ), S (2, ), I} (2, ) = (S 12, ), 0, 87z, ), O)l| > €.

t—00

Proof. The method was the same as that in reference [29, 30]. O

5. Near-optimal control

In this section, we will establish an near-optimal control of model (2.3) and get an optimal control
strategy in theory. We introduce control variables u(z, x)=(u¢(t, x), u’}(t, )€ U0, T] x Q)={u’(t, x)
and u?(t, x) measurable: 0 < uf(r,x) < 1,0 < u?(t, x) < 1,i,j=1,2,---,n}. Assume the control set
U([0, T] x Q) is convex. u!(t, x) denotes the proportion of slaughtered susceptible poultry and infected
poultry, uﬁf(t, x) denotes the proportion of treatment for infected humans. Now, we obtain an optimal
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control system as follows,

65 ¢ ! S 0,
ZM k) e = DS o = ST~ S, >0, xeQ,
1 a ®a a a aya
Za k(D,k ’) =Sty — Sl = pally = w1 t>0, x€Q,
6Sh ! 85?1 o
Z 3 Crige) == (DS Oun = 1S >0, xeQ,
k
(9 h l allh o] h 0 111[:1 J
G =Au()HS" O, I.—él.»— I — ———— >0, xeQ,
28 ( k]a ) n(J) i,j Pah — Vh nly ;= Hnt; 1"‘0‘211-},[,- X
(5.1
Cuh h
we take saturated treatment rate il (a, denotes saturation constant) because of the medical

L+aal},
resources are limited. We intend to get an near-optimal pair of slaughter and treatment, which seeks to
minimize the number of infected poultry, the number of infected humans, and the cost during the
implementing these 2n control strategies. Therefore, we establish the following objective function

J(ui(t, x), u; (t X)) —f fZAl,I (1, x) + Ay (t, x)(S" (t, x) + I (2, x) + g‘l(u Y2 (t, x)dxdt

f f ZA3, (%) + Al (8, DI (1, x) + %gj(uf;)z(z, x)dxdt,
(5.2)

where Ay;, Ay, Azj, A4; are regarded as a tradeoff factor. The meaning of the objective functional
J(ui(t, x), u?(t, x)) is described as follows:
(1)The term fOT fQ P Al,la (t, x)dxdt + fo fQ Z] | A3]I (t, x)dxdt gives the total number of infected
poultry infected with avian 1nﬂuenza virus and the total number of infected human over the time
period T.
(DThe term [ [0 30, Aul(6, )(S? (1, %) + (6, %)) + Ss,u®)(t, x)dxdt gives the total cost of
slaughtering for susceptible and infected avian.
(3)The term fOT fQZ?:] A4ju?(t, 0I! (X)) + %Qj(u?)z(t, x)dxdt gives the total cost of treatment for
infected humans.

The objective of the optimal control problem is to minimize the cost function J(u!(z, x), u?(t, X))
over all u(z, x) = (u(1, x), u?(l, )T € U0, T] x Q). The value function is defined as

V(0,¢(0, x)) = inf J(0, $(0, x); uf (2, x), (1, X)).
(uf (6.2),(1.0)EU(0,T 1% Q)

Definition 5.1. (Near-optimal Control) [24] Both a family of admissible pairs {(u{*(z, x),u’;.'s(t, x)}
parameterized by £ > 0 and any element (u{*(z, x), ui?g(t, X)) in the family are called near-optimal if

170, (0, x); (2, x), (£, x)) = V{0, $(0, x); (£, x), u'i(1, x))| < r(&),
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holds for sufficiently small €, where r is a function of ¢ satisfying r(¢) — 0 as € — 0. The estimate
r(g) is called an error bound. If r(g) = c&" for some « independent of the constant ¢, then u{*(z), u?s(t)
are called near-optimal with order &~.

Lemma 5.2. (Ekeland’s Principle, [25]). Let (S,d) be a complete metrix space, and let p(-) : S — R!
be lower semicontinuous and bounded from below. For € > 0, suppose that u(t, x) € S satisfies

pus() < Anf pu() + €,

then, for any > 0, there exists u'(-) € S such that p(u‘(:)) < p(u(-), dW'(-),uc(-)) < ¢, p(u'(-)) <
pu() + £d(u(-), u'(-)).

5.1. Adjoint equation and some prior estimates

In this section, we will first show a few lemmas, which will be used to establish the sufficient and
necessary condition for the near-optimal control of model (5.1). As is well known, the study of adjoint
equations plays a key role in deriving the necessary and sufficient conditions of optimality. Next, we
introduce the adjoint equation:

opi(t, x) 0, Lo 0

ED = a4 4 A = 3 D o = A

1+a,0, = ox; — Oxg aq@

Oput,x) _ AaDfDS; ADfDS]
i (+ae) i’ ( Fha U e Zaxk ™ )pzz

+ Aan(NENS T p3; — ah(])g(])S i P4 — Ari — Ao,

5 (5.3)
p3;(t, x) ( 0 ) :
— /la ®az i a ®a s
7 Hi + Aan(J)Oy) Z o ka P3j — Adan(J)Ounpa;
Opaj(t, ) cuh d \
T A Sy ———— — D, ) As; — Ag ',
dr (7’ PR azlh ) Z axk ST e A
P1i(T, x) = p2i(T, x) = p3j(T, x) = p4 (T, x) =
The following Lemma 5.3 shows that the solution of model model (5.1) is bounded.
Lemma 5.3. For any n > 0, and (u(t, x), L/?(t, x)) € U([0, T] x Q), we have
sup IS (6, 01 + |6, 0 + 1S 7,6, 01 + |2, 0" < C, (5.4)

0<t<T
where C is a constant that depends only on n.

Proof. The method was the same as that the Lemma 3.1, we get the almost surely positively invariant
set of model model (5.1), which means that the inequality (5.4) holds. O

Lemma 5.4. For any (u!(t, x), u?(t, x)) € U0, T] x Q), we have
sup |pui(t, ) + |pait, ) + |p3,(t, DI + |paj(t, 0 < C,
0<t<T

where C is a constant.
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The proof is shown in Appendix A.
For any u(t, x), u(t, x) € U([0, T] x Q), define a metric on U([0, T'] X Q) as follows

d(u(t, x),u(t, x)) = E[mes{(t,x) € [0, T] x Q : u(t, x) # u(t, x)}],

by a similar way as Lemma 6.4 in [32], we know that ([0, T'] X Q) is a complete space under d.
The following Lemma will show the continuity of the state process (S i j(t, x),Itff J.(t, X),
S7(#, x),I7 (1, x)) under metric d .

Lemma 5.5. For anyn > 0, and 0 < « < 1 satisfying kn < 1, there exists a constant C, such that
u(t,x),u(t,x) € U0, T] x Q) along with the corresponding trajectory (S l‘.fj(t, x),Ifj(t, X),
St ), I(8 %)), (S9,(t, %), S¢,(t,x), ST(t,x), S¥(t, X)), we have

sup [S¢, = SOP |1 — TP+ (ST = ST + ST = ST < Cld(ud, 7Y + d(ul, aty ™).
0<t<T
The proof is shown in Appendix B.
The next lemma will show that the pth moment continuity of the solutions to the adjoint Eq (5.3) under
metric d.

Lemma 5.6. Forany 1 <n < 2, and 0 < k < 1 satisfying (1 + k) < 2, there exists a constant C,,
such that u(t, x), u(t,x) € U([0,T] x Q) along with the corresponding trajectory (S i j(t, x),Ifj(t, X),
S ;’J(I, x),Ifj(t, X)), (§§fj(t, X), §§fj(t, x), S ffj(t, X), §§fj(t, X)), and the solution of corresponding adjoint
equation, we have

sup [pii = pul" + pai = Pal” + 1psj = Ps,I" + Ipaj = Pyl < CldG, )T + d(ud), @) 71,

0<t<T

The proof is shown in Appendix C.

5.2. Sufficient conditions for near optimal control

To obtain the sufficient conditions, we define the Hamiltonian function H as follows:

n l a
1 g  0SY, Q)
H:E(Ail.“.+Ai‘.lS‘f‘+If’.+—i ay2 4 iE —Di—’] + A, — 2,()S, a
— 1 L] 2Ml( L] l?,]) zg(ul) pl (k:1 axk( kan) (l) l,jl+al®a
1 a
0 aIi/ 0,
—HaS;—uiS{) + pa E —(Dp—=2) + 2,()S ¢ —— — 61 — oI’ — 414_)
HaS'j = Ui Si)) p2(k:1 6xk( kaxk) (@) T+ a,0, i~ Mali ;= 1))

\ (5.5)

n !
1 0 oS!
h h ph hy2 i.j N oh h
+ Z; (A3j1i,j + Agjusl;; + EQj(uj) + P3j(kz; 6_xk(ij8_xk) + A = Aan(S 7 Oan — S ;)
]: =

h h ph

1
0 (9]”. cu'l!,
+ 1Y —(Gri=—L) + (NS O — yull', — 8,1" — Ih.—#).
P4J(; Oxk( k]axk) W(DS 3 Oan — Yuli; — Onl;; — pnl; [+l

We can test the Hamiltonian function H is convex, a.s. Next, the sufficient conditions for the
approximate optimal controls of model model (5.1) are proposed.
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Theorem 5.7. Let (S”’S(t X), I“g(t X), Shg(t X), Ihg(t x) ,uf®(t, x), uhg(t X)) be an admissible pair and
(p§;t, x), p5.(t,x), p3J(t X), p4j(t X)) be the solutlon of (5.3) correspondlng to (S“E(t X), I“S(t X),

S ffj(t X), Il”f(t x) ,u’(t, x), uhg(t x)). Assume the control set U([0, T] x Q) is convex.a.s. Then for any

e>0,if

T n 1 .
sup f fz (Azl(_gaa Iae) + gl(uas +ul)) — ?jpi _ “]pzl)(uag — uydxdr > -

uf €U([0,T]xQ)
Ilhsps
sup f f Z A4]I’” e](uhwu) ﬁ)( b7~ iy = -,

u?efu([o,nxg)

we have

T n T n
f fZAz,-u“‘S(S”‘9+I“8)+ g,(u”8)2dxdt+f fZA4J ';‘Ellhfdxdt
0 Ja3 0 Joiz
< inf Agu (S5 + I7%) + = 6i(u 2dxdr + f f Al T dxds + Ce?.
<u?,u_‘}->efuao,r1x9>f f Z 2t ) g( 2 Z 4l j

Proof. In order to prove that H, can be estimated by &, we define a new metric d on U([0, T] X Q).
Since the control region is closed, U([0, T] X 2) becomes a complete matric space when endowed with

the metric
T n T n
d(u,u) = f f Ve(t, X)|u! —ulldxdt + f f Ve(t, x)lu — U w'\dxdt,
0 Q; 0 Jo JZ:;

where v(1, x) = 1 + S| + |I7%] + |Sffj| + |Iff‘;f|. Next, we will estimate J(0, (0, x); u%(z, x), u?g(t, X)) —
J(0, $(0, x); ui(z, x), u?(t, x)). From the Hamiltonian function (5.5) and the objective function (5.2), we
have

J(0, ¢(0, x); uf®(t, x), u"(z, x)) = J(0, $(0, x); 1l (£, x), u'¥(2, x))

f f Azi(Szj+IZj)+§iu?—p1iS — pult )(uM u)doxdt
(5.6)
h

Next, we will focus on the estimation of H,,. Firstly, we define a new functional M(-) : U([0, T]1xQ) —
R,

T n
M(u) —f fZ (Az,u (S5 + 1) + gl(u )? = piuiS{ — phu flfjg)dxdt

h rhe &

cu 15 py
f f Z Aatj 15 + 5 Qj(u) —#Ihi)dxdt
j=1
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we show that
IM(u) — M)
1
f fz Az, S“‘9 I“‘E)(u -ul)+ 25‘,(u -ul)u! +ul) - pllS“s(u -uf) - pzll“g(u -u ))a’xdt

& the

hs 1 Cp4J i.J ~h
Z A4JI u —-u; )+ Q](Lt —-u; )(u +Uu; )— W(w u]))dxdt
< [An(S ¥ + %) + ¢;1(uf —u)dxdt + f f [A Ih‘e + 0/l u —U; )dxdt
fofg;z s St +o
T n T
<C f f (S + 1) (u — u*)dxdt + f f (S + I")u" — ")dxdt.
o Jo ; J .J 0 Jo ; J N J

Thus, M(u) is continuous on U([0, T'] x Q) with respect to d. According to the conditions of Theorem
(5.7) and Lemma 5.2, we can see that there exists u® € U([0, T] X Q) such that

A —TF) < &1, M(T) < M(u) + £2d(, i),  Yu € U0, T] x Q).
This show that

— 1
f fz Azz 618 SHS Ila,f)_’_ Egl@’{ll&‘ pll ?SSGS_pZI aé‘[as)dxdt

~he The &

cu’fl*p
shs e\2 J TLjtaj
ffz i1 Q](hi;) 1+a21ih‘°f )a’xa’t

T n
= min f f Z (Az, ui (S75 + 115 + g,(u“) — pLuiS s — poui L + 82v8|u - u“gl)dxdt
(u;?,uj?)e(u([o,r]xm Q5

he &

T r< AT
¥ f f > (At + 3 Loty - J—’Ih;+gzv8|uj%—7;€|)dxdz.

5.7
According to [23], we have
n n Clhgpi
0e (A (S5 + 1) + qui® — S - 1“8) + (A IS + ou'® A )
; 2( i,j ) g pll pzl j:1 4/ Q/ 1+a21h8

n n Ihsp
cy (Az,-(sl.“a 1) + G — pi,S e pzll‘w) + (A4jlh€ + ot 2
~ <

1 1
—hg) + [V, V7]
1+ (l’zll.’j

(5.8)
Because the Hamiltonian function H is differentiable in u, it follows from (5.8) that there exists a
¥ € [—s%v‘g, s%v‘s] such that

n n

Z (AZi(S;w Iaa‘) + gz _ pllSaa _ lelas) Z (A4J1h8 +QJ

i=1 j=1

i.j P4

—— |+ 9 =0. 59
1 + G’zlff) ( )
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From (5.9), we have

n n cllps.
ag ag ag £ Qae & jag he he Ljs4a)
Z(AZi(Si’j+Ii’j)+g‘iui _pliSi,j_pZiIi,j)+ (A4j1i,j +le/tj _—ha)
i — 1+ aypl®
i=1 j=1 L]
n n n
ag _ —ue he  —he ag ag ~ue e Qag £ jag
< Zgi(ui — U )+Zgj(uj —u;)|+ Z(A%(Si’j+li’j)+g,~ui —pliSi’j—pzl.Ii’j)
i=1 j=1 i=1
n clhsps n n (510)
he ~he L,jr4j gl,,de _ Tae g, ,he  —he £
+Z(A4jli,j+gjuj —m)SC(Zvlui —ui|+2v|uj —l/tj |)+19
—1 244 i=1 J=1
n n
— 1
< vlue =T+ ) vl ~ @)+ 268
i=1 =1
This proof is complete. m|

From the Lemma 5.4 and definition of d, we can achieve the desired conclusion from (5.6) and
(5.10) by Holder’s inequality. Furthermore, according to the ideas in Lenhart and Workman [34], the
optimal control (u{", u?*), which minimizes the objective function J(u!(z, x), u’;(t, X)), is obtained and
represented by

(P1i(t. ) = As)S (1, %) + par(t, )8, 1)

Si

epaj(t, DIt X) = Agi L1 (2, x)(1 + aal}'5(2, x))

ui”(t, x) = min{max{ OL1), i=1,2,---.n,

u?*(t, x) = min{max{ ,01,1), j=1,2,--- ,n.

(1 + aals(t, X))o,

o]
(5.11)
5.3. The necessary conditions for near optimal control
In this suction, we will derive the necessary conditions for near optimal control of model (5.1).
Theorem 5.8. Let (S (1, x), I{(t, x), f.f‘;(t, X), Ilhj (1, X) ,u%(t, x), ui’.g(t, x)) be an admissible pair. There

exists a constant C such that any n € [0, 1), & > 0 and any -optimal pair (S fj(t, X), Iffjf(l, x), S Qj(t, X),
Iff(t, x), u*(t, x), u?g(t, X)), the following condition holds:

n
3

T n
. 1
. j; L D (AZi(Sﬁfj + I i+ ) = S ph - ;jj.pg,.)(u? — u)dxdt > ~Ce?,
i ’ i=1

T n he &
inf f f (A Ihs 4 1 ( h N ha‘) CIl‘,jp4j )( h hs)d dt > —C 1
n E 4il:" —oi\u;,+tu;))———— |, —u; xar =z —C&g->.
deuqor Jo  Ja 45 PRI 1+ azlfj b

Proof. We have that J(0, ¢(0, x); u!(z, x), ui?(t, Xx)):U([0,T] x Q) — R is continuous under the metric d,
therefore, by using Ekeland’s Principle 5.2, we can choose ¢ = &3, there exists an admissible pair (S Py
12, S 1" e, u"®) such that d(u®, i) < &%, and J(0, ¢(0, x);7°) < J(0, ¢(0, x); u), Yu € U([0, T1xQ),

L,j2"0,) 271

where J(0, $(0, x); u(t, x)) = J(0, ¢(0, x); u(t, x)) + &3d(u?, 7). This show that (S Y Sff‘;, Iff‘j“?, u’, uj?“;)

1

is an optimal pair for the objective function 7(0, #(0, x); u(t, x)). Next, we will use the spike variation
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technique to derive a “maximum principle” for (S{%, I#%, S f"j, Il.{’j, use, u?‘g). Letz € [0,T], 6 > 0, and

u(t, x)) € U0, T] x Q), we define u’(z, x) € U0, T] x Q) as follows

5. %) = u(t, x), if(t,x) € [t,t + 6] X Q,
Y ENE G, if(x) €0, TI\[L7+5] X Q.
Then, we have
J(0, $(0, x); (2, x)) < J(0, $(0, x); u’ (1, x)), dW’(t, x),7(t, x)) < 6. (5.12)

Thus J(0, ¢(0, x); u°(t, x)) = f(O, (0, x); u(t, x)) < f((), #(0, x); u’(t, x)) = J(O, (0, x); u’(t, x)) + Se3.
It follows from (5.12), Lemma 5.5 and Taylor’s expansion, we can obtain that

—5&3 <J(0, (0, x); 1l (t, x)) — J(0, §(0, x); T(1, x))
T n T n
< f f Z Azl'l/l?(Sia(; — S?j) + (A + AZiM?)(Iqu - Ilaf)dth + f f Z(Agj + A4jui’)(llhf - -Izzf)dth
0 Jaig o o 0 Jaig C

: - 1 - -
Ani(ST; + I )(uf —ui®) + Eg,-(uf-‘ —u)(u + ufg))dxdt

140 n
L2
t Q5
1+6 n !
j=1

(5.13)

Using the 1t6’s formula to Q(z, x) = P5,(S ¢ — %) + p5,(I82 — 1¢%) + 5 (S 1% — §) + P (I — I'*), and
from Lemmas 5.3 and 5.4, we can obtain that

n

T n T
fo fg Z Aqu{ (S5 = S©) + (Ay; + Agu)(IS — I7)dxdt + j; fg Z(A3 j + Agtd)UI = T1)d xdt
i=1

=

140 n 43 n
< ft fg Z —(u°S {6 = UCS PP — (WIS = w L) phdxdt — ft L Z(uﬁ? —W°)p5 dxdr.
i=1 j=1
(5.14)
Substituting (5.14) into (5.13), we have

—e3 <J(0, $(0, x): (2, x)) — J(0, $(0, X); 7 (1, X))

f+0 n
e 1 _ _
< f, fg Zl (Az,-(sgf o+ I =T + Se! ~ T + uj"s))dxdt

1+0
-,
7 Q~

J

140 ies "

- f f (<M?‘55?f§—'ﬁ?‘95 P+ I —’ﬁfglgj)ﬁ;)dxdt— f f > Wl P dxdt.
t QF ; o 4
j=1

i=1

M=

1
(A4,,-Iff‘,~(u§f W) + 50, — W + i?;a))dxdt + o(6)
1

s |l

(5.15)
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Dividing (5.15) by ¢ and letting 6 — 0, we can get
i ” a (3 a (7 acs ~ae (7 1 a s ~ae 3 acs ~ae 3
e s fg 2 (Azz(S D + I O) () = D) + 6 (@) = W @) @) + (D)
i=1
~ P DS @D =T DS OIFT — i DI ~ ﬁ;m(zﬁffjd)]ﬁgi(i))dx
- - - - 1 - - - - - - -
- fg D AT DD = TE@) + S0,hD ~ TEDN®) + TE®) - [ (D ~ T (175D .
=1
(5.16)

Now, we will derive an estimate for the right side of (5.16) with all the (Syfjﬁl‘f‘fgf’jﬁl?’fﬁfsﬁ?g

replaced by (S{%, I, S lh‘j , Ifj, u’e, u’;?). To achieve this goal, we first estimate the following difference:

1

T n
f(; fg Z([M?‘SS fu]s - E?ES Zi]ﬁ?l - [I/L;MS ?(]s - u?ss Zj]pi)dxdt
i=1

T n T n
= f f Z(iﬁi — Pi)PS {6 — ul®S {%)dxdt + f f PS¢ = u°S “)dxdt.
0 Ja‘g ’ ’ 0 Jaim 7 ’

1

From Lemma 5.6 and due to d(u®, u®) < &3, we have that for any 1 <n < 2,and 0 < k < 1 satisfying
(1 +x)n < 2,and

T n
f f Z(Fﬁi - Pi)(uiaés 7? — ufgS ,-aj)dth
0 Jaoig :
T n 1 T n .
! i n
([ [ S ([ [ 3 ueess-esiasa)
i=1 i=1

n-1
n

1 T n -1
—~ K\ _n _n n
SC(d(uf,u? ) ( f f > s +|u§‘€S§“j|nldxdt) < Cét,
0 Y5

similarly, we have
T n N
[ [ Y mess -meSiods
0 JariD
T “ % T n %
SC(‘[ f |Fﬁsi|2dxdl) (f f |ul€l€ _’i[;lsFXW I[‘!Sd)Cdt)
0 Ja ; : 0o Ja ; i
T n % T " % % ”
<c( f f et + et f f S wmasat] < i) < el
0 Jaiz 0o Jaig

Thus

T n
f f ([u?55 O =uS NPT — S {6 — utS 4] pfi)dxdt < Cs?. (5.17)
0 Q%

i=1
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By analogous calculation as (5.17), we have

T n . 1 _ .
f f > (Az,-(S G I~ T + Seu! ~ T + uj’s))dxdt
0 Yoo

T n
1 n
i fo fg 2 (A“J'Ifj(“? —U) + 0, — W) + B?S))dxdt < Cét,
f

T n T n
§yad _ —ag7a 1 hé _ —h 1
[ [ D -mTomana< cet, [ [ Yl ~aomdi < ce'
0 Jaig 0 JRm
Combine the expression of Hamiltonian function (5.5), we can immediately obtain the conclusion. O

6. Numerical simulations

In this section, we present numerical simulations to demonstrate the results. Let [0, T] X Q be the
admissible control domain. We consider a near-optimal problem with the following objective function,
simulations are based on a scale-free network with p(k) = (r — 1)m"~Vk™", where m represents the
smallest degree on a scale-free network nodes, r is power exponent. Let m = 1,r = 3, the number
of nodes on a scale-free network is N = 100, and we add each new node with 3 new edges. We
choose degree k as ky = 1,k, = 2,ks = 3,ky = 4,ks = S5,ke¢ = 6,k; = T,kg = 8,ky = 9. We get the
average degree of complex network structure (k),((k*),) = 3.27(9.04) through simple calculation. The
parameter values are chosen as follows:

Table 2. The parameters of the coupling network are described in model (2.1).

Parameter Value Data Source
A (Ap) 1000/245(2000/36500) per day [35,36]
() 5.1 x 10742 x 10~%)per day [35]

Ha(pn) 1/245(5.48 x 10~%)per day [35,36]
6.(61) 1/400(0.001)per day [35,37,38]
Vi 0.1per day [37,38]

c 0.5 Assumed

a 0.01 Assumed
a; 0.03 Assumed

Example 6.1. For model (2.3) all parameters are positive constants, we choose degree k as k; = 1,k, =
2,ks = 3,ky = 4,ks = S5,k¢ = 6,k; = T,ks = 8,ky = 9. We get the average degree of complex
network structure (k),(¢k*),) = 3.27(9.04) through simple calculation, when we choose 1, = 7 x 1074,
Ry = 1.5246 > 1; when we choose 1, =3 x 107, R, = 0.3689 < 1.
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Figure 1. The density of susceptible and infected human nodes with different degree k =
1,2,3,4,5,6,7,8,9 when Ry > 1.
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Figure 2. The density of susceptible and infected poultry nodes with different degree k =
1,2,3,4,5,6,7,8,9 when Ry < 1.

Figure 1 shows the unique endemic equilibrium point is globally asymptotically stable, and the virus
will persist. Figure 2 shows the unique disease-free equilibrium point E° is globally asymptotically
stable, and the virus will die out in the long run. Furthmore, we can obtain that the density of infected
nodes increase with the degree k increase in Example 6.1. In other words, the lager the degree k is, the
higher the density of infected nodes is, which indicates that the nodes having lots of relative neighbors
are more likely to be infected by contacting frequently.

Example 6.2. We analyzed the effects of slaughter rate and curative ratio on avian influenza control.
Let’s take a one-dimensional spatial variable, Q = [0, L]. The control u{(t, x), u?(t, x) are measurable
and for any (7,x) € [0,T] x [0,L], 0 < u!(z, x), u?(t, x) < 1. Without the loss of generality, for any
fixes time 7', we give step size At € (0, 1) and for any fixes space L, we give step size Ax € (0, 1), we
denote ,, = mAt, x, = nAt,m = 0,1,--- ,[£], n = 0,1,---,[£]. For the numerical simulations of
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model (5.1) and adjoint Eq (5.3), we use the Milstein’s method [33]. Thus, model (5.1) and (5.3) can
be rewritten as the following discrete equations:

Sla’J(tma Xn+l) - 2SZ](IM’ x,,) + Sij(tm’ xn—l)
(Ax)?
®a(tm"xn)
- aS'a'tm’ n) — ('ltma nS('I'tm’ n)At,
@yt gy HeS il ) = s 205 50)

) ) I (s X)) = 218 By %) + L (0, X1)
Il-’j(tm+1, Xp) = I,',j(tm, X)) + (Dil(tm7 Xn) (Ax)z

®a(tm’ -xn)

S;l,j(tm+1a xn) = SZj(tm, Xn) + (D,’](tm, Xn)

+ Aa - /la(l)S Zj(tma xn) 1

+ /la(l)S Zj(tm, xn) 1+ a]®a(lm’ xﬂ) - 6alzlj(tma xn) - ,ualgj(tm, xn) - u?(tm’ xn)Ile(tm, xn))Ata
St (ts Xns1) = 28 (s X0) + STt Xt)
h _ h i,] ms *n i,j ms *n i,j ms 'n 6.1
Sj,j(tm+17 xn) - Si,j(tma xn) + (Glj(tma xn) (AX)Z ( )
+ Ah - /lah(j)S ﬁj(tm, xn)®ah(tm, -xn) - ,uthj(tma xn))At’
h " Ifj(tm’ xn+1) - ZIfj(tm’ -xn) + I;fj(tma xn—l)
Ii,j(tm+l, xn) = Ii,j(tm’ xn) + (Glj(tma xn) (AX)2
+ /lah(j)S ffj(tma xn)®ah(tm’ xn) - yhll'{lj(tma xn) —onS Zj(tma xn) - ﬂhS ffj(tma xn)
ity X,)S ] (ts Xn)
- 1+ Q'ZS ,}'fj(tma xn) ) ’
i(tm’ Xn ) -2 i(tm’ xn) + i(tma Xn— )
pli(tm+1a xn) = pli(tm’ xn) + (Dil(tm’xn)pl B pEAX)Z P : +/lap1i(tma xn)
N~ Ou(tn, x,) Oyt x,) )
+ C'ltm’ n itm’ n+/1a _/la itma n_Aiqtm’ n At’
u; (tms Xn) P1i(tms Xn) (l)1+a1®a(tm,xn) (l)1+al®a(tm,xn)p2( Xpn) = Aottt X)
i(tm’ Xn ) -2 i(tm’ xn) + i(tm, Xn— ) a
pZi(tm+19 xn) = p2i(tm, xn) + (Dil(tm’ xn)p2 L pEAX)Z b2 1 - A2iui (tma xn)

* LTS (tms Xn) + OaP2i(tms Xn) + (tms Xn) + U (tms Xn) P2itm, X)) — A
(1+al®a(tm,xn))2pll ms Xn aP2i\lms Xn MaP2i\lins Xn l/li ms Xn) P2ilTms Xn 1i

Aa(D)F DS (tuns %) P2iCs X2)
(1 + 1Oyt X))

+ Aan(NEDS ! s X)P3j(tms Xn) = Aan(NDENS ! (s %) Pt x,,>)Ar,

P3 '(tm, Xn 1) - 2P3 '(tma -xn) + p3 '(lmv xn—l)
p3j(tm+l,-xn) = p3j(tm,-xn) + (D3j(tm’ xn) . . (JAX)Z . +:uhp3j(tmaxn)
+ ﬂah(j)(aah(tm, xn)p3j(tm’ xn) - /Lth(j)(aah(tm, xn)p4j(tm’ xn))At’

P4 '(tma Xn 1) - 2]94 '(tm, xn) + P4 '(tma xn—l)
p4j(tm+19 xn) = p4j(tm9 xn) + (D4j(tm’ Xn) ! . (ij)z ’ + yhp4j(tm, xn)

CM?(l‘m, xn)p4j(tm9 xn) h
+ 5hp4j(tm» xn) + :uhp4j(tm’ xn) + (1 N CZzI.h.(t ¥ ))2 - A3j - A4juj(tma xn))At,
ij\tms An
(6.2)

in order to find the optimal control of u!, uif, we give the nonlinear conjugate gradient algorithm [40]
as follows:

Step 1: Choose an initial u¢,, u"

l0» Ujo» an initial step size so and stopping tolerances T'ol; and Tol,,
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initial states (S i J.(O),IZ j(O), S f‘ j(O),Il{’ j(O)) by solving Eq (6.1), initial adjoints py=(p1;(0),p»:(0),
p3;(0),p4;(0)) by solving Eq (6.2), gradient of J, i.e., gio = itt}y + (P1:(0) — A20)S 5(0) + p2i(0)I(0),
hjo=(1+ azli”‘;f(O)uifO + cp4j(0)1f;f(0) - A4jlff;f(0)(1 + a2lff’]f(0)),

anti-gradient of J, i.e.,dj = —gi0, do = —hjp.

. : — a a h h _ a a h
Step 2: control, i.e., ux,; = uy + sidy, states (Si,~,k+1’1i,~,k+1’ S,,j’k+1,1.’j’k+1) = Si,-,uk+|’ Ii,-,uk+1’ S-,j,uk+1’

h . _
L juy.,) bY sOIVINg BQ (6.1) (Prikr1oPaike1s Pajiet-Pajiet) = (Prise, > P2itg oo P3jst, o Pajit,,
by solving Eq (6.2), gradient of J, i.e., gjx+1 = Sill g + (Prig+1 — A2i)S?,ik+1 + Poigert L4 0
_ D h P T T
Rjjer = (L +aoly iy + CPajen I — Al (L + ol ).
Step 3: Stop if [|gix+1ll < Toly, [|hjxill < Toly or |Jxp1 — Jill £ Tols.

Compute the conjugate direction @y, according to one of the updated formulas [41].
dis1 = —8ik+1 + Wre1dy. aselect step size s in terms of some standard options.
Setk :=k+ 1 and go to Step 1.
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Figure 3. The density of susceptible and infected nodes.
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Figure 4. The density of susceptible and infected nodes without control.
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Figure 7. Taking ¢ = 0.2 and 0.5, we obtained optimal control u{", u’;* and near-optimal
control u%, u’,"S
Figure 3 shows the solution of model (2.3) curves representing the variation of populations for
susceptible poultry, infected poultry, susceptible human, infected human. Figure 4 shows the solution
of model (5.1) curves representing the variation of populations for susceptible poultry, infected
poultry, susceptible human, infected human. The comparison between Figure 4 and Figure 3 shows
that the proportion of slaughtered susceptible poultry and infected poultry can effectively prevent the
outbreak of avian influenza; With limited medical resources, treatment of infected humans can reduce
the spread of avian influenza among humans. Figure 6, we can see that in order to prevent the spread
of avian influenza and reduce the economic loss it brings, the slaughter rate of poultry should be
gradually reduced over time. In order to reduce the risk of the spread of avian influenza, the
proportion of treatment for infected humans should be gradually increased over time. However,
because of limited medical resources, after the treatment rate reaches a peak for infected humans, it
will gradually decrease. Figure 7 shows the optimal control uf’*,uf* and the near-optimal control
u ,u?s, respectively. The optimal control " indicates that the optimal slaughter rate for the poultry

ag
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gradually decreases; the optimal control u?* denotes that the optimal treatment rate of the human is
different in different times. The results show that the error of numerical simulation results of optimal
control and near-optimal control is less than 0.2.

7. Conclusions

The optimal control problem is usually composed of a group of state equations and adjoint
equations, but these equations have difficulties obtaining an exact solution. Therefore, we concerned
the near-optimal control and threshold behavior of an avian influenza model with saturation on
heterogenous complex networks in this paper. We first give the basic reproduction number R, which
can be used to govern the threshold dynamics of influenza disease. In addition, we obtained the
sufficient and necessary conditions for the near-optimality. Lastly, numerical simulations were
performed to illustrate the results and confirm that the treatment control resulted in a substantial
reduction in the level of infected population while the treatment cost was minimized. In this paper, we
assumed that the parameters are all precisely known, however, they may not be true due to the
unavoidable errors and the lack of sufficient information in the measurement process and so on. How
uncertain parameter values and Lévy noise affect the near-optimality of this epidemic model remains
unclear and deserves further investigation. We will study the near optimal control of the avian
influenza model on complex network with Lévy noise and imprecise parameters in the future work.
Firstly, we give the method of parameter estimates of the avian influenza model. According to the
Lévy-Ito’s decomposition theorem, we have Z(t) = oB@) + fY vﬁ(t, dv). Then, by using Ekeland’s
principle and Hamiltonian function, we obtain the sufficient and necessary conditions of near optimal
of the avian influenza model with Lévy noise and imprecise parameters.
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Appendix
Appendix A: The proof of lemma 5.4

Proof. Integrating both sides of the first equation of (5.3) from 7 to 7', we get

. I .
p1i(t) = p1(T) — ft‘T ([,ua +ul + % - 2 (%k ikaik]pli - %Pzi — Ay f)ds
By squaring the sides of the above equation, we have
P
. l .
<ClpiT)P +C(T - b+ P00 > 2 Do~ 12 0% py — asu ) as
<Clpi(T) + C(T - 1) fT P + pai(s)I*ds,
' (A1)
similarly, we have
P20
a a I
<Clps(T)P + C(T %ph [0+ pa + uf = ?1 (fﬁ(lz)s;é Z 7 P ]pzl
+ (NSNS P35 = Aan( NSNS ] paj — Avi — Aziui’) “ds
<Clpa(T)F + C(T - l‘)f (|1711'(S)|2 +p2i() + |p3;() + |P4j(S)|2)dS
t (A2)
p3;(OF
Log P 2
<Clps(T) + C(T - an()Oup — ; é?_kaik(?_xk]mj - ﬂah(j)(aahl?zxj) (A3)
<Clps(T) + C(T - 1) ftT P3P + |paj(s)Pds,
paj(0)f
h /
<Clps)(T)* + C(T # - ; %Dik%]luj — Az — A4j”111') 2 (A4)

T
<Clps /(TP + C(T - t)f |paj(s)PPds.
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It follows from (A1)-(A4) that

Ip1i(t, X)I* + | pailt, V)P + |p3;(t, X)I* + |paj(t, x)I*
<C(Ipu(T, D + 92T 0P +1p3,(T. O +1pis(T, 9P )

T
FOT -1 f (|p1,-<s, OF + [pails, 0P + 1305, 0P + |pasis, x>|2)ds
t

where t € [T — €, T] with € = % Using Gronwall’s inequality [31], we derive from (AS) that

sup |pii(t, X)* + |pait, O + |psj(t, OF + |pajt, 0 < C,  forte|[T - €Tl (A6)
0<t<T

We apply the same method to (A1)—(A2) in [T —¢€, T], and we can see that for any ¢ € [T —2¢,T], (A6)
holds. Repeating a finite number of steps, we know that for any ¢ € [0, T'], the estimate (A6) holds. O

Appendix B: The proof of lemma 5.5

Proof. If n = 1. For any r > 0, an estimate of [S{, — §§fj|2” can be obtained as follows:

Ay =S¢
zka—)
X

k

20 )' §:/@a
+ “ )
1 +a,0, 1+ a0,

.
sup IS¢, — 5| 2"<cf(2
k=

0<r<r
+ ,uanl(S“ - 8¢, NP7+ |’L77§ff - uSy j|2")dz
r, 1

s [ (3

+ 5 .|2"|®a = B IS = SR+ RIS, - SR+t T

aS¢, -S4 p

i)
k—])

2@ 12nca _Qa 2n
axk X +/1¢ D)1O,] |Si,j Si,jl

~ g kn
<C f (S¢, =S¢+ 118 - 1;j,|2'7)dt+c( f Xugﬁ?dt)

<c f (152, = S 21+ 119, = TPt + d(us, ~“)”7)
rod e, — 14 S40,
sup |I}; —I“ 21 <Cf ( ,-k—( 5 )' -
0<r<r - Oxy l+a,0 1+ a0,
(6, + ﬂa)z'q(la 1P + T — u71;3|2'7)dt

f (152, = SO P+ 17, = T Py + d(u, 7“7)
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! ash. -t p

r )
sup |S7, - S 2’7<Cf( —”")
0<t£)r kz: X

81, = st ki< o [ ase, =S, -7 ),

n
+ ZIDISE Ou — St @

h r [ J ]) 27] ~h _ )
su IH_ ( / l l +/ln /la S a _Si'G)a g
Oszgrl a f ; kJ a X ) (])| h(]) h J Al
~hTh hh
cul. [
R 1+ azlf’,. 1+l

f (IS2, = SO P+ 117, - Ejj|2ﬂ)dz+d(u’;,ﬁ;)m),
so, we have

2 TJa |2 h ch |2 h ch 2
sup IS¢, =S¢+ |G — TP + IS0 — St P74 IS — St P

i,j
o<t<r

SC(f SUP(|S“ —Su |277+|Sh _§Qj|2n+|lgj_}gj|2n+|lfj_ |2'7)ds+d(u
0

0<t<s

1 l

T+ dd W),

We have the result using Gronwall’s inequality. Next considering 0 < n < 1, by using Cauchy-
Schwartz’s inequality, we have

sup IS¢, = SOP + I = TP+ 1S =S + ST = ST < Clduf, 7Y + d(ul, aty ™).
0<t<T
This proof is complete. O

Appendix C: The proof of lemma 5.6

Proof. We let pi; = pi; — Pii» P2i = DPai — Da2i» P3j = P3j — P3j» Daj = P4j — P4j- Then according to
adjoint Eq (5.3), we can see

/

~ 0, 0 0 . 0, =
dpy; = — ((—,Ua - /la(l)m + Z —Diy—)p1i + A()———pa + fli)dl

= 6Xk (9xk 1+ (I]@a
ADf@DST; DfDST;
Pzi——( mpn (- 5a—#a+ 0.7 Za o lk )Pzz
= Aan(NENS ] P3j + Aan(NENS Zﬂ?\zy/ + fzi)dl, (ChH

0 . —
ko )P3jt f3j)df

[
. 0
dpsj = - ((—yh — Aan(j)Ou + Z 07 D, i

I
0 0 -

@iy = = (9 = 60 = s - E— B + o
2y (=Yn = 6n = Hn (1+0421h)2 21 % xk)P4J Jaj
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where
0, o)
i =4 ( - a~)~i_~i+Ai {—u) +uip — uipu,
fii =400 [T®0, 1+a0, (P2i — p1) + Agi(uf —ui) + uipr; — ui py
For =201 il St s = B + A D8SE, = SE)Fs; = By
. (1+a10,? (1+a,0,)? 2 PLiJ T Cah i,j)\P4j = P3j -
+ Agi(uf —ui) + Ui pa — ul pa, €2
55 =2an(NO@ur = ©u) (P — D3y,
_ cu cu
J J ~ W ~h
= — — i+ Ayl =uh).
Jaj ((1 cady (0 azlffj)z)m} 4j(u; =T05)
We assume that ¢ = (¢1;, 2, ©3j, @4 j)T is the following linear differential equation:
l a
) 0 D fDS]
d i:(_a_/la‘—a‘i' _Di_ i~ —J it l'] 1)
eri ={(a = Do ; 75 Dig o~ rarg e+ Pl sen(pi)
e 4 (l)f (O 6
d i:(/la'—a i+ —6(1— a+ j i+Ain_1 Ai)dl‘
2 DT e 9t K 0. Z o D g )i + Pl sgn(pan)
des; =( — Aan(E())S Zj()DZi + (=ptn — Aan(J)Oun + Z a—Dik—)Sﬁsj + |ﬁ3j|"_lsgn(ﬁ3j))df
1 l
_ . Noh —
deyj —(ﬂah(J)g(J)S i 2+ (=Yn— 6n — pn — 1+ Ih )2 kZ: §04, + [pa ™ Sgn(P4j))df
(C3)

where sgn(-) is a symbolic function. According to assumption and Lemma 5.5, the existence and
uniqueness of solution of (C3) can be verified, and we have

T
f f(llﬁul"‘lsgn(ﬁu)lz + ||f7\2i|n_lsgn(f9\2i)|2 + ||ﬁ3j|"_lsgn(ﬁ3j)|2 + ||f9\4j|n_lSg”(ﬁ4,j)|2)d)€dl < +00.
0 Ja

Because 1 < 77 < 2, thus there exist 77 > 2 such that ;- + ; = 1. So, using Cauchy-Schwartz’s
inequality, we have

T
sup (|‘Pli|m + o™ + |3 + |904j|m) < f f(ﬁ?\uw + [Pl + 31" + |ﬁ4j|”)dde
0o Ja

0<t<T
T

SC( f f (Al + 1l + 1 f )17 + |f4j|")dxdt).
0 Q

Using Cauchy-Schwartz’s inequality, we have

T T
[ [ s sc( [ [ - Tpamr + s+ caws.m?)
0 Q 0 Q
T
<c(([ [ T Faun' f f (Bl + o dxdn! + Ca, 7))
0 Q
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Note that 22 < 1, 1 -2 > % and d(u.@) < 1. It follows from [ [\ |ful'dxdr < Cd(uf,7)%. In
—_— — K T —_— — K T —_—
the same way, we get fOT fQ | f2il"dxdt < Cd(u, uf)iﬂ, fo fQ | f3j]"dxdt < Cd(u’}, u?)%’, fo fQ | fa;]"dxdt <

Cd(u?,'iiﬁf)%. So, we have

T T
f f @l + Pl + [P + [P e < f f QFalt + 1Tl + "+ (o exr)
0 Q 0 Q

<C@,a)? +dl,i)?).

This completes the proof. O
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