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Abstract: Near-optimization is as sensible and important as optimization for both theory and
applications. This paper concerns the near-optimal control of an avian influenza model with saturation
on heterogeneous complex networks. Firstly, the basic reproduction number R0 is defined for the
model, which can be used to govern the threshold dynamics of influenza disease. Secondly, the near-
optimal control problem was formulated by slaughtering poultry and treating infected humans while
keeping the loss and cost to a minimum. Thanks to the maximum condition of the Hamiltonian function
and the Ekeland’s variational principle, we establish both necessary and sufficient conditions for the
near-optimality by several delicate estimates for the state and adjoint processes. Finally, a number of
examples presented to illustrate our theoretical results.
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1. Introduction

Avian influenza is an animal disease, it caused by avian influenza A virus. Avian influenza
generally targets specific species, but the virus can infect humans by crossing species barriers in rare
cases. For example, avian influenza virus AH5N1 and AH5N7. Since the first outbreak of avian
influenza AH5N1 in Hong Kong in 1997, the virus has infected more than 400 people worldwide,
with a mortality rate close to 60% [1]. In 2013, the avian influenza AH7N9 crossed the species barrier
for the first outbreak in mainland China. More than 400 people have been infected, and the mortality
rate is close to 40% [1]. Avian influenza has not only brought serious threat to human health, but also
caused human psychological panic. And it caused a huge blow to the national economy. Therefore, to
provide effective control and prevention strategies, mathematical models and methods have been
widely adopted to study the epidemiological characteristics of infectious diseases.
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The mathematical dynamics method can describe the internal mechanism of infectious disease
transmission by establishing a mathematical model. Kermack and McKendrick [2–4] established the
famous compartmental model, a ”threshold theory” was proposed to distinguish the prevalence of the
disease. Liu and Ruan [5] constructed two bird-to-human avian influenza models with different
growth laws of the avian population, and proved the globally asymptotic stability. Gourley et al. [6]
established a patch model with delay to investigate the role of migratory birds in the spread of H5N1
avian influenza, they proved globally asymptotic stability of the disease-free equilibrium. Bourouiba
et al. [6] established a delayed avian influenza model to investigate the role of migrating birds in the
spread of avian influenza. S. Iwami et al. [7] constructed a mathematical model to explain the spread
of avian influenza and mutant avian influenza. Tuncer and Martcheva [8] addressed the question of
modeling the periodicity in cumulative number of human cases of H5N1. Three potential drivers of
influenza seasonality were investigated. Hu [9] constructed an avian influenza model with nonlinear
incidence and analyzed the stability of the model, as follows:

dS a

dt
= Λa −

λaS aIa

1 + α1Ia
− µaS a,

dIa

dt
=

λaS aIa

1 + α1Ia
− δaIa − µaIa,

dS h

dt
= Λh −

λhS hIa

1 + α2I2
h

− µhS h,

dIh

dt
=

λhS hIa

1 + α2I2
h

− γhIh − δhIh − µhIh,

dRh

dt
= γhIh − µhRh,

(1.1)

in model (1.1), S a and Ia denote the sizes of susceptible poultry and infectious poultry. S h, Ih, and
Rh denote the sizes of susceptible human, infectious human, recovery human, respectively. 1

1+α1Ia
[10]

describes the saturation due to the protection measures of the poultry farmers when the number of
infective poultry increases. Similarly, as the number of the infective human individuals increases, the
susceptible human population may tend to reduce the number of contacts with infective infective avian
population per unit time due to the psychological effect, so we use a nonmonotone incidence function
to describe the transmission of the virus from infective poultry to susceptible human; that is, βhS hIa

1+α2I2
h

[11,12]. All parameters are assumed non-negative and their meanings are described as follows: Λa and
Λh denote the recruitment rate of poultry and human population, respectively; λa and λh represent the
infected rate of poultry and human population, respectively; µa and µh represent the natural mortality
rate of poultry and human population, respectively; δa and δh represent the mortality due to disease in
poultry and human population, respectively; γh denotes recovery rate of infected human population.

The model (1.1) is a time-dependent ordinary differential system. But in fact, the spread of
infectious diseases are significantly affected by the spatial heterogeneity, for example, spatial position,
water resource availability and other factors. There is increasing evidence that the spatial diffusion
has significant impact on the spread of infectious diseases. Tang [13] investigated an avian influenza
epidemic model with diffusion and nonlocal delay, this model describes the transmission of avian
influenza among birds and human; especially the asymptomatic individuals in the latent period have
infectious force. Lin [14] introduce two moving boundaries, which are called free boundaries, to
describe the avian influenza virus transmitting in the habitat.
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However, all the above models are obtained under the assumption that all individuals are uniformly
mixed, which means they have the same contact rate with other individuals in the region. That is,
the mixture between individuals are homogeneous, but, the contact between poultry-to-poultry, and
poultry-to-human are obviously heterogeneous [15] in reality. In order to reflect the heterogeneity
of contacting between individuals, it is of great significance to explore the spread of avian influenza
on coupled networks. Zhan [16] had studied the coupling dynamics between epidemic spreading and
relevant information diffusion.

On the other hand, as is known to all that avian influenza has posed huge economic burden which
primarily includes opportunity loss, health care related expenditures, loss of employment and so on.
Because of resource limitations, it is very necessary to formulate optimal control strategies which can
prevent wide spreading of infectious diseases at minimum cost. Therefore, we introduce the
slaughtering for poultry and treatment for humans as control variables, and establish an optimal
control problem to decrease the number infected poultry and humans. Mathematically, the optimal
control is obtained by solving the state equation and adjoint equation or the Hamilton-Jacobi-Bellman
equation. In fact, for a complex system, such equations have difficulties giving analytic solutions.
Optimal controls may not even exist in many situations, while near-optimal controls always exist.
Many more near-optimal controls are available than optimal ones. Therefore, in this paper, we explore
the near-optimal controls, aiming to slaughter poultry and treat infected humans while keeping the
loss and cost to a minimum. The main contributions of this paper are as follows:

• An avian influenza model with spatial diffusion on complex networks is established.
• We define the basic reproduction number of virus and show that it is a threshold for viral

persistence or extinction.
• The necessary and sufficient conditions of near-optimal control are presented.

The rest of this paper is organized as follows. In section 2, we construct an avian influenza model
with spatial diffusion on complex networks, In section 3, we discuss the well-posedness of the system.
We compute the basic reproduction number of the avian influenza model in section 4. In section 5,
we analyze the sufficient and necessary conditions for the near optimal control. In section 6, several
numerical simulations are given to demonstrate the theory results. Finally, we give a brief conclusion
and future work in section 7.

2. Model formulation

We will use the following notations in this paper:

• | · |: the norm of an Euclidean space;
• fx: the partial derivation of f with respect to x;
• χS : the indicator function of a set S ;
• C: generally refers to all arbitary normal numbers.

Considering the heterogeneity of the contact between poultry-to-poultry and poultry-to-human, we
introduce one-way-coupled networks into avian influenza model. There are two separate networks,
A and H . Network H consists of humanity, where each node represents an individual, and each
connection between two individuals represents direct contact between them. Network A is composed
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of poultry population. And there is a connection from subnetworkA to subnetworkH . We express in
degrees (i, j) that there are i edges connected to subnetwork A and j edges connected to subnetwork
H . And it is expressed in degrees (i, ·) that i edges are connected to subnetwork A, and any edges
are connected to subnetwork H . The same degree (·, j) indicates that any edge is connected to the
subnetworkA and j edges are connected to the sub-networkH . Then, model (1.1) can be written as



dS a
i, j(t)

dt
= Λa − λa(i)S a

i, j(t)
Θa(t)

1 + α1Θa(t)
− µaS a

i, j(t),

dIa
i, j(t)

dt
= λa(i)S a

i, j(t)
Θa(t)

1 + α1Θa(t)
− δaIa

i, j(t) − µaIa
i, j(t),

dS h
i, j(t)

dt
= Λh − λah( j)S h

i, j(t)
Θah(t)

1 + α2Θah(t)
− µhS h

i, j(t),

dIh
i, j(t)

dt
= λah( j)S h

i, j(t)
Θah(t)

1 + α2Θah(t)
− γhIh

i, j(t) − δhIh
i, j(t) − µhIh

i, j(t),

dRh
i, j(t)

dt
= γhIh

i, j(t) − µhRh
i, j(t),

(2.1)

Θa(t) denotes the infection probability of susceptible poultry nodes with the degree i in contact with
the infected poultry nodes. Θah(t) denotes the infection probability of susceptible human nodes with
the degree j in contact with the infected poultry nodes. In the uncorrelated networks, Θa(t), Θah(t) can
be written as

Θa(t) =
1
〈k〉a

n∑
i=1

ipa(i, ·)Ia
i, j(t), Θah(t) =

1
〈k〉ah

n∑
j=1

jpa(·, j)Ia
i, j(t),

where 〈k〉a=
∑n

i=1 ipa(i, ·), 〈k〉ah=
∑n

j=1 jpa(·, j), pa(i, ·)=
∑n

j=1 pa(i, j), pa(·, j)=
∑n

i=1 pa(i, j), pa(i, j)=
Na

i, j

Na ,
Na=

∑n
i=1

∑n
j=1 S a

i, j +
∑n

i=1
∑n

j=1 Ia
i, j. The stability of equilibrium points is often governed by a threshold

called the basic reproduction number R0. The basic reproduction number R0 of model (2.1) is obtained
by using the method in the reference [17], where

R0 =
Λa

µa(δa + µa)
1
〈k〉a

n∑
i=1

λa(i)ipa(i, ·) =
Λaλa

µa(δa + µa)
〈i2〉

〈i〉
,

where 〈i2〉 =
∑n

i=1 i2 pa(i, ·). The parameters of the coupling network are described in Table 1.
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Table 1. The parameters of the coupling network are described in model (2.1).

Parameter Description

NX
i, j The number of nodes with degree (i, j) on subnet X

S a
i, j(I

a
i, j) The number of susceptible (infected) nodes with degree (i, j) on subnetA

S h
i, j(I

h
i, j) The number of susceptible (infected) nodes with degree (i, j) on subnetH

Rh
i, j The number of recovered nodes nodes with degree (i, j) on subnetH

pa(i, ·)(pa(·, j)) The boundary degree distribution of subnetA
〈k〉a(〈k〉ah) The average of nodes in subjectA connected to subnetA(H)
λa(i) = λai Poultry to poultry transmission rate of degree i
λah( j) = λah j Poultry to human transmission rate of degree j

In general, the individual disperses randomly in the habitat. Therefore, we consider not only the
individuals activity in temporal dimension, but also the distribution of the individual in the spatial and
the dynamic characteristic of the avian influenza. Considering spatial spreading, Kim et al. [18]
investigated a diffusive epidemic model, this model describes the transmission of avian influenza
among birds and humans. (We assume that susceptible individuals, infectious individuals and
recovered individuals move spatially randomly.) In view of the fact that the spatial diffusion and
environmental heterogeneity are important factors in modeling the spread of many diseases, with
reference [19], an extended version of the avian-human model can be described by



∂S a
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂S a
i, j

∂xk
) = Λa − λa(i)S a

i, j
Θa

1 + α1Θa
− µaS a

i, j, t > 0, x ∈ Ω,

∂Ia
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) = λa(i)S a

i, j
Θa

1 + α1Θa
− δaIa

i, j − µaIa
i, j, t > 0, x ∈ Ω,

∂S h
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂S h
i, j

∂xk
) = Λh − λah( j)S h

i, jΘah − µhS h
i, j, t > 0, x ∈ Ω,

∂Ih
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
) = λah( j)S h

i, jΘah − γhIh
i, j − δhIh

i, j − µhIh
i, j, t > 0, x ∈ Ω,

∂Rh
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Rh
i, j

∂xk
) = γhIh

i, j − µhRh
i, j, t > 0, x ∈ Ω,

(2.2)

because the removed population has no effect on the dynamics of S h
i, j and Ih

i, j, model (2.2) can be
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decoupled to the following model

∂S a
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂S a
i, j

∂xk
) = Λa − λa(i)S a

i, j
Θa

1 + α1Θa
− µaS a

i, j, t > 0, x ∈ Ω,

∂Ia
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) = λa(i)S a

i, j
Θa

1 + α1Θa
− δaIa

i, j − µaIa
i, j, t > 0, x ∈ Ω,

∂S h
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂S h
i, j

∂xk
) = Λh − λah( j)S h

i, jΘah − µhS h
i, j, t > 0, x ∈ Ω,

∂Ih
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
) = λah( j)S h

i, jΘah − γhIh
i, j − δhIh

i, j − µhIh
i, j, t > 0, x ∈ Ω,

(2.3)

where S a
i, j := S a

i, j(t, x), Ia
i, j := Ia

i, j(t, x), S h
i, j := S h

i, j(t, x), Ih
i, j := Ih

i, j(t, x), x = (x1, x2, · · · , xl)T ∈ Ω ⊂ Rl, Ω

is the spatial habitat in Rl with smooth boundary ∂Ω, Ω = {x||xk| ≤ Lk}, Lk is constant, k = 1, 2, · · · , l;
Dik := Dik(t, x) > 0, Gk j := Gk j(t, x) > 0 denote the transmission diffusion operator, Λa := Λa(x),
Λh := Λh(x), λa(i) := λa(i)(x), λah( j) := λah( j)(x), µa := µa(x), µh := µh(x), δa := δa(x), δh := δh(x),
and γh := γh(x) are positive Hölder continuous functions on Ω.

Θa(t, x) =
1
〈k〉a

n∑
i=1

ipa(i, ·)Ia
i, j(t, x) := Θa, Θah(t, x) =

1
〈k〉ah

n∑
j=1

jpa(·, j)Ia
i, j(t, x) := Θah,

the initial conditions are given by S a
i, j(0, x) = φ1i, Ia

i, j(0, x) = φ2i, S h
i, j(0, x) = φ3 j, Ih

i, j(0, x) = φ4 j,
φ ∈ R+, x ∈ Ω, i, j = 1, 2, · · · , n, where R+ = {x ∈ R : x ≥ 0}. For x ∈ Ω, with homogeneous Neumann
boundary conditions

∂S a
i, j(t, x)

∂n
=

(∂S a
i, j(t, x)

∂x1
,
∂S a

i, j(t, x)

∂x2
, · · · ,

∂S a
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

∂Ia
i, j(t, x)

∂n
=

(∂Ia
i, j(t, x)

∂x1
,
∂Ia

i, j(t, x)

∂x2
, · · · ,

∂Ia
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

∂S h
i, j(t, x)

∂n
=

(∂S h
i, j(t, x)

∂x1
,
∂S h

i, j(t, x)

∂x2
, · · · ,

∂S h
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

∂Ih
i, j(t, x)

∂n
=

(∂Ih
i, j(t, x)

∂x1
,
∂Ih

i, j(t, x)

∂x2
, · · · ,

∂Ih
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

(2.4)

where Ω is a bounded smooth domain in Rl, ∂Ω and Ω are the boundary and the closure of Ω, n is the
outer normal vector of ∂Ω. Let X := C(Ω,R4n) be the Banach space with the supremum norm ‖ · ‖.
Define X+ := C(Ω,R4n

+ ). The symbol ∇ is the gradient operator.

3. Well-posedness of the system

In this section, we will focus on the existence and uniqueness of the global solutions of model (2.3).
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Lemma 3.1. For every initial value function φ := (φ1i, φ2i, φ3 j, φ4 j) ∈ X+, the solution U(t, x; φ) =

(S a
i, j(t, x; φ1i), Ia

i, j(t, x; φ2i), S h
i, j(t, x; φ3 j), Ih

i, j(t, x; φ4 j)) of model (2.3), satisfies that

lim
t→∞

sup
(
S a

i, j(t, x; φ1i) + Ia
i, j(t, x; φ2i) + S h

i, j(t, x; φ3 j) + Ih
i, j(t, x; φ4 j)

)
< C,

where C is a normal constant.

Proof. Let

W(t) =

∫
Ω

(
S a

i, j(t, x; φ1i) + Ia
i, j(t, x; φ2i) + S h

i, j(t, x; φ3 j) + Ih
i, j(t, x; φ4 j)

)
dx,

W(t)
dt

=

∫
Ω

(∂S a
i, j(t, x; φ1i)

∂t
+
∂Ia

i, j(t, x; φ2i)

∂t
+
∂S h

i, j(t, x; φ3 j)

∂t
+
∂Ih

i, j(t, x; φ4 j)

∂t

)
dx

=

∫
Ω

( l∑
k=1

∂

∂xk
(Dik

∂S a
i, j

∂xk
) +

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) +

l∑
k=1

∂

∂xk
(Gk j

∂S h
i, j

∂xk
) +

l∑
k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
)

+ Λa − µaS a
i, j − δaIa

i, j − µaIa
i, j + Λh − µhS h

i, j − γhIh
i, j − δhIh

i, j − µhIh
i, j

)
dx

≤

∫
Ω

( l∑
k=1

(Dik

∂S a
i, j

∂n
) +

l∑
k=1

(Dik

∂Ia
i, j

∂n
) +

l∑
k=1

(Gk j

∂S h
i, j

∂n
) +

l∑
k=1

(Gk j

∂Ih
i, j

∂xk
)

+ Λa + Λh − µhS a
i, j − µhIa

i, j − µhS h
i, j − µhIh

i, j

)
dx

=

∫
Ω

(Λa + Λh)dx − µhW(t),

where |Ω| represents the volume of Ω, we can obtain

lim
t→∞

W(t) ≤

∫
Ω

(Λa + Λh)dx

µh
.

In other words, there is a positive constant C such that limt→∞W(t) < C. This proof is complete. �

Next, we will focus on the existence and uniqueness of the global solutions of model (2.3) by
semigroup.

Theorem 3.2. For every initial value function φ := (φ1i, φ2i, φ3 j, φ4 j) ∈ X+, model (2.3) has a unique
solution U(t, x; φ) = (S a

i, j(t, x; φ1i), Ia
i, j(t, x; φ2i), S h

i, j(t, x; φ3 j), Ih
i, j(t, x; φ4 j)) with U(0, x; φ) = φ and the

semiflow Ψt : X+ −→ X+ generated by (2.3) is defined by

Ψt(φ) = (S a
i, j(t, x; φ), Ia

i, j(t, x; φ), S h
i, j(t, x; φ), Ih

i, j(t, x; φ)), ∀x ∈ Ω, t ≥ 0.

Furthermore, the semiflow Ψt : X+ → X+ is point dissipative and the positive orbits of bounded subsets
of X+ for Ψt are bounded.
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Proof. Suppose T1i(t), T2i(t), T3 j(t), T4 j(t): C(Ω,R) −→ C(Ω,R) be the C0 semigroups associated
with

∑l
k=1

∂
∂xk

(Dik
∂
∂xk

) − µa,
∑l

k=1
∂
∂xk

(Dik
∂
∂xk

) − (µa + δa),
∑l

k=1
∂
∂xk

(Gk j
∂
∂xk

) − µh,∑l
k=1

∂
∂xk

(Gk j
∂
∂xk

) − (µh + δh + γh) subject to the Neumann boundary condition, respectively. It then
follows that T (t):=(T1i(t), T2i(t),T3 j(t), T4 j(t)), it is strongly positive and compact for each t > 0 [20].
For every initial value functions φ=(φ1i(x),φ2i(x),φ3 j(x), φ4 j(x))∈ X+, we define F=(F1i,F2i,F3 j,F4 j):
X+ −→ X by F1i(φ)(x) = Λa − λa(i)φ1i(x) Θa(t,x,φ2i)

1+α1Θa(t,x,φ2i)
, F2i(φ)(x) = λa(i)φ1i(x) Θa(t,x,φ2i)

1+α1Θa(t,x,φ2i)
,

F3 j(φ)(x) = Λh − λah( j)φ3 j(x)Θah(t, x, φ2i), F4 j(φ)(x) = λah( j)φ3 j(x)Θah(t, x, φ2i). The model (2.3) can
be rewritten as the integral equation

U(t) = T (t)φ +

∫ t

0
T (t − s)F(U(s))ds,

where U(t) = (S a
i, j, I

a
i, j, S

h
i, j, I

h
i, j)

T . It is easy to show that limh−→0+ dist(φ+ hF(φ),X+) = 0,∀φ ∈ X+. By
in [21], model (2.3) has a unique positive solution (S a

i, j(t, x; φ1i), Ia
i, j(t, x; φ2i), S h

i, j(t, x; φ3 j), Ih
i, j(t, x; φ4 j))

on [0, τe) × Ω, where 0 < τe ≤ ∞. In what follows, we prove that the local solution can be extended
to a global one, that is τe = ∞. For this purpose, by a standard argument, we only need to prove that
the solution is bounded in [0, τe) × Ω. To this end, we let Na

i, j(t, x) = S a
i, j(t, x) + Ia

i, j(t, x), Nh
i, j(t, x) =

S h
i, j(t, x) + Ih

i, j(t, x) + Rh
i, j(t, x). Then Na

i, j(t, x), and Nh
i, j(t, x) satisfy the following system



∂Na
i, j(t, x)

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂Na
i, j(t, x)

∂xk
) = Λa − µaNa

i, j(t, x) − δaIa
i, j(t, x), t > 0, x ∈ Ω,

∂Nh
i, j(t, x)

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Nh
i, j(t, x)

∂xk
) = Λh − µhNh

i, j(t, x) − γhIh
i, j(t, x) − δhIh

i, j(t, x), t > 0, x ∈ Ω,

Na
i, j(0, x) = S a

i, j(0, x) + Ia
i, j(0, x) ≥ 0, Nh

i, j(0, x) = S h
i, j(0, x) + Ih

i, j(0, x) + Rh
i, j(0, x) ≥ 0, x ∈ Ω,

Dik∂Na
i, j(t, x) · n = 0, Gk j∂Nh

i, j(t, x) · n = 0, t > 0, x ∈ ∂Ω.
(3.1)

Thank to [22], model (3.1) admits a unique positive steady state E0 which is globally asymptotically
stable in C(Ω,R). It follows that U(t, x; φ) = (S a

i, j(t, x; φ), Ia
i, j(t, x; φ), S h

i, j(t, x; φ), Ih
i, j(t, x; φ)) is bounded

on [0, τe) ×Ω, which implies the Theorem. �

4. Threshold dynamics

In the rest of this subsection, we first define the basic reproduction number of virus and show that it
is a threshold for viral persistence or extinction.

It follows from Theorem 3.2 model (2.3) with (2.4) admits a unique disease free steady state, E0 =

(S a0
1, j, S

a0
2, j, · · · , S

a0
n, j, 0, 0, · · · , 0, S

h0
i,1, S

h0
i,2, · · · , S

h0
i,n, 0, 0, · · · , 0), linearizing (2.3) with (2.4) at E0, we get
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the following linear cooperative system for Ia
i, j, and Ih

i, j, component



∂Ia
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) = λa(i)S a0

i, jΘa − δaIa
i, j − µaIa

i, j, t > 0, x ∈ Ω,

∂Ih
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
) = λah( j)S h0

i, jΘah − γhIh
i, j − δhIh

i, j − µhIh
i, j, t > 0, x ∈ Ω,

∂Ia
i, j(t, x)

∂n
=

(∂Ia
i, j(t, x)

∂x1
,
∂Ia

i, j(t, x)

∂x2
, · · · ,

∂Ia
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

∂Ih
i, j(t, x)

∂n
=

(∂Ih
i, j(t, x)

∂x1
,
∂Ih

i, j(t, x)

∂x2
, · · · ,

∂Ih
i, j(t, x)

∂xl

)T

= 0, t > 0, x ∈ ∂Ω,

Ia
i, j(0, x) = φ2i, Ih

i, j(0, x) = φ4 j.

(4.1)

Substituting Ia
i, j = eξitψi(x), Ih

i, j = eξ jtϕ j(x), into (4.1), ψi(x) ∈ C(Ω,R2n), ϕ j(x) ∈ C(Ω,R2n), we obtain
the following eigenvalue problem,



ξiψi(x) −
l∑

k=1

∂

∂xk
(Dik

∂ψi(x)
∂xk

) =
λa(i)S a0

i, j

〈k〉a

n∑
i=1

ipa(i, ·)ψi(x) − δaψi(x) − µaψi(x), x ∈ Ω,

ξ jϕ j(x) −
l∑

k=1

∂

∂xk
(Gk j

∂ϕ j(x)
∂xk

) =
λah( j)S h0

i, j

〈k〉ah

n∑
j=1

jpa(·, j)ψ j(x) − γhϕ j(x) − δhϕ j(x) − µhϕ j(x), x ∈ Ω,

∂ψi(x)
∂n

=

(
∂ψi(x)
∂x1

,
∂ψi(x)
∂x2

, · · · ,
∂ψi(x)
∂xl

)T

= 0, x ∈ ∂Ω,

∂ϕ j(x)
∂n

=

(∂ϕ j(x)
∂x1

,
∂ϕ j(x)
∂x2

, · · · ,
∂ϕ j(x)
∂xl

)T

= 0, x ∈ ∂Ω,

ψi(x) = φ2i, ϕ j(x) = φ4 j,
(4.2)

which is a cooperation system. By a similar argument in [39], it follows that (4.2) admits a unique
principal eigenvalue ξ0(E0) with a strongly positive eigenfunction (ψi(x), ϕ j(x)). Denote by Γ(t) the
solution semigroup of (4.1) on C(Ω,R2n) with generator B := B + F,

B =



ωa + 4a
1 + λa(1)S a0

1, j f (1) · · · λa(1)S a0
1, j f (n) 0 · · · 0

...
. . .

...
...

. . .
...

λa(n)S a0
n, j f (1) . . . ωa + 4a

n + λa(n)S a0
n, j f (n) 0 · · · 0

λah(1)S h0
i,1g(1) · · · λah(1)S h0

i,1g(n) ωh + 4h
1 · · · 0

...
. . .

...
...

. . .
...

λah(n)S h0
i,ng(1) · · · λah(n)S h0

i,ng(n) 0 · · · ωh + 4h
n


,

where ωa = −µa−δa, ωh = −µh−δh, f (i) =
ipa(i,·)
〈k〉a

, g( j) =
jpa(·, j)
〈k〉ah

, 4a
i = Σl

k=1
∂
∂xk

Dik
∂
∂xk

, 4h
j = Σl

k=1
∂
∂xk

Gk j
∂
∂xk

,
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B = diag(ωa + 4a
1, · · · , ωa + 4a

n, ωh + 4h
1, · · · , ωh + 4h

n)T = diag(4a
1, · · · ,4

a
n,4

h
1, · · · ,4

h
n)T − V ,

F =



λa(1)S a0
1,· f (1) · · · λa(1)S a0

1,· f (n) 0 · · · 0
...

. . .
...

...
. . .

...

λa(n)S a0
n,· f (1) . . . λa(n)S a0

n,· f (n) 0 · · · 0
λah(1)S h0

·,1g(1) · · · λah(1)S h0
·,1g(n) 0 · · · 0

...
. . .

...
...

. . .
...

λah(n)S h0
·,ng(1) · · · λah(n)S h0

·,ng(n) 0 · · · 0


.

We further let Γ(t) : C(Ω,R2n) → C(Ω,R2n) be the C0-semigroup generated by operator B, we know
that both B and −V are cooperative for any x ∈ Ω, which implies that Γ(t) is a positive semigroup
in the sense that Γ(t)C(Ω,R2n

+ ) ⊆ C(Ω,R2n
+ ). Further from [27] and the fact that both B and B are

resolvent-operators, it then follows that the next generation operator is L := −FB−1, given by L(φ) =∫ ∞
0

F(x)Γ(t)φ(x)dt, φ ∈ C(Ω,R2n), x ∈ Ω. Then L is well-defined, continuous, and positive operator on
C(Ω,R2n), which maps the initial infection distribution φ to the distribution of the total new infections
produced during the infection period. We follow the procedure in [28] to define the spectral radius of
L as the basic reproduction number

R0 = r(L) = r(−FB−1) = sup{|λ|, λ ∈ σ(L)} =

∫
Ω
λa(i)S a0

i, j
1
〈k〉a

∑n
i=1 ipa(i, ·)ψ2

i dx∫
Ω

[
∑l

k=1(∇kψi)T (Dik∇kψi) + (µa + δa)ψ2
i ]dx

.

Lemma 4.1. R0 − 1 and ξ0(E0) have the same sign. The steady state E0 is asymptotically stable if
R0 < 1, and it is unstable R0 > 1.

Proof. The method was the same as that in reference [26, 27]. �

Theorem 4.2. (i)If R0 < 1 then the disease-free equilibrium E0 is globally asymptotically stable.
(ii)If R0 > 1, then there exists ε0 such that any positive solution of model (2.3) satisfies

lim sup
t→∞

‖(S a
i, j(t, ·), I

a
i, j(t, ·), S

h
i, j(t, ·), I

h
i, j(t, ·)) − (S a0

i, j(t, ·), 0, S
h0
i, j(t, ·), 0)‖ > ε0.

Proof. The method was the same as that in reference [29, 30]. �

5. Near-optimal control

In this section, we will establish an near-optimal control of model (2.3) and get an optimal control
strategy in theory. We introduce control variables u(t, x)=(ua

i (t, x), uh
j(t, x))T ∈ U([0,T ] × Ω)={ua

i (t, x)
and uh

j(t, x) measurable: 0 ≤ ua
i (t, x) ≤ 1,0 ≤ uh

j(t, x) ≤ 1,i, j = 1, 2, · · · , n}. Assume the control set
U([0,T ]×Ω) is convex. ua

i (t, x) denotes the proportion of slaughtered susceptible poultry and infected
poultry, uh

j(t, x) denotes the proportion of treatment for infected humans. Now, we obtain an optimal
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control system as follows,

∂S a
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂S a
i, j

∂xk
) =Λa − λa(i)S a

i, j
Θa

1 + α1Θa
− µaS a

i, j − ua
i S a

i, j, t > 0, x ∈ Ω,

∂Ia
i, j

∂t
−

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) =λa(i)S a

i, j
Θa

1 + α1Θa
− δaIa

i, j − µaIa
i, j − ua

i Ia
i, j, t > 0, x ∈ Ω,

∂S h
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂S h
i, j

∂xk
) =Λh − λah( j)S h

i, jΘah − µhS h
i, j, t > 0, x ∈ Ω,

∂Ih
i, j

∂t
−

l∑
k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
) =λah( j)S h

i, jΘah − γhIh
i, j − δhIh

i, j − µhIh
i, j −

cuh
j I

h
i, j

1 + α2Ih
i, j

, t > 0, x ∈ Ω,

(5.1)

we take saturated treatment rate
cuh

j I
h
i, j

1+α2Ih
i, j

(α2 denotes saturation constant) because of the medical

resources are limited. We intend to get an near-optimal pair of slaughter and treatment, which seeks to
minimize the number of infected poultry, the number of infected humans, and the cost during the
implementing these 2n control strategies. Therefore, we establish the following objective function

J(ua
i (t, x), uh

j(t, x)) =

∫ T

0

∫
Ω

n∑
i=1

A1iIa
i, j(t, x) + A2iua

i (t, x)(S a
i, j(t, x) + Ia

i, j(t, x)) +
1
2
ςi(ua

i )2(t, x)dxdt

+

∫ T

0

∫
Ω

n∑
j=1

A3 jIh
i, j(t, x) + A4 juh

j(t, x)Ih
i, j(t, x) +

1
2
% j(uh

j)
2(t, x)dxdt,

(5.2)

where A1i, A2i, A3 j, A4 j are regarded as a tradeoff factor. The meaning of the objective functional
J(ua

i (t, x), uh
j(t, x)) is described as follows:

(1)The term
∫ T

0

∫
Ω

∑n
i=1 A1iIa

i, j(t, x)dxdt +
∫ T

0

∫
Ω

∑n
j=1 A3 jIh

i, j(t, x)dxdt gives the total number of infected
poultry infected with avian influenza virus and the total number of infected human over the time
period T .
(2)The term

∫ T

0

∫
Ω

∑n
i=1 A2iua

i (t, x)(S a
i, j(t, x) + Ia

i, j(t, x)) + 1
2ςi(ua

i )2(t, x)dxdt gives the total cost of
slaughtering for susceptible and infected avian.
(3)The term

∫ T

0

∫
Ω

∑n
j=1 A4 juh

j(t, x)Ih
i, j(t, x) + 1

2% j(uh
j)

2(t, x)dxdt gives the total cost of treatment for
infected humans.

The objective of the optimal control problem is to minimize the cost function J(ua
i (t, x), uh

j(t, x))
over all u(t, x) = (ua

i (t, x), uh
j(t, x))T ∈ U([0,T ] ×Ω). The value function is defined as

V(0, φ(0, x)) = inf
(ua

i (t,x),uh
j (t,x))∈U([0,T ]×Ω)

J(0, φ(0, x); ua
i (t, x), uh

j(t, x)).

Definition 5.1. (Near-optimal Control) [24] Both a family of admissible pairs {(uaε
i (t, x), uhε

j (t, x)}
parameterized by ε > 0 and any element (uaε

i (t, x), uhε
j (t, x)) in the family are called near-optimal if

|J(0, φ(0, x); uaε
i (t, x), uhε

j (t, x)) − V(0, φ(0, x); ua
i (t, x), uh

j(t, x))| ≤ r(ε),
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holds for sufficiently small ε, where r is a function of ε satisfying r(ε) → 0 as ε → 0. The estimate
r(ε) is called an error bound. If r(ε) = cεκ for some κ independent of the constant c, then uaε

i (t), uhε
j (t)

are called near-optimal with order εκ.

Lemma 5.2. (Ekeland’s Principle, [25]). Let (S,d) be a complete metrix space, and let ρ(·) : S → R1

be lower semicontinuous and bounded from below. For ε ≥ 0, suppose that uε(t, x) ∈ S satisfies

ρ(uε(·)) ≤ inf
u(·)∈S

ρ(u(·)) + ε,

then, for any ι > 0, there exists uι(·) ∈ S such that ρ(uι(·)) ≤ ρ(uε(·), d(uι(·), uε(·)) ≤ ι, ρ(uι(·)) ≤
ρ(u(·)) + ε

ι
d(u(·), uι(·)).

5.1. Adjoint equation and some prior estimates

In this section, we will first show a few lemmas, which will be used to establish the sufficient and
necessary condition for the near-optimal control of model (5.1). As is well known, the study of adjoint
equations plays a key role in deriving the necessary and sufficient conditions of optimality. Next, we
introduce the adjoint equation:

∂p1i(t, x)
dt

=

(
µa + ua

i + λa(i)
Θa

1 + α1Θa
−

l∑
k=1

∂

∂xk
Dik

∂

∂xk

)
p1i − λa(i)

Θa

1 + α1Θa
p2i − A2iua

i ,

∂p2i(t, x)
dt

=
λa(i) f (i)S a

i, j

(1 + α1Θa)2 p1i +

(
δa + µa + ua

i −
λa(i) f (i)S a

i, j

(1 + α1Θa)2 −

l∑
k=1

∂

∂xk
Dik

∂

∂xk

)
p2i

+ λah( j)g( j)S h
i, j p3 j − λah( j)g( j)S h

i, j p4 j − A1i − A2iua
i ,

∂p3 j(t, x)
dt

=

(
µh + λah( j)Θah −

l∑
k=1

∂

∂xk
Dik

∂

∂xk

)
p3 j − λah( j)Θah p4 j,

∂p4 j(t, x)
dt

=

(
γh + δh + µh +

cuh
j

(1 + α2Ih
i, j)2
−

l∑
k=1

∂

∂xk
Dik

∂

∂xk

)
p4 j − A3 j − A4 juh

j ,

p1i(T, x) = p2i(T, x) = p3 j(T, x) = p4 j(T, x) = 0.

(5.3)

The following Lemma 5.3 shows that the solution of model model (5.1) is bounded.

Lemma 5.3. For any η ≥ 0, and (ua
i (t, x), uh

j(t, x)) ∈ U([0,T ] ×Ω), we have

sup
0≤t≤T

|S a
i, j(t, x)|η + |Ia

i, j(t, x)|η + |S h
i, j(t, x)|η + |Ih

i, j(t, x)|η ≤ C, (5.4)

where C is a constant that depends only on η.

Proof. The method was the same as that the Lemma 3.1, we get the almost surely positively invariant
set of model model (5.1), which means that the inequality (5.4) holds. �

Lemma 5.4. For any (ua
i (t, x), uh

j(t, x)) ∈ U([0,T ] ×Ω), we have

sup
0≤t≤T

|p1i(t, x)|2 + |p2i(t, x)|2 + |p3 j(t, x)|2 + |p4 j(t, x)|2 ≤ C,

where C is a constant.
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The proof is shown in Appendix A.
For any u(t, x), ũ(t, x) ∈ U([0,T ] ×Ω), define a metric onU([0,T ] ×Ω) as follows

d(u(t, x), ũ(t, x)) = E[mes{(t, x) ∈ [0,T ] ×Ω : u(t, x) , ũ(t, x)}],

by a similar way as Lemma 6.4 in [32], we know thatU([0,T ] ×Ω) is a complete space under d.
The following Lemma will show the continuity of the state process (S a

i, j(t, x),Ia
i, j(t, x),

S h
i, j(t, x),Ih

i, j(t, x)) under metric d .

Lemma 5.5. For any η ≥ 0, and 0 < κ < 1 satisfying κη < 1, there exists a constant Cκη such that
u(t, x), ũ(t, x) ∈ U([0,T ] × Ω) along with the corresponding trajectory (S a

i, j(t, x),Ia
i, j(t, x),

S h
i, j(t, x),Ih

i, j(t, x)), (S̃ a
i, j(t, x), S̃ a

i, j(t, x), S̃ h
i, j(t, x), S̃ h

i, j(t, x)), we have

sup
0≤t≤T

|S a
i, j − S̃ a

i, j|
2η + |Ia

i, j − Ĩa
i, j|

2η + |S h
i, j − S̃ h

i, j|
2η + |S h

i, j − S̃ h
i, j|

2η ≤ C[d(ua
i , ũ

a
i )κη + d(uh

j , ũ
h
j)
κη].

The proof is shown in Appendix B.
The next lemma will show that the pth moment continuity of the solutions to the adjoint Eq (5.3) under
metric d.

Lemma 5.6. For any 1 < η < 2, and 0 < κ < 1 satisfying (1 + κ)η < 2, there exists a constant Cκη

such that u(t, x), ũ(t, x) ∈ U([0,T ] × Ω) along with the corresponding trajectory (S a
i, j(t, x),Ia

i, j(t, x),
S h

i, j(t, x),Ih
i, j(t, x)), (S̃ a

i, j(t, x), S̃ a
i, j(t, x), S̃ h

i, j(t, x), S̃ h
i, j(t, x)), and the solution of corresponding adjoint

equation, we have

sup
0≤t≤T

|p1i − p̃1i|
η + |p2i − p̃2i|

η + |p3 j − p̃3 j|
η + |p4 j − p̃4 j|

η ≤ C[d(ua
i , ũ

a
i )

κη
2 + d(uh

j , ũ
h
j)

κη
2 ].

The proof is shown in Appendix C.

5.2. Sufficient conditions for near optimal control

To obtain the sufficient conditions, we define the Hamiltonian function H as follows:

H =

n∑
i=1

(
A1iIa

i, j + A2iua
i (S a

i, j + Ia
i, j) +

1
2
ςi(ua

i )2 + p1i(
l∑

k=1

∂

∂xk
(Dik

∂S a
i, j

∂xk
) + Λa − λa(i)S a

i, j
Θa

1 + α1Θa

− µaS a
i, j − ua

i S a
i, j) + p2i(

l∑
k=1

∂

∂xk
(Dik

∂Ia
i, j

∂xk
) + λa(i)S a

i, j
Θa

1 + α1Θa
− δaIa

i, j − µaIa
i, j − ua

i Ia
i, j)

)
+

n∑
j=1

(
A3 jIh

i, j + A4 juh
j I

h
i, j +

1
2
% j(uh

j)
2 + p3 j(

l∑
k=1

∂

∂xk
(Gk j

∂S h
i, j

∂xk
) + Λh − λah( j)S h

i, jΘah − µhS h
i, j)

+ p4 j(
l∑

k=1

∂

∂xk
(Gk j

∂Ih
i, j

∂xk
) + λah( j)S h

i, jΘah − γhIh
i, j − δhIh

i, j − µhIh
i, j −

cuh
j I

h
i, j

1 + α2Ih
i, j

)
)
.

(5.5)

We can test the Hamiltonian function H is convex, a.s. Next, the sufficient conditions for the
approximate optimal controls of model model (5.1) are proposed.
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Theorem 5.7. Let (S aε
i, j(t, x), Iaε

i, j (t, x), S hε
i, j(t, x), Ihε

i, j (t, x) ,uaε
i (t, x), uhε

j (t, x)) be an admissible pair and
(pε1i(t, x), pε2i(t, x), pε3 j(t, x), pε4 j(t, x)) be the solution of (5.3) corresponding to (S aε

i, j(t, x), Iaε
i, j (t, x),

S hε
i, j(t, x), Ihε

i, j (t, x) ,uaε
i (t, x), uhε

j (t, x)). Assume the control setU([0,T ] × Ω) is convex.a.s. Then for any
ε > 0, if

sup
ua

i ∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) +

1
2
ςi(uaε

i + ua
i )) − S aε

i, j p
ε
1i − Iaε

i, j pε2i

)
(uaε

i − ua
i )dxdt ≥ −

ε

2
,

sup
uh

j∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
j=1

(
A4 jIhε

i, j +
1
2
% j(uhε

j + uh
j) −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)
(uhε

j − uh
j)dxdt ≥ −

ε

2
,

we have∫ T

0

∫
Ω

n∑
i=1

A2iuaε
i (S aε

i, j + Iaε
i, j ) +

1
2
ςi(uaε

i )2dxdt +

∫ T

0

∫
Ω

n∑
j=1

A4 juhε
j Ihε

i, j dxdt

≤ inf
(ua

i ,u
h
j )∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
i=1

A2iua
i (S aε

i, j + Iaε
i, j ) +

1
2
ςi(ua

i )2dxdt +

∫ T

0

∫
Ω

n∑
j=1

A4 juh
j I

hε
i, j dxdt + Cε

1
2 .

Proof. In order to prove that Hu can be estimated by ε, we define a new metric d on U([0,T ] × Ω).
Since the control region is closed,U([0,T ]×Ω) becomes a complete matric space when endowed with
the metric

d(u, ũ) =

∫ T

0

∫
Ω

n∑
i=1

vε(t, x)|ua
i − ũa

i |dxdt +

∫ T

0

∫
Ω

n∑
j=1

vε(t, x)|uh
j − ũh

j |dxdt,

where vε(t, x) = 1 + |S aε
i, j | + |I

aε
i, j | + |S

hε
i, j | + |I

hε
i, j |. Next, we will estimate J(0, φ(0, x); uaε

i (t, x), uhε
j (t, x)) −

J(0, φ(0, x); ua
i (t, x), uh

j(t, x)). From the Hamiltonian function (5.5) and the objective function (5.2), we
have

J(0, φ(0, x); uaε
i (t, x), uhε

j (t, x)) − J(0, φ(0, x); ua
i (t, x), uh

j(t, x))

≤

∫ T

0

∫
Ω

n∑
i=1

(
A2i(S a

i, j + Ia
i, j) + ςiua

i − p1iS a
i, j − p2iIa

i, j

)
(uaε

i − ua
i )dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 jIh

i, j + % juh
j −

cIh
i, j p4 j

1 + α2Ih
i, j

)
(uhε

j − uh
j)dxdt.

(5.6)

Next, we will focus on the estimation of Hu. Firstly, we define a new functional M(·) : U([0,T ]×Ω)→
R,

M(u) =

∫ T

0

∫
Ω

n∑
i=1

(
A2iua

i (S aε
i, j + Iaε

i, j ) +
1
2
ςi(ua

i )2 − pε1iu
a
i S aε

i, j − pε2iu
a
i Iaε

i, j

)
dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 juh

j I
hε
i, j +

1
2
% j(uh

j)
2 −

cuh
j I

hε
i, j pε4 j

1 + α2Ihε
i, j

)
dxdt,
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we show that

|M(u) − M(̃u)|

=

∫ T

0

∫
Ω

n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j )(u

a
i − ũa

i ) +
1
2
ςi(ua

i − ũa
i )(ua

i + ũa
i ) − pε1iS

aε
i, j(u

a
i − ũa

i ) − pε2iI
aε
i, j (u

a
i − ũa

i )
)
dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 jIhε

i, j (u
h
j − ũh

j) +
1
2
% j(uh

j − ũh
j)(u

h
j + ũh

j) −
cpε4 jI

hε
i, j

1 + α2Ihε
i, j

(uh
j − ũh

j)
)
dxdt

≤

∫ T

0

∫
Ω

n∑
i=1

[A2i(S aε
i, j + Iaε

i, j ) + ςi](ua
i − ũa

i )dxdt +

∫ T

0

∫
Ω

n∑
j=1

[A4 jIhε
i, j + % j](uh

j − ũh
j)dxdt

≤C
∫ T

0

∫
Ω

n∑
i=1

(S aε
i, j + Iaε

i, j )(u
a
i − ũa

i )dxdt +

∫ T

0

∫
Ω

n∑
j=1

(S hε
i, j + Ihε

i, j )(u
h
j − ũh

j)dxdt.

Thus, M(u) is continuous onU([0,T ] ×Ω) with respect to d. According to the conditions of Theorem
(5.7) and Lemma 5.2, we can see that there exists ũε ∈ U([0,T ] ×Ω) such that

d(uε − ũε) ≤ ε
1
2 ,M(̃uε) ≤ M(u) + ε

1
2 d(u, ũε), ∀u ∈ U([0,T ] ×Ω).

This show that∫ T

0

∫
Ω

n∑
i=1

(
A2ĩuaε

i (S aε
i, j + Iaε

i, j ) +
1
2
ςi(̃uaε

i )2 − pε1ĩu
aε
i S aε

i, j − pε2ĩu
aε
i Iaε

i, j

)
dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 j̃uhε

j Ihε
i, j +

1
2
% j(̃uhε

j )2 −
c̃uhε

j Ihε
i, j pε4 j

1 + α2Ihε
i, j

)
dxdt

= min
(ua

i ,u
h
j )∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
i=1

(
A2iua

i (S aε
i, j + Iaε

i, j ) +
1
2
ςi(ua

i )2 − pε1iu
a
i S aε

i, j − pε2iu
a
i Iaε

i, j + ε
1
2 vε|ua

i − ũaε
i |

)
dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 juh

j I
hε
i, j +

1
2
% j(uh

j)
2 −

cuh
j I

hε
i, j pε4 j

1 + α2Ihε
i, j

+ ε
1
2 vε|uh

j − ũhε
j |

)
dxdt.

(5.7)

According to [23], we have

0 ∈
n∑

i=1

(
A2i(S aε

i, j + Iaε
i, j ) + ςĩuaε

i − pε1iS
aε
i, j − pε2iI

aε
i, j

)
+

n∑
j=1

(
A4 jIhε

i, j + % j̃uhε
j −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)
⊂

n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) + ςĩuaε

i − pε1iS
aε
i, j − pε2iI

aε
i, j

)
+

n∑
j=1

(
A4 jIhε

i, j + % j̃uhε
j −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)
+ [−ε

1
2 vε, ε

1
2 vε].

(5.8)

Because the Hamiltonian function H is differentiable in u, it follows from (5.8) that there exists a
ϑε ∈ [−ε

1
2 vε, ε

1
2 vε] such that

n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) + ςĩuaε

i − pε1iS
aε
i, j − pε2iI

aε
i, j

)
+

n∑
j=1

(
A4 jIhε

i, j + % j̃uhε
j −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)
+ ϑε = 0. (5.9)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6452–6483.



6467

From (5.9), we have∣∣∣∣∣ n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) + ςiuaε

i − pε1iS
aε
i, j − pε2iI

aε
i, j

)
+

n∑
j=1

(
A4 jIhε

i, j + % juhε
j −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)∣∣∣∣∣
≤

∣∣∣∣∣ n∑
i=1

ςi(uaε
i − ũaε

i ) +

n∑
j=1

% j(uhε
j − ũhε

j )
∣∣∣∣∣ +

∣∣∣∣∣ n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) + ςĩuaε

i − pε1iS
aε
i, j − pε2iI

aε
i, j

)
+

n∑
j=1

(
A4 jIhε

i, j + % j̃uhε
j −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)∣∣∣∣∣ ≤ C
( n∑

i=1

vε|uaε
i − ũaε

i | +

n∑
j=1

vε|uhε
j − ũhε

j |

)
+ ϑε

≤C
( n∑

i=1

vε|uaε
i − ũaε

i | +

n∑
j=1

vε|uhε
j − ũhε

j |

)
+ 2ε

1
2 vε.

(5.10)

This proof is complete. �

From the Lemma 5.4 and definition of d, we can achieve the desired conclusion from (5.6) and
(5.10) by Hölder’s inequality. Furthermore, according to the ideas in Lenhart and Workman [34], the
optimal control (ua∗

i , u
h∗
j ), which minimizes the objective function J(ua

i (t, x), uh
j(t, x)), is obtained and

represented by
ua∗

i (t, x) = min{max{
(p1i(t, x) − A2i)S a∗

i, j(t, x) + p2i(t, x)Ia∗
i, j (t, x)

ςi
, 0}, 1}, i = 1, 2, · · · , n,

uh∗
j (t, x) = min{max{

cp4 j(t, x)Ih∗
i, j (t, x) − A4 jIh∗

i, j (t, x)(1 + α2Ih∗
i, j (t, x))

(1 + α2Ih∗
i, j (t, x))% j

, 0}, 1}, j = 1, 2, · · · , n.

(5.11)

5.3. The necessary conditions for near optimal control

In this suction, we will derive the necessary conditions for near optimal control of model (5.1).

Theorem 5.8. Let (S aε
i, j(t, x), Iaε

i, j (t, x), S hε
i, j(t, x), Ihε

i, j (t, x) ,uaε
i (t, x), uhε

j (t, x)) be an admissible pair. There
exists a constant C such that any η ∈ [0, 1), ε > 0 and any ε-optimal pair (S aε

i, j(t, x), Iaε
i, j (t, x), S hε

i, j(t, x),
Ihε
i, j (t, x), uaε

i (t, x), uhε
j (t, x)), the following condition holds:

inf
ua

i ∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
i=1

(
A2i(S aε

i, j + Iaε
i, j ) +

1
2
ςi(ua

i + uaε
i ) − S aε

i, j p
ε
1i − Iaε

i, j pε2i

)
(ua

i − uaε
i )dxdt ≥ −Cε

η
3 ,

inf
uh

j∈U([0,T ]×Ω)

∫ T

0

∫
Ω

n∑
j=1

(
A4 jIhε

i, j +
1
2
% j(uh

j + uhε
j ) −

cIhε
i, j pε4 j

1 + α2Ihε
i, j

)
(uh

j − uhε
j )dxdt ≥ −Cε

η
3 .

Proof. We have that J(0, φ(0, x); ua
i (t, x), uh

j(t, x)):U([0,T ]×Ω)→ R is continuous under the metric d,
therefore, by using Ekeland’s Principle 5.2, we can choose ι = ε

2
3 , there exists an admissible pair (S aε

i, j,
Iaε
i, j , S hε

i, j,I
hε
i, j ,uaε

i , uhε
j ) such that d(uε, ũε) < ε

2
3 , and J̃(0, φ(0, x); ũε) ≤ J̃(0, φ(0, x); u),∀u ∈ U([0,T ]×Ω),

where J̃(0, φ(0, x); u(t, x)) = J(0, φ(0, x); u(t, x))+ε
1
3 d(uε, ũε). This show that (S aε

i, j, I
aε
i, j , S

hε
i, j, I

hε
i, j , u

aε
i , u

hε
j )

is an optimal pair for the objective function J̃(0, φ(0, x); u(t, x)). Next, we will use the spike variation
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technique to derive a ”maximum principle” for (S aε
i, j, I

aε
i, j , S

hε
i, j, I

hε
i, j , u

aε
i , u

hε
j ). Let t ∈ [0,T ], δ > 0, and

u(t, x)) ∈ U([0,T ] ×Ω), we define uδ(t, x) ∈ U([0,T ] ×Ω) as follows

uδ(t, x) =

u(t, x), i f (t, x) ∈ [t, t + δ] ×Ω,

ũε(t, x), i f (t, x) ∈ [0,T ] \ [t, t + δ] ×Ω.

Then, we have

J̃(0, φ(0, x); ũε(t, x)) ≤ J̃(0, φ(0, x); uδ(t, x)), d(uδ(t, x), ũε(t, x)) ≤ δ. (5.12)

Thus J(0, φ(0, x); ũε(t, x)) = J̃(0, φ(0, x); ũε(t, x)) ≤ J̃(0, φ(0, x); uδ(t, x)) = J(0, φ(0, x); uδ(t, x)) + δε
1
3 .

It follows from (5.12), Lemma 5.5 and Taylor’s expansion, we can obtain that

−δε
1
3 ≤J(0, φ(0, x); uδ(t, x)) − J(0, φ(0, x); ũε(t, x))

≤

∫ T

0

∫
Ω

n∑
i=1

A2iua
i (S aδ

i, j − S̃ aε
i, j) + (A1i + A2iua

i )(Iaδ
i, j − Ĩaε

i, j )dxdt +

∫ T

0

∫
Ω

n∑
j=1

(A3 j + A4 juh
j)(I

hδ
i, j − Ĩhε

i, j )dxdt

+

∫ t+δ

t

∫
Ω

n∑
i=1

(
A2i(S a

i, j + Ia
i, j)(u

a
i − ũaε

i ) +
1
2
ςi(ua

i − ũaε
i )(ua

i + ũaε
i )

)
dxdt

+

∫ t+δ

t

∫
Ω

n∑
j=1

(
A4 jIh

i, j(u
h
j − ũhε

j ) +
1
2
% j(uh

j − ũhε
j )(uh

j + ũhε
j )

)
dxdt + ◦(δ).

(5.13)

Using the Itô’s formula to Q(t, x) = p̃ε1i(S
aδ
i, j − S̃ aε

i, j) + p̃ε2i(I
aδ
i, j − Ĩaε

i, j ) + p̃ε3 j(S
hδ
i, j − S̃ hε

i, j) + p̃ε4 j(I
hδ
i, j − Ĩhε

i, j ), and
from Lemmas 5.3 and 5.4, we can obtain that∫ T

0

∫
Ω

n∑
i=1

A2iua
i (S aδ

i, j − S̃ aε
i, j) + (A1i + A2iua

i )(Iaδ
i, j − Ĩaε

i, j )dxdt +

∫ T

0

∫
Ω

n∑
j=1

(A3 j + A4 juh
j)(I

hδ
i, j − Ĩhε

i, j )dxdt

≤

∫ t+δ

t

∫
Ω

n∑
i=1

−(uaδ
i S aδ

i, j − ũaε
i S̃ aε

i, j) p̃ε1i − (uaδ
i Iaδ

i, j − ũaε
i Ĩaε

i, j )p̃ε2idxdt −
∫ t+δ

t

∫
Ω

n∑
j=1

(uhδ
j − ũhε

j ) p̃ε4 jdxdt.

(5.14)

Substituting (5.14) into (5.13), we have

−δε
1
3 ≤J(0, φ(0, x); uδ(t, x)) − J(0, φ(0, x); ũε(t, x))

≤

∫ t+δ

t

∫
Ω

n∑
i=1

(
A2i(S a

i, j + Ia
i, j)(u

a
i − ũaε

i ) +
1
2
ςi(ua

i − ũaε
i )(ua

i + ũaε
i )

)
dxdt

+

∫ t+δ

t

∫
Ω

n∑
j=1

(
A4 jIh

i, j(u
h
j − ũhε

j ) +
1
2
% j(uh

j − ũhε
j )(uh

j + ũhε
j )

)
dxdt + ◦(δ)

−

∫ t+δ

t

∫
Ω

n∑
i=1

(
(uaδ

i S aδ
i, j − ũaε

i S̃ aε
i, j)p̃ε1i + (uaδ

i Iaδ
i, j − ũaε

i Ĩaε
i, j ) p̃ε2i

)
dxdt −

∫ t+δ

t

∫
Ω

n∑
j=1

(uhδ
j − ũhε

j )p̃ε4 jdxdt.

(5.15)
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Dividing (5.15) by δ and letting δ→ 0, we can get

−ε
1
3 ≤

∫
Ω

n∑
i=1

(
A2i(S a

i, j(t) + Ia
i, j(t))(u

a
i (t) − ũaε

i (t)) +
1
2
ςi(ua

i (t) − ũaε
i (t))(ua

i (t) + ũaε
i (t))

− [uaδ
i (t)S aδ

i, j(t) − ũaε
i (t)S̃ aε

i, j(t)] p̃ε1i(t) − [uaδ
i (t)Iaδ

i, j(t) − ũaε
i (t)Ĩaε

i, j (t)] p̃ε2i(t)
)
dx

+

∫
Ω

n∑
j=1

A4 jIh
i, j(t)(u

h
j(t) − ũhε

j (t)) +
1
2
% j(uh

j(t) − ũhε
j (t))(uh

j(t) + ũhε
j (t)) − [uhδ

j (t) − ũhε
j (t)] p̃ε4 j(t)

)
dx.

(5.16)

Now, we will derive an estimate for the right side of (5.16) with all the (S̃ aε
i, j, Ĩ

aε
i, j , S̃

hε
i, j, Ĩ

hε
i, j , ũ

aε
i , ũ

hε
j )

replaced by (S aε
i, j, I

aε
i, j , S

hε
i, j, I

hε
i, j , u

aε
i , u

hε
j ). To achieve this goal, we first estimate the following difference:∫ T

0

∫
Ω

n∑
i=1

(
[uaδ

i S aδ
i, j − ũaε

i S̃ aε
i, j] p̃ε1i − [uaδ

i S aδ
i, j − uaε

i S aε
i, j]pε1i

)
dxdt

=

∫ T

0

∫
Ω

n∑
i=1

(p̃ε1i − pε1i)(u
aδ
i S aδ

i, j − uaε
i S aε

i, j)dxdt +

∫ T

0

∫
Ω

n∑
i=1

p̃ε1i(u
aε
i S aε

i, j − ũaε
i S̃ aε

i, j)dxdt.

From Lemma 5.6 and due to d(uε, ũε) < ε
2
3 , we have that for any 1 < η < 2, and 0 < κ < 1 satisfying

(1 + κ)η < 2, and∫ T

0

∫
Ω

n∑
i=1

(p̃ε1i − pε1i)(u
aδ
i S aδ

i, j − uaε
i S aε

i, j)dxdt

≤

( ∫ T

0

∫
Ω

n∑
i=1

|p̃ε1i − pε1i|
ηdxdt

) 1
η
( ∫ T

0

∫
Ω

n∑
i=1

|uaδ
i S aδ

i, j − uaε
i S aε

i, j |
η
η−1 dxdt

) η−1
η

≤C
(
d(ua

i , ũ
a
i )

κη
2

) 1
η
( ∫ T

0

∫
Ω

n∑
i=1

|uaδ
i S aδ

i, j|
η
η−1 + |uaε

i S aε
i, j |

η
η−1 dxdt

) η−1
η

≤ Cε
η
3 ,

similarly, we have∫ T

0

∫
Ω

n∑
i=1

p̃ε1i(u
aε
i S aε

i, j − ũaε
i S̃ aε

i, j)dxdt

≤C
( ∫ T

0

∫
Ω

n∑
i=1

|p̃ε1i|
2dxdt

) 1
2
( ∫ T

0

∫
Ω

n∑
i=1

|uaε
i − ũaε

i |
2χuaε

i ,ũaε
i

dxdt
) 1

2

≤C
( ∫ T

0

∫
Ω

n∑
i=1

|uaε
i |

4 + |̃uaε
i |

4dxdt
) 1

4
( ∫ T

0

∫
Ω

n∑
i=1

χuaε
i ,ũaε

i
dxdt

) 1
4

≤ C
(
d(uaε

i , ũ
aε
i )

) 1
4

≤ Cε
η
3 .

Thus ∫ T

0

∫
Ω

n∑
i=1

(
[uaδ

i S aδ
i, j − ũaε

i S̃ aε
i, j] p̃ε1i − [uaδ

i S aδ
i, j − uaε

i S aε
i, j]pε1i

)
dxdt ≤ Cε

η
3 . (5.17)
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By analogous calculation as (5.17), we have

∫ T

0

∫
Ω

n∑
i=1

(
A2i(S a

i, j + Ia
i, j)(u

a
i − ũaε

i ) +
1
2
ςi(ua

i − ũaε
i )(ua

i + ũaε
i )

)
dxdt

+

∫ T

0

∫
Ω

n∑
j=1

(
A4 jIh

i, j(u
h
j − ũhε

j ) +
1
2
% j(uh

j − ũhε
j )(uh

j + ũhε
j )

)
dxdt ≤ Cε

η
3 ,

∫ T

0

∫
Ω

n∑
i=1

(uaδ
i Iaδ

i, j − ũaε
i Ĩaε

i, j ) p̃ε2idxdt ≤ Cε
η
3 ,

∫ T

0

∫
Ω

n∑
j=1

(uhδ
j − ũhε

j ) p̃ε4 jdxdt ≤ Cε
η
3 .

Combine the expression of Hamiltonian function (5.5), we can immediately obtain the conclusion. �

6. Numerical simulations

In this section, we present numerical simulations to demonstrate the results. Let [0,T ] × Ω be the
admissible control domain. We consider a near-optimal problem with the following objective function,
simulations are based on a scale-free network with p(k) = (r − 1)m(r−1)k−r, where m represents the
smallest degree on a scale-free network nodes, r is power exponent. Let m = 1, r = 3, the number
of nodes on a scale-free network is N = 100, and we add each new node with 3 new edges. We
choose degree k as k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5, k6 = 6, k7 = 7, k8 = 8, k9 = 9. We get the
average degree of complex network structure 〈k〉a(〈k2〉a) = 3.27(9.04) through simple calculation. The
parameter values are chosen as follows:

Table 2. The parameters of the coupling network are described in model (2.1).

Parameter Value Data Source
Λa(Λh) 1000/245(2000/36500) per day [35, 36]
λa(λh) 5.1 × 10−4(2 × 10−6)per day [35]
µa(µh) 1/245(5.48 × 10−5)per day [35, 36]
δa(δh) 1/400(0.001)per day [35, 37, 38]
γh 0.1per day [37, 38]
c 0.5 Assumed
α1 0.01 Assumed
α2 0.03 Assumed

Example 6.1. For model (2.3) all parameters are positive constants, we choose degree k as k1 = 1, k2 =

2, k3 = 3, k4 = 4, k5 = 5, k6 = 6, k7 = 7, k8 = 8, k9 = 9. We get the average degree of complex
network structure 〈k〉a(〈k2〉a) = 3.27(9.04) through simple calculation, when we choose λa = 7 × 10−4,
R0 = 1.5246 > 1; when we choose λa = 3 × 10−4, R0 = 0.3689 < 1.
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Figure 1. The density of susceptible and infected human nodes with different degree k =

1, 2, 3, 4, 5, 6, 7, 8, 9 when R0 > 1.
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Figure 2. The density of susceptible and infected poultry nodes with different degree k =

1, 2, 3, 4, 5, 6, 7, 8, 9 when R0 < 1.

Figure 1 shows the unique endemic equilibrium point is globally asymptotically stable, and the virus
will persist. Figure 2 shows the unique disease-free equilibrium point E0 is globally asymptotically
stable, and the virus will die out in the long run. Furthmore, we can obtain that the density of infected
nodes increase with the degree k increase in Example 6.1. In other words, the lager the degree k is, the
higher the density of infected nodes is, which indicates that the nodes having lots of relative neighbors
are more likely to be infected by contacting frequently.

Example 6.2. We analyzed the effects of slaughter rate and curative ratio on avian influenza control.
Let’s take a one-dimensional spatial variable, Ω = [0, L]. The control ua

i (t, x), uh
j(t, x) are measurable

and for any (t, x) ∈ [0,T ] × [0, L], 0 ≤ ua
i (t, x), uh

j(t, x) ≤ 1. Without the loss of generality, for any
fixes time T , we give step size ∆t ∈ (0, 1) and for any fixes space L, we give step size ∆x ∈ (0, 1), we
denote tm = m∆t, xn = n∆t, m = 0, 1, · · · , [ T

∆t ], n = 0, 1, · · · , [ L
∆x ]. For the numerical simulations of
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model (5.1) and adjoint Eq (5.3), we use the Milstein’s method [33]. Thus, model (5.1) and (5.3) can
be rewritten as the following discrete equations:

S a
i, j(tm+1, xn) = S a

i, j(tm, xn) +

(
Di1(tm, xn)

S a
i, j(tm, xn+1) − 2S a

i, j(tm, xn) + S a
i, j(tm, xn−1)

(∆x)2

+ Λa − λa(i)S a
i, j(tm, xn)

Θa(tm, xn)
1 + α1Θa(tm, xn)

− µaS a
i, j(tm, xn) − ua

i (tm, xn)S a
i, j(tm, xn)

)
∆t,

Ia
i, j(tm+1, xn) = Ia

i, j(tm, xn) +

(
Di1(tm, xn)

Ia
i, j(tm, xn+1) − 2Ia

i, j(tm, xn) + Ia
i, j(tm, xn−1)

(∆x)2

+ λa(i)S a
i, j(tm, xn)

Θa(tm, xn)
1 + α1Θa(tm, xn)

− δaIa
i, j(tm, xn) − µaIa

i, j(tm, xn) − ua
i (tm, xn)Ia

i, j(tm, xn)
)
∆t,

S h
i, j(tm+1, xn) = S h

i, j(tm, xn) +

(
G1 j(tm, xn)

S h
i, j(tm, xn+1) − 2S h

i, j(tm, xn) + S h
i, j(tm, xn−1)

(∆x)2

+ Λh − λah( j)S h
i, j(tm, xn)Θah(tm, xn) − µhS h

i, j(tm, xn)
)
∆t,

Ih
i, j(tm+1, xn) = Ih

i, j(tm, xn) +

(
G1 j(tm, xn)

Ih
i, j(tm, xn+1) − 2Ih

i, j(tm, xn) + Ih
i, j(tm, xn−1)

(∆x)2

+ λah( j)S h
i, j(tm, xn)Θah(tm, xn) − γhIh

i, j(tm, xn) − δhS h
i, j(tm, xn) − µhS h

i, j(tm, xn)

−
cuh

j(tm, xn)S h
i, j(tm, xn)

1 + α2S h
i, j(tm, xn)

)
∆t,

(6.1)



p1i(tm+1, xn) = p1i(tm, xn) +

(
Di1(tm, xn)

p1i(tm, xn+1) − 2p1i(tm, xn) + p1i(tm, xn−1)
(∆x)2 + µa p1i(tm, xn)

+ ua
i (tm, xn)p1i(tm, xn) + λa(i)

Θa(tm, xn)
1 + α1Θa(tm, xn)

− λa(i)
Θa(tm, xn)

1 + α1Θa(tm, xn)
p2i(tm, xn) − A2iua

i (tm, xn)
)
∆t,

p2i(tm+1, xn) = p2i(tm, xn) +

(
Di1(tm, xn)

p2i(tm, xn+1) − 2p2i(tm, xn) + p2i(tm, xn−1)
(∆x)2 − A2iua

i (tm, xn)

+
λa(i) f (i)S a

i, j(tm, xn)

(1 + α1Θa(tm, xn))2 p1i(tm, xn) + δa p2i(tm, xn) + µa p2i(tm, xn) + ua
i (tm, xn)p2i(tm, xn) − A1i

−
λa(i) f (i)S a

i, j(tm, xn)p2i(tm, xn)

(1 + α1Θa(tm, xn))2 + λah( j)g( j)S h
i, j(tm, xn)p3 j(tm, xn) − λah( j)g( j)S h

i, j(tm, xn)p4 j(tm, xn)
)
∆t,

p3 j(tm+1, xn) = p3 j(tm, xn) +

(
D3 j(tm, xn)

p3 j(tm, xn+1) − 2p3 j(tm, xn) + p3 j(tm, xn−1)
(∆x)2 + µh p3 j(tm, xn)

+ λah( j)Θah(tm, xn)p3 j(tm, xn) − λah( j)Θah(tm, xn)p4 j(tm, xn)
)
∆t,

p4 j(tm+1, xn) = p4 j(tm, xn) +

(
D4 j(tm, xn)

p4 j(tm, xn+1) − 2p4 j(tm, xn) + p4 j(tm, xn−1)
(∆x)2 + γh p4 j(tm, xn)

+ δh p4 j(tm, xn) + µh p4 j(tm, xn) +
cuh

j(tm, xn)p4 j(tm, xn)

(1 + α2Ih
i, j(tm, xn))2

− A3 j − A4 juh
j(tm, xn)

)
∆t,

(6.2)
in order to find the optimal control of ua

i , uh
j , we give the nonlinear conjugate gradient algorithm [40]

as follows:
Step 1: Choose an initial ua

i0, uh
j0, an initial step size s0 and stopping tolerances Tol1 and Tol2,
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initial states (S a
i, j(0),Ia

i, j(0), S h
i, j(0),Ih

i, j(0)) by solving Eq (6.1), initial adjoints p0=(p1i(0),p2i(0),
p3 j(0),p4 j(0)) by solving Eq (6.2), gradient of J, i.e., gi,0 = ςiua

i0 + (p1i(0) − A2i)S a∗
i, j(0) + p2i(0)Ia∗

i, j (0),
h j,0 = (1 + α2Ih∗

i, j (0)uh
j0 + cp4 j(0)Ih∗

i, j (0) − A4 jIh∗
i, j (0)(1 + α2Ih∗

i, j (0)),
anti-gradient of J, i.e.,d∗0 = −gi,0, d0 = −h j,0.
Step 2: control, i.e., uk+1 = uk + skdk, states (S a

i,·,k+1,Ia
i,·,k+1, S h

·, j,k+1,Ih
·, j,k+1) = (S a

i,·,uk+1
, Ia

i,·,uk+1
, S h
·, j,uk+1

,
Ih
·, j,uk+1

) by solving Eq (6.1) (p1i,k+1,p2i,k+1, p3 j,k+1,p4 j,k+1) = (p1i,S a
i,·,k+1

, p2i,Ia
i,·,k+1

, p3 j,S h
·, j,k+1

, p4 j,Ih
·, j,uk+1

)
by solving Eq (6.2), gradient of J, i.e., gi,k+1 = ςiua

i,k+1 + (p1i,k+1 − A2i)S a∗
i,·,k+1 + p2i,k+1Ia∗

i,·,k+1,
h j,k+1 = (1 + α2Ih∗

·, j,k+1uh
j,k+1 + cp4 j,k+1Ih∗

·, j,k+1 − A4 jIh∗
·, j,k+1(1 + α2Ih∗

·, j,k+1).
Step 3: Stop if ‖gi,k+1‖ < Tol1, ‖h j,k+1‖ < Tol1 or ‖Jk+1 − Jk‖ ≤ Tol2.
Compute the conjugate direction $k+1 according to one of the updated formulas [41].
dk+1 = −gi,k+1 +$k+1dk. aselect step size sk+1 in terms of some standard options.
Set k := k + 1 and go to Step 1.

Figure 3. The density of susceptible and infected nodes.
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Figure 4. The density of susceptible and infected nodes without control.
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Figure 5. The path of Ia
i, j and Ih

i, j of with and without control.
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Figure 6. The optimal control of slaughtering ua
i and treatment uh

j with time-space.
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Figure 7. Taking ε = 0.2 and 0.5, we obtained optimal control ua∗
i , u

h∗
j and near-optimal

control uaε
i , u

hε
j .

Figure 3 shows the solution of model (2.3) curves representing the variation of populations for
susceptible poultry, infected poultry, susceptible human, infected human. Figure 4 shows the solution
of model (5.1) curves representing the variation of populations for susceptible poultry, infected
poultry, susceptible human, infected human. The comparison between Figure 4 and Figure 3 shows
that the proportion of slaughtered susceptible poultry and infected poultry can effectively prevent the
outbreak of avian influenza; With limited medical resources, treatment of infected humans can reduce
the spread of avian influenza among humans. Figure 6, we can see that in order to prevent the spread
of avian influenza and reduce the economic loss it brings, the slaughter rate of poultry should be
gradually reduced over time. In order to reduce the risk of the spread of avian influenza, the
proportion of treatment for infected humans should be gradually increased over time. However,
because of limited medical resources, after the treatment rate reaches a peak for infected humans, it
will gradually decrease. Figure 7 shows the optimal control ua∗

i , u
h∗
j and the near-optimal control

uaε
i , u

hε
j , respectively. The optimal control ua∗

i indicates that the optimal slaughter rate for the poultry
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gradually decreases; the optimal control uh∗
j denotes that the optimal treatment rate of the human is

different in different times. The results show that the error of numerical simulation results of optimal
control and near-optimal control is less than 0.2.

7. Conclusions

The optimal control problem is usually composed of a group of state equations and adjoint
equations, but these equations have difficulties obtaining an exact solution. Therefore, we concerned
the near-optimal control and threshold behavior of an avian influenza model with saturation on
heterogenous complex networks in this paper. We first give the basic reproduction number R0, which
can be used to govern the threshold dynamics of influenza disease. In addition, we obtained the
sufficient and necessary conditions for the near-optimality. Lastly, numerical simulations were
performed to illustrate the results and confirm that the treatment control resulted in a substantial
reduction in the level of infected population while the treatment cost was minimized. In this paper, we
assumed that the parameters are all precisely known, however, they may not be true due to the
unavoidable errors and the lack of sufficient information in the measurement process and so on. How
uncertain parameter values and Lévy noise affect the near-optimality of this epidemic model remains
unclear and deserves further investigation. We will study the near optimal control of the avian
influenza model on complex network with Lévy noise and imprecise parameters in the future work.
Firstly, we give the method of parameter estimates of the avian influenza model. According to the
Lévy-Itô’s decomposition theorem, we have L̃(t) = σB(t) +

∫
Y
νÑ(t, dν). Then, by using Ekeland’s

principle and Hamiltonian function, we obtain the sufficient and necessary conditions of near optimal
of the avian influenza model with Lévy noise and imprecise parameters.
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Appendix

Appendix A: The proof of lemma 5.4

Proof. Integrating both sides of the first equation of (5.3) from t to T , we get

p1i(t) = p1i(T ) −
∫ T

t

(
[µa + ua

i +
λa(i)Θa

1 + α1Θa
−

l∑
k=1

∂

∂xk
Dik

∂

∂xk
]p1i −

λa(i)Θa

1 + α1Θa
p2i − A2iua

i

)
ds.

By squaring the sides of the above equation, we have

|p1i(t)|2

≤C|p1i(T )|2 + C(T − t)
∫ T

t

∣∣∣∣∣([µa + ua
i +

λa(i)Θa

1 + α1Θa
−

l∑
k=1

∂

∂xk
Dik

∂

∂xk
]p1i −

λa(i)Θa

1 + α1Θa
p2i − A2iua

i

)∣∣∣∣∣2ds

≤C|p1i(T )|2 + C(T − t)
∫ T

t
|p1i(s)|2 + |p2i(s)|2ds,

(A1)

similarly, we have

|p2i(t)|2

≤C|p2i(T )|2 + C(T − t)
∫ T

t

∣∣∣∣∣(λa(i) f (i)S a
i, j

(1 + α1Θa)2 p1i + [δa + µa + ua
i −

λa(i) f (i)S a
i, j

(1 + α1Θa)2 −

l∑
k=1

∂

∂xk
Dik

∂

∂xk
]p2i

+ λah( j)g( j)S h
i, j p3 j − λah( j)g( j)S h

i, j p4 j − A1i − A2iua
i

)∣∣∣∣∣2ds

≤C|p2i(T )|2 + C(T − t)
∫ T

t

(
|p1i(s)|2 + |p2i(s)|2 + |p3 j(s)|2 + |p4 j(s)|2

)
ds,

(A2)

|p3 j(t)|2

≤C|p3 j(T )|2 + C(T − t)
∫ T

t

∣∣∣∣∣([µh + λah( j)Θah −

l∑
k=1

∂

∂xk
Dik

∂

∂xk
]p3 j − λah( j)Θah p4 j

)∣∣∣∣∣2
≤C|p3 j(T )|2 + C(T − t)

∫ T

t
|p3 j(s)|2 + |p4 j(s)|2ds,

(A3)

|p4 j(t)|2

≤C|p4 j(T )|2 + C(T − t)
∫ T

t

∣∣∣∣∣([γh + δh + µh +
cuh

j

(1 + α2Ih
i, j)2
−

l∑
k=1

∂

∂xk
Dik

∂

∂xk
]p4 j − A3 j − A4 juh

j

)∣∣∣∣∣2
≤C|p4 j(T )|2 + C(T − t)

∫ T

t
|p4 j(s)|2ds.

(A4)
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It follows from (A1)-(A4) that

|p1i(t, x)|2 + |p2i(t, x)|2 + |p3 j(t, x)|2 + |p4 j(t, x)|2

≤C
(
|p1i(T, x)|2 + |p2i(T, x)|2 + |p3 j(T, x)|2 + |p4 j(T, x)|2

)
+ C(T − t)

∫ T

t

(
|p1i(s, x)|2 + |p2i(s, x)|2 + |p3 j(s, x)|2 + |p4 j(s, x)|2

)
ds,

(A5)

where t ∈ [T − ε,T ] with ε = 1
C . Using Gronwall’s inequality [31], we derive from (A5) that

sup
0≤t≤T

|p1i(t, x)|2 + |p2i(t, x)|2 + |p3 j(t, x)|2 + |p4 j(t, x)|2 ≤ C, f or t ∈ [T − ε,T ]. (A6)

We apply the same method to (A1)–(A2) in [T − ε,T ], and we can see that for any t ∈ [T −2ε,T ], (A6)
holds. Repeating a finite number of steps, we know that for any t ∈ [0,T ], the estimate (A6) holds. �

Appendix B: The proof of lemma 5.5

Proof. If η ≥ 1. For any r > 0, an estimate of |S a
i, j − S̃ a

i, j|
2η can be obtained as follows:

sup
0≤t≤r
|S a

i, j − S̃ a
i, j|

2η ≤C
∫ r

0

( l∑
k=1

∣∣∣∣∣ ∂∂xk
(Dik

∂(S a
i, j − S̃ a

i, j)

∂xk
)
∣∣∣∣∣2η + λ2η

a (i)
∣∣∣∣∣ S̃ a

i, jΘ̃a

1 + α1Θ̃a

−
S a

i, jΘa

1 + α1Θa

∣∣∣∣∣2η
+ µ2η

a |(S̃
a
i, j − S a

i, j)|
2η + |̃ua

i S̃ a
i, j − ua

i S a
i, j|

2η
)
dt

≤C
∫ r

0

( l∑
k=1

∣∣∣∣∣ ∂∂xk
(Dik

∂(S a
i, j − S̃ a

i, j)

∂xk
)
∣∣∣∣∣2η + λ2η

a (i)|Θ̃a|
2η|S a

i, j − S̃ a
i, j|

2η

+ |S̃ a
i, j|

2η|Θa − Θ̃a|
2η + µ2η

a |(S̃
a
i, j − S a

i, j)|
2η + |ua

i |
2η|S a

i, j − S̃ a
i, j|

2η + |ua
i − ũa

i |
2η
)
dt

≤C
∫ r

0
(|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η)dt + C

( ∫ r

0
Xua

i ,ũa
i
dt

)κη
≤C

( ∫ r

0
(|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η)dt + d(ua

i , ũ
a
i )κη

)
,

sup
0≤t≤r
|Ia

i, j − Ĩa
i, j|

2η ≤C
∫ r

0

( l∑
k=1

∣∣∣∣∣ ∂∂xk
(Dik

∂(Ia
i, j − Ĩa

i, j)

∂xk
)
∣∣∣∣∣2η + λ2η

a (i)
∣∣∣∣∣ S a

i, jΘa

1 + α1Θa
−

S̃ a
i, jΘ̃a

1 + α1Θ̃a

∣∣∣∣∣2η
+ (δa + µa)2η|(Ĩa

i, j − Ia
i, j)|

2η + |̃ua
i Ĩa

i, j − ua
i Ia

i, j|
2η
)
dt

≤C
( ∫ r

0
(|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η)dt + d(ua

i , ũ
a
i )κη

)
,
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sup
0≤t≤r
|S h

i, j − S̃ h
i, j|

2η ≤C
∫ r

0

( l∑
k=1

∣∣∣∣∣ ∂∂xk
(Gk j

∂(S h
i, j − S̃ h

i, j)

∂xk
)
∣∣∣∣∣2η + λ

2η
ah( j)|S̃ h

i, jΘ̃ah − S h
i, jΘah|

2η

+ µ
2η
h |S̃

h
i, j − S h

i, j|
2η
)
dt ≤ C

( ∫ r

0
(|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η)dt

)
,

sup
0≤t≤r
|Ih

i, j − Ĩh
i, j|

2η ≤C
∫ r

0

( l∑
k=1

∣∣∣∣∣ ∂∂xk
(Gk j

∂(Ih
i, j − Ĩh

i, j)

∂xk
)
∣∣∣∣∣2η + λ

2η
ah( j)|λah( j)S h

i, jΘah − S̃ h
i, jΘ̃ah|

2η

+ (µh + δh + γh)2η |̃Ih
i, j − Ih

i, j|
2η +

c̃uh
j Ĩ

h
i, j

1 + α2 Ĩh
i, j

−
cuh

j I
h
i, j

1 + α2Ih
i, j

)
dt

≤C
( ∫ r

0
(|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η)dt + d(uh

j , ũ
h
j)
κη
)
,

so, we have

sup
0≤t≤r
|S a

i, j − S̃ a
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η + |S h

i, j − S̃ h
i, j|

2η + |S h
i, j − S̃ h

i, j|
2η

≤C
( ∫ r

0
sup
0≤t≤s

(|S a
i, j − S̃ a

i, j|
2η + |S h

i, j − S̃ h
i, j|

2η + |Ia
i, j − Ĩa

i, j|
2η + |Ih

i, j − Ĩh
i, j|

2η)ds + d(ua
i , ũ

a
i )κη + d(uh

j , ũ
h
j)
κη
)
.

We have the result using Gronwall’s inequality. Next considering 0 ≤ η < 1, by using Cauchy-
Schwartz’s inequality, we have

sup
0≤t≤T

|S a
i, j − S̃ a

i, j|
2η + |Ia

i, j − Ĩa
i, j|

2η + |S h
i, j − S̃ h

i, j|
2η + |S h

i, j − S̃ h
i, j|

2η ≤ C[d(ua
i , ũ

a
i )κη + d(uh

j , ũ
h
j)
κη].

This proof is complete. �

Appendix C: The proof of lemma 5.6

Proof. We let p̂1i = p1i − p̃1i, p̂2i = p2i − p̃2i, p̂3 j = p3 j − p̃3 j, p̂4 j = p4 j − p̃4 j. Then according to
adjoint Eq (5.3), we can see

dp̂1i = −

(
(−µa − λa(i)

Θa

1 + α1Θa
+

l∑
k=1

∂

∂xk
Dik

∂

∂xk
) p̂1i + λa(i)

Θa

1 + α1Θa
p̂2i + f̂1i

)
dt,

dp̂2i = −

(
−
λa(i) f (i)S a

i, j

(1 + α1Θa)2 p̂1i + (−δa − µa +
λa(i) f (i)S a

i, j

(1 + α1Θa)2 +

l∑
k=1

∂

∂xk
Dik

∂

∂xk
) p̂2i

− λah( j)g( j)S h
i, j p̂3 j + λah( j)g( j)S h

i, j p̂4 j + f̂2i

)
dt,

dp̂3 j = −

(
(−µh − λah( j)Θah +

l∑
k=1

∂

∂xk
Dik

∂

∂xk
) p̂3 j + f̂3 j

)
dt,

dp̂4 j = −

(
(−γh − δh − µh −

cuh
j

(1 + α2Ih
i, j)2

+

l∑
k=1

∂

∂xk
Dik

∂

∂xk
) p̂4 j + f̂4 j

)
dt,

(C1)
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where

f̂1i =λa(i)
(

Θa

1 + α1Θa
−

Θ̃a

1 + α1Θ̃a

)
( p̃2i − p̃1i) + A2i(ua

i − ũa
i ) + ũa

i p̃1i − ua
i p1i,

f̂2i =λa(i) f (i)
( S a

i, j

(1 + α1Θa)2 −
S̃ a

i, j

(1 + α1Θ̃a)2

)
( p̃2i − p̃1i) + λah( j)g( j)(S h

i, j − S̃ h
i, j)( p̃4 j − p̃3 j)

+ A2i(ua
i − ũa

i ) + ũa
i p̃2i − ua

i p2i,

f̂3 j =λah( j)(Θah − Θ̃ah)( p̃4 j − p̃3 j),

f̂4 j =

( c̃uh
j

(1 + α2 Ĩh
i, j)2
−

cuh
j

(1 + α2Ih
i, j)2

)
p̃4 j + A4 j(uh

j − ũh
j).

(C2)

We assume that ϕ = (ϕ1i, ϕ2i, ϕ3 j, ϕ4 j)T is the following linear differential equation:

dϕ1i =

(
(−µa − λa(i)

Θa

1 + α1Θa
+

l∑
k=1

∂

∂xk
Dik

∂

∂xk
)ϕ1i −

λa(i) f (i)S a
i, j

(1 + α1Θa)2ϕ2i + | p̂1i|
η−1sgn( p̂1i)

)
dt,

dϕ2i =

(
λa(i)

Θa

1 + α1Θa
ϕ1i + (−δa − µa +

λa(i) f (i)S a
i, j

(1 + α1Θa)2 +

l∑
k=1

∂

∂xk
Dik

∂

∂xk
)ϕ2i + | p̂2i|

η−1sgn( p̂2i)
)
dt,

dϕ3 j =

(
− λah( j)g( j)S h

i, jϕ2i + (−µh − λah( j)Θah +

l∑
k=1

∂

∂xk
Dik

∂

∂xk
)ϕ3 j + | p̂3 j|

η−1sgn( p̂3 j)
)
dt,

dϕ4 j =

(
λah( j)g( j)S h

i, jϕ2i + (−γh − δh − µh −
cuh

j

(1 + α2Ih
i, j)2

+

l∑
k=1

∂

∂xk
Dik

∂

∂xk
)ϕ4 j + |p̂4 j|

η−1sgn( p̂4 j)
)
dt,

(C3)
where sgn(·) is a symbolic function. According to assumption and Lemma 5.5, the existence and
uniqueness of solution of (C3) can be verified, and we have∫ T

0

∫
Ω

(
|| p̂1i|

η−1sgn( p̂1i)|2 + || p̂2i|
η−1sgn( p̂2i)|2 + || p̂3 j|

η−1sgn( p̂3 j)|2 + ||p̂4 j|
η−1sgn( p̂4 j)|2

)
dxdt < +∞.

Because 1 < η < 2, thus there exist η1 > 2 such that 1
η1

+ 1
η

= 1. So, using Cauchy-Schwartz’s
inequality, we have

sup
0≤t≤T

(
|ϕ1i|

η1 + |ϕ2i|
η1 + |ϕ3 j|

η1 + |ϕ4 j|
η1

)
≤

∫ T

0

∫
Ω

(
|p̂1i|

η + | p̂2i|
η + | p̂3 j|

η + | p̂4 j|
η
)
dxdt

≤C
( ∫ T

0

∫
Ω

(| f̂1i|
η + | f̂2i|

η + | f̂3 j|
η + | f̂4 j|

η)dxdt
)
.

Using Cauchy-Schwartz’s inequality, we have∫ T

0

∫
Ω

| f̂1i|
ηdxdt ≤C

( ∫ T

0

∫
Ω

|Ia
i, j − Ĩa

i, j|
η(| p̃1i|

η + | p̃2i|
η)dxdt + Cd(ua

i , ũ
a
i )

κη
2

)
≤C

(
(
∫ T

0

∫
Ω

|Ia
i, j − Ĩa

i, j|
2η

2−η dxdt)1− η2 (
∫ T

0

∫
Ω

(| p̃1i|
2 + | p̃2i|

2)dxdt)
η
2 + Cd(ua

i , ũ
a
i )

κη
2

)
.
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Note that 2η
1−η < 1, 1 − η

2 > κη

2 and d(u, ũ) < 1. It follows from
∫ T

0

∫
Ω
| f̂1i|

ηdxdt ≤ Cd(ua
i , ũ

a
i )

κη
2 . In

the same way, we get
∫ T

0

∫
Ω
| f̂2i|

ηdxdt ≤ Cd(ua
i , ũ

a
i )

κη
2 ,

∫ T

0

∫
Ω
| f̂3 j|

ηdxdt ≤ Cd(uh
j , ũ

h
j)

κη
2 ,

∫ T

0

∫
Ω
| f̂4 j|

ηdxdt ≤
Cd(uh

j , ũ
h
j)

κη
2 . So, we have∫ T

0

∫
Ω

(| p̂1i|
η + | p̂2i|

η + |p̂3 j|
η + | p̂4 j|

η)dxdt ≤ C
( ∫ T

0

∫
Ω

(| f̂1i|
η + | f̂2i|

η + | f̂3 j|
η + | f̂4 j|

η)dxdt
)

≤C(d(ua
i , ũ

a
i )

κη
2 + d(uh

j , ũ
h
j)

κη
2 ).

This completes the proof. �
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