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Abstract: This article studies a (2+1)–dimensional first extended Calogero-Bogoyavlenskii-Schiff
equation, which was recently introduced in the literature. We derive Lie symmetries of this equa-
tion and then use them to perform symmetry reductions. Using translation symmetries, a fourth-
order ordinary differential equation is obtained which is then solved with the aid of Kudryashov and
(G′/G)−expansion techniques to construct closed-form solutions. Besides, we depict the solutions with
the appropriate graphical representations. Moreover, conserved vectors of this equation are computed
by engaging the multiplier approach as well as Noether’s theorem.
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1. Introduction

Non-linear differential equations continue to play a vital role in today’s world as they are used
as mathematical models that describe natural phenomena, for example in astronomy, fluids, plasmas,
solid-state materials, meteorology and climate, operations research, system theory and control, con-
tinuum mechanics, and oceanography, just to mention a few. Some of these models include the pair
transition coupled non-linear Schrödinger equations that are used to illustrate the spreading of the op-
tical waves in isotropic medium [1]; Boussinesq equation that arises in the vibrations of a non-linear
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string [2]; Boiti-Leon-Manna-Pempinelli equation that models incompressible fluid [3]; and Hirota-
Satsuma equation that models the unidirectional propagation of shallow water waves [4]. Lie sym-
metry analysis was carried out in [5–8] on some non-linear partial differential equations (NPDEs) and
Boussinesq type equations were studied in [9–11]. Painlevé integrability was studied for the three di-
mensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients and
for Sakovich equation in [12, 13], respectively. Conservation laws and exact solutions were obtained
in [14–16] for double dispersion equations in (1+1) and (2+1) dimensions, an extended Korteweg–de
Vries equation and the (3+1)-dimensional negative-order KdV equation, respectively. New exact so-
lutions to the nonlinear Schrödinger equation with variable coefficients were derived in [17], whereas
symmetry reductions were performed in [18] for the (3+1)-dimensional modified Zakharov-Kuznetsov
equation. Bounded and unbounded travelling wave solutions of the (3+1)-dimensional Jimbo-Miwa
equation were obtained in [19] and exact solutions for the short pulse equation were constructed in [20].

Due to the fact that a lot of phenomena of real world are represented by NPDEs, it is paramount
that we are able to solve them and find their closed-form solutions for a better understanding of such
equations. There is no standard theory that can be utilized to find such solutions. Nevertheless, over the
years, researchers have developed several methods which can lead us to special solutions of NPDEs.
These include the power series method [20], the inverse scattering transform method [21], bifurca-
tion method [22], the simplest equation technique [23], the extended simplest equation technique [24],
Kudryashov’s technique [25], Hirota’s method [26], Bäcklund transformation [27], Darboux transfor-
mation [28], the homogeneous balance technique [29], (G′/G)−expansion technique [30], Lie symme-
try method [31–33] and so on.

In the middle years of the nineteenth century, Sophus Lie invented the theory of continuous groups
together with its applications to differential equations (DEs). This investigation resulted in one of the
significant branches of the twentieth-century mathematics, which is called theory of Lie groups as well
as Lie algebras. Lie introduced what is called the Lie symmetries and used them to solve ordinary
differential equations (ODEs). Moreover, utilizing Lie symmetries, systems of DEs can be reduced to
simpler form. In fact, Lie’s method is the most effective and powerful technique for obtaining closed-
form solutions to NPDEs [31–33].

Conservation laws are beneficial in the investigation of DEs [33,34]. Conservation laws are physical
laws that state that certain physical properties remain unchanged in the course of time within an isolated
system. For example, in physics such laws govern momentum, energy, angular momentum, and electric
charge. With the help of conservation laws one can recognize whether or not a given partial differential
equation (PDE) is completely integrable. The validity of numerical solution methods can be checked
by the aid of conservation laws [35]. Moreover, conservation laws can be used in constructing exact
solutions of PDEs [36, 37]. For systems that have Lagrangian formulation, Noether theorem gives
an elegant way to construct conservation laws [38–40]. However, the multiplier method [32] and
the theorem due to Ibragimov [41–43] can be utilized to derive conservation laws for any system of
equations whether or not the system has a Lagrangian formulation.

Two NPDEs that model real-life situations, that is to say, the (2+1)–dimensional Calogero-
Bogoyavlenskii-Schiff (CBS) equations that read [44]

uxxxy + 2uyuxx + 4uxuxy + uxt = 0 (1.1)
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and

uxxxt + 2utuxx + 4uxutx + uxy = 0 (1.2)

describe the interplay of long propagating wave in the x-axis with the Riemann propagating wave along
y-axis. Bogoyavlenskii in [45] derived (1.1) using Lax formulation and went further to utilize some
form of Lax representations which made it possible for the introduction of equation (1.2). Besides, the
researcher established an indication that equation (1.1) possesses soliton as well as N-soliton solutions
which are smooth in one coordinate. In [44], Wazwaz invoked Hirota’s bilinear approach and derived
solutions of (1.1) and later travelling wave solutions were obtained in [46]. In [47], the authors derived
Bäcklund transformation alongside Lax pair of a form of CBS equation (1.1) via the singular manifold
method. Moreover, some travelling wave solutions to (1.1) were derived in [48] using tanh function
technique and (G′/G)−expansion technique.

However, a generalized version of (1.1), namely

uxxxy + buyuxx + auxuxy + uxt = 0 (1.3)

has been studied by many researchers. For instance, in [49], (G′/G)−expansion method was invoked
and travelling wave solutions of (1.3) were constructed. Furthermore, in [50], the Hirota’s bilinear
technique and homoclinic test method were employed to secure breather-type as well as certain analytic
soliton solutions. Using tanh-coth approach, the authors of [51] found some closed-form solution of
(1.3). The sine-cosine and complex techniques were used in [52,53] to derive, respectively, the analytic
and meromorphic exact solutions of (1.3).

Recently, by including uxy to CBS equation (1.1), the author of [54] introduced the equation that
reads

uxy + 4uxuxy + 2uxxuy + uxxxy + utx = 0. (1.4)

Here t is an independent variable representing time, x and y are independent variables that represent
spatial coordinates and u(t, x, y) denotes the elongation of the wave at any point (t, x, y). We call
it (2+1)–dimensional first extended CBS (eCBS) equation. This new integrable eCBS equation (1.4)
appears in propagation of waves and provide a variety of multiple real and complex soliton solutions.
Painlevé analysis has been employed to justify the integrability and furthermore, multiple soliton solu-
tions were derived in [54].

Here we investigate eCBS equation (1.4). In Section 2, we present solutions of eCBS (1.4) using
different methods and Section 3 deals with the conservation laws of the equation, obtained by two
approaches. Thereafter, we bestow concluding remarks.

2. Solutions of the eCBS equation

This section firstly determines the Lie point symmetries of eCBS equation (1.4) which are then
utilized to reduce the equation and subsequently enables us to find its exact solutions.

2.1. Symmetry reductions

The eCBS equation (1.4) will admit the infinitesimal group generator

S = τ(t, x, y, u)
∂

∂t
+ ξ(t, x, y, u)

∂

∂x
+ φ(t, x, y, u)

∂

∂y
+ η(t, x, y, u)

∂

∂u
(2.1)
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on condition that

S[4]
(
uxy + 4uxuxy + 2uxxuy + uxxxy + utx

)∣∣∣∣
(1.4)

= 0, (2.2)

where S[4] is fourth extension of (2.1) defined by [32]

S[4] = τ
∂

∂t
+ ξ

∂

∂x
+ φ

∂

∂y
+ η

∂

∂u
+ ζx

∂

∂ux
+ ζy

∂

∂uy
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ ζxy

∂

∂uxy

+ ζxxxy
∂

∂uxxxy
. (2.3)

Thus, from equation (2.2), we obtain{
ζx(4uxy) + ζy(2uxx) + ζtx(1) + ζxx(2uy) + ζxy(4ux) + ζxxxy(1)

} ∣∣∣∣
(1.4)

= 0 (2.4)

and when expanding and separating on appropriate derivatives of u, we get fourteen linear homoge-
neous PDEs:

τx = 0, τy = 0, τu = 0, ξy = 0, ξu = 0, φx = 0, φu = 0, ξxx = 0, φtt = 0,
ηxx = 0, ηu + ξx = 0, 2ηy − ξt = 0, 4ηx + 2ξx − φt = 0, φy + 2ξx − τt = 0.

The solution of above PDEs yields the symmetries of the eCBS equation (1.4) given as

S1 =
∂

∂t
,

S2 = 2 f (t)
∂

∂x
+ y f ′(t)

∂

∂u
,

S3 =
∂

∂y
,

S4 = g(t)
∂

∂u
,

S5 = 4t
∂

∂y
+ x

∂

∂u
,

S6 = 2x
∂

∂x
− 4y

∂

∂y
− (2u + x)

∂

∂u
,

S7 = 4t
∂

∂t
+ 2x

∂

∂x
− (2u + x)

∂

∂u
,

S8 = − 4t2 ∂

∂t
− 2tx

∂

∂x
− 4ty

∂

∂y
+ (2tu + tx − xy)

∂

∂u
.

One-parameter groups and transformed solutions
Using the Lie equations [33], the corresponding one-parameter groups are

Ga1 : (t̄, x̄, ȳ, ū) −→ (t + a, x, y, u),
Ga2 : (t̄, x̄, ȳ, ū) −→ (t, x + 2a f (t), y, u + ay f ′(t)),
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Ga3 : (t̄, x̄, ȳ, ū) −→ (t, x, y + a, u),
Ga4 : (t̄, x̄, ȳ, ū) −→ (t, x, y, u + ag(t)),
Ga5 : (t̄, x̄, ȳ, ū) −→ (t, x, y + 4at, u + ax),

Ga6 : (t̄, x̄, ȳ, ū) −→
(
t, xe2a, ye−4a, ue−2a −

x
2

sinh(2a)
)
,

Ga7 : (t̄, x̄, ȳ, ū) −→
(
te4a, xe2a, y, ue−2a −

x
2

sinh(2a)
)
,

Ga8 : (t̄, x̄, ȳ, ū) −→
(

t
1 + 4at

,
x

√
1 + 4at

,
y

1 + 4at
, u
√

1 + 4at +
ax(t − y)
√

1 + 4at

)
.

Consequently, if u = ψ(t, x, y) is a solution of eCBS equation (1.4), then so are

u1 =ψ(t − a, x, y),
u2 = ay f ′(t) + ψ(t, x − 2a f (t), y),
u3 =ψ(t, x, y − a),
u4 = ag(t) + ψ(t, x, y),
u5 = ax + ψ(t, x, y − 4at),

u6 = e−2aψ
(
t, xe−2a, ye4a

)
−

1
2

xe−2asinh(2a),

u7 = e−2aψ
(
te−4a, xe−2a, y

)
−

1
2

xe−2asinh(2a),

u8 =
ax(t − y)
1 − 4at

+
1

√
1 − 4at

ψ

(
t

1 − 4at
,

x
√

1 − 4at
,

y
1 − 4at

)
.

We now perform symmetry reductions of the eCBS equation (1.4) by utilizing its three translation
symmetries. Consider the combination S = S1 + aS2 + bS3, with f (t) = 1/2 and constants a and b.
The symmetry S provides three invariants, namely

p = x − at, q = y − bt, F = u (2.5)

and using them reduces (1.4) to

(1 − b)Fpq + 4FpFpq − aFpp + 2FqFpp + Fpppq = 0. (2.6)

Clearly Γ1 = ∂/∂p and Γ2 = ∂/∂q are Lie point symmetries of equation (2.6) as p and q do not appear
explicitly in the equation. Utilizing the symmetry Γ = Γ1 + dΓ2, d being an arbitrary constant, we can
reduce equation (2.6). The symmetry Γ provides us with two invariants

r = q − dp, F = G, (2.7)

which reduces equation (2.6) to 4th-order nonlinear ordinary differential equation (NODE)

(d − bd + ad2)G′′(r) − 6d2G′(r)G′′(r) + d3G′′′′(r) = 0. (2.8)
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2.2. Solution of (1.4) by direct integration

We rewrite equation (2.8) in the form

AG′′(r) − 6d2G′(r)G′′(r) + d3G′′′′(r) = 0, (2.9)

where A = d − bd + ad2. Integrating equation (2.9) twice, we get

1
2

AG′2 − d2G′3 +
d3

2
G′′2 + K1G′ + K2 = 0, (2.10)

where K1 and K2 are arbitrary constants. Let G′ = Φ, then equation (2.10) becomes

Φ′2 =
2
d

Φ3 −
A
d3 Φ2 −

2K1

d3 Φ −
2K2

d3 . (2.11)

If the algebraic equation

Φ3 −
A

2d2 Φ2 −
K1

d2 Φ −
K2

d2 = 0

has the roots r1 > r2 > r3, then (2.11) can be written as

Φ′2 =
2
d

(Φ − r1)(Φ − r2)(Φ − r3) (2.12)

whose solution is [55, 56]

Φ(r) = r2 + (r1 − r2)cn2

√r1 − r3

2d
r
∣∣∣∣∣N , N2 =

r1 − r2

r1 − r3
(2.13)

with cn denoting the cosine elliptic function. Since Φ = G′ we integrate equation (2.13) and going
back to the variables t, x and y the eCBS equation (1.4) acquires a periodic solution

u(t, x, y) =

√
2d(r1 − r2)2

(r1 − r3)M8

{
EllipticE

[
sn

(
(r1 − r3)

2d
r,N

)
,N

]}
+

{
r2 − (r1 − r2)

1 − N4

N4

}
r + C3, (2.14)

where r = (ad − b)t − dx + y, C3 a constant and

EllipticE[q,w] =

∫ w

0

√
1 − w2m2

1 − m2 dm

is the incomplete elliptic integral [57]. We present the wave profile of the periodic solution (2.14), for
the parametric values a = −4, b = 0.2, d = 0.6, r1 = 100, r2 = 50.05, r3 = −60, C3 = 100 in Figure 1.

When the roots satisfy r1 > r2 = r3, the solution of the eCBS equation (1.4) becomes

u(t, x, y) = r2r +
√

2d tanh
√r1 − r2

2d
r
 + C, (2.15)
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Figure 1. The 3D and 2D periodic solution profiles of (2.14).

where r = (ad − b)t − dx + y and C is a constant of integration.
When r1 = 2k2 (k a constant) and r2 = r3 = 0, the solution of the eCBS equation (1.4) becomes

u(t, x, y) = 2
√

d k tanh
(

k
√

d
r
)

+ C0, (2.16)

where r = (ad − b)t − dx + y and C0 is an integration constant. We represent the wave profile of (2.16)
in Figure 2 with 3D and 2D plots taking the parametric values a = 0.1, b = 0.1, d = 1.5, k = 1, C0 = 10
with t = 10.

-4 -2 2 4
x

8

9

10

11

12

Figure 2. The 3D and 2D solution profiles of (2.16).

2.3. Solution of (1.4) by Kudryashov’s method

We invoke Kudryashov’s method [25] to construct a closed-form solution of eCBS equation (1.4).
This method is an effective technique for finding closed-form solutions of NPDEs. The first step is
to reduce the nonlinear eCBS equation (1.4) to NODE, which we have already done using the Lie
symmetries in the previous section. Thus, we work with the NODE (2.8). We assume a solution of
(2.8) is structured as

G(r) =

N∑
n=0

AnHn(r), (2.17)

where H(r) satisfies the first-order NODE

H′(r) = H2(r) − H(r). (2.18)
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We observe that the solution of (2.18) is

H(r) =
1

1 + exp(r)
. (2.19)

The balancing procedure [25] for (2.8) yields N = 1. Thus, from (2.17), we have

G(r) = A0 + A1H(r). (2.20)

Now substituting (2.20) into (2.8) and using (2.18), we obtain, with the aid of Mathematica

2aA1d2H(r)3 − 3aA1d2H(r)2 + aA1d2H(r) − 2A1bdH(r)3

+ 3A1bdH(r)2 − A1bdH(r) + 24A1d3H(r)5 − 60A1d3H(r)4

+ 50A1d3H(r)3 − 15A1d3H(r)2 + A1d3H(r) − 12A2
1d2H(r)5

+ 30A2
1d2H(r)4 − 24A2

1d2H(r)3 + 6A2
1d2H(r)2 + 2A1dH(r)3

− 3A1dH(r)2 + A1dH(r) = 0. (2.21)

Now separating on powers of H(r), we acquire the following algebraic equations for the coefficients
A0 and A1:

H(r)5 : 2A1d2 − A2
1d = 0,

H(r)4 : A2
1d − 2A1d2 = 0,

H(r)3 : aA1d − A1b + 25A1d2 − 12A2
1d + A1 = 0,

H(r)2 : A1b − aA1d − 5A1d2 + 2A2
1d − A1 = 0,

H(r) : aA1d − A1b + A1d2 + A1 = 0, (2.22)

whose solution is

A0 = A0, A1 = 2d, a =
b − d2 − 1

d
. (2.23)

Consequently, the solution of eCBS equation (1.4) associated with (2.23) is

u(t, x, y) = A0 −

 a ±
√

a2 + 4b − 4
1 + exp((ad − b)t − dx + y)

 , (2.24)

where A0 represents arbitrary constant. The wave profile solution (2.24) for different values of param-
eters b = 0, d = 0.05, A0 = 0 with t = 0 is shown in Figure 3.

2.4. Solution of (1.4) by (G′/G)−expansion method

Here we invoke the (G′/G)−expansion method [30] to acquire closed-form solutions of eCBS equa-
tion (1.4) . Assume solution of the form

G(r) =

M∑
j=0

A j

(
H′(r)
H(r)

) j

, (2.25)

where H(r) satisfies
H′′(r) + λH′(r) + µH(r) = 0 (2.26)
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Figure 3. The 3D and 2D solution profiles of (2.24).

with λ, µ constants. The value of M is determined by the use of balancing procedure [30]. Here
A0, · · · , AM, are undetermined parameters which will be found.

For (2.8), the balancing procedure yields M = 1 and hence (2.25) becomes

G(r) = A0 + A1

(
H′(r)
H(r)

)
. (2.27)

Substitution of the expression for G(r) from (2.27) into (2.8) and using (2.26) provides an algebraic
equation, which when separated on powers of H′(r)/H(r) gives five algebraic equations:

aA1d2λµ − A1bdλµ + A1d3λ3µ + 8A1d3λµ2 + 6A2
1d2λµ2 + A1dλµ = 0,

aA1d2λ2 + 2aA1d2µ − A1bdλ2 − 2A1bdµ + A1d3λ4 + 22A1d3λ2µ

+ 16A1d3µ2 + 12A2
1d2λ2µ + 12A2

1d2µ2 + A1dλ2 + 2A1dµ = 0,
aA1d2λ − A1bdλ + 5A1d3λ3 + 20A1d3λµ + 2A2

1d2λ3 + 12A2
1d2λµ + A1dλ = 0,

aA1d2 − A1bd + 25A1d3λ2 + 20A1d3µ + 12A2
1d2λ2 + 12A2

1d2µ + A1d = 0,
10A1d3λ + 5A2

1d2λ + 4A1d3 + 2A2
1d2 = 0.

Solving with Mathematica, gives

A0 = A0, A1 = −2d, a =
b − d2λ2 + 4d2µ − 1

d
.

Accordingly, we have the following three kinds of solutions to eCBS equation (1.4):
When λ2 − 4µ > 0, we gain hyperbolic function solution

u(t, x, y) = A0 + A1

(
−
λ

2
+ ∆1

C1 sinh (∆1r) + C2 cosh (∆1r)
C1 cosh (∆1r) + C2 sinh (∆1r)

)
, (2.28)

where r = (ad − b)t − dx + y, ∆1 = 1
2

√
λ2 − 4µ together with C1 and C2 arbitrary constants. The wave

profile of the solution (2.28) for parametric values a = 1, b = 0.1, d = 1, λ = −0.01, µ = 0.05, A0 = 1,
C1 = 1, C2 = 4 with t = 1 is shown in Figure 4.

When λ2 − 4µ < 0, we achieve trigonometric function solution

u(t, x, y) = A0 + A1

(
−
λ

2
+ ∆2

−C1 sin (∆2r) + C2 cos (∆2r)
C1 cos (∆2r) + C2 sin (∆2r)

)
, (2.29)
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Figure 4. The 3D and 2D solution profiles of (2.28).

where r = (ad − b)t − dx + y, ∆2 = 1
2

√
4µ − λ2 and C1, C2 arbitrary constants. The wave profile of the

solution (2.29) for parametric values a = 0.1, b = 0.01, d = 1, λ = 0.01, µ = 0.05, A0 = 1, C1 = 3,
C2 = 5 with t = 1 is shown in Figure 5.
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Figure 5. The 3D and 2D solution profiles of (2.29).

When λ2 − 4µ = 0, we gain rational function solution

u(t, x, y) = A0 + A1

(
−
λ

2
+

C2

C1 + C2r

)
, (2.30)

where r = (ad − b)t − dx + y and C1, C2 arbitrary constants. The wave profile of the solution (2.30) for
parametric values a = 0.01, b = 0.01, d = 1, λ = 0.01, µ = 0.05, A0 = 1, C1 = 3, C2 = 0 with t = 0.4
is shown in Figure 6.

Remark. It should be noted that Kudryashov’s method (also called exponential rational function
method) and the (G′/G)−expansion method are particular cases of an earlier Riccati expansion tech-
nique [58–61].

3. Conservation laws

We now invoke multiplier method and Noether’s theorem to derive conservation laws of eCBS
equation (1.4).
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Figure 6. The 3D and 2D solution profiles of (2.30).

3.1. Use of multiplier method

In this subsection, we determine conserved quantities of eCBS equation (1.4) by invoking multiplier
method [32, 42]. We attempt to find first-order multipliers Q, that is

Q = Q(t, x, y, u, ut, ux, uy).

The multipliers are determined from

δ

δu

{
Q

(
uxy + 4uxuxy + 2uxxuy + uxxxy + utx

)}
= 0, (3.1)

where

δ

δu
=

∂

∂u
− Dx

∂

∂ux
− Dy

∂

∂uy
+ DtDx

∂

∂utx
+ D2

x
∂

∂uxx
+ DxDy

∂

∂uxy
+ D3

xDy
∂

∂uxxxy

is the Euler operator with Dt, Dx, Dy being the total derivative operators [33]. Expanding (3.1) and
separating on appropriate derivatives of u, we obtain twenty five PDEs:

Qxx = 0, Qxu = 0, Qxut = 0, Qxuy = 0, Qyy = 0, Qyu = 0, Qyut = 0,
Qyux = 0, Quu = 0, Quut = 0, Quux = 0, Quuy = 0, Qutut = 0, Qutux = 0,
Qutuy = 0, Quxux = 0, Quxuy = 0, Quyuy = 0, Qtu + 2Qxy = 0, Qtut − 4Qu = 0,
Qxux − Qu = 0, Qyuy − 2Qu = 0, Qtux − 4uyQu + 2Qy = 0,
Qtx + (2ux + 1)Qxy = 0, Qtuy − 4uxQu − 2Qu + 4Qx = 0.

Solving the above PDEs, we obtain

Q = y f ′(t) − 2ux f (t) + g(t) − 4C1t2ut +
{
C1(−4yuy − 2xux − 2u − x)

+C2(4ut + 2uy) − 4C3uy

}
t + C1xy + C2(xux + 2yuy + u) + C3x

+ C4ut + C5ux + C6uy,

with C1, . . . ,C6 as constants whereas f , g are functions of t. Conserved quantities of equation (1.4) are
now derived using the divergence expression

DtT t + DxT x + DyT y = Q
(
uxy + 4uxuxy + 2uxxuy + uxxxy + utx

)
, (3.2)
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with T t conserved density and T x, T y spatial fluxes. As a result we get the following low-order con-
served vectors (T t,T x,T y) corresponding to the eight multipliers:

Case 1. For Q1 = −4t2ut − 2txux − 4tyuy − 2tu − tx + xy,
we have the corresponding conserved vector as

T t
1 = −

16
3

t2uuxuxy −
8
3

t2uuyuxx − 2t2uutx − 2t2uuxxxy − 2t2uuxy − 2t2utux

− txu2
x − 2tyuxuy − tuux − txux + xyux,

T x
1 = − 4txuxuxy + xuux + yuuy + xyuy + tuxy + 3xyuxuy + 2t2uutt

− 2t2utuxxy − 2t2utuy + 2t2utxuxy − 2t2uyutxx
4
3

tu2uxy

+ 2tyu2
xy − 2tyu2

y + 5tuut − tuuxxy + 2tuxuxy − 3tuyuxx

− txuxxy − txuy + xyuxxy + u2 −
8
3

t2uutuxy +
8
3

t2uuyutx

− 8t2utuxuy − 4txuyu2
x − 8tyuxu2

y + 2tyuuty −
4
3

tuuxuy

− txuuxxxy − 2txuuxy − txuxuxxy − 4txuxuy + txuxxuxy

− txuyuxxx − 4tyuyuxxy + xyuuxy − yuxy + xu,

T y
1 =

8
3

t2uutuxx +
16
3

t2uuxutx + 2t2uutxxx + 2t2uutx + 4txuuxuxx

+
4
3

tu2uxx + 2txuuxx + txuuxxxx − 2tyuutx +
16
3

tuu2
x + 4tuux

+ 4tuuxxx + tu − xyuuxx − 2yuux − yu;

Case 2. For Q2 = 4 tut + xux + 2tuy + 2yuy + u, we have the conserved vector given by

T t
2 =

16
3

tuuxuxy +
8
3

tuuyuxx + 2tuutx + 2tuuxxxy + 2tuuxy + 2tutux + tuxuy

+ yuxuy +
1
2

xu2
x +

1
2

uux,

T x
2 = − uxuxy + yu2

y + 4yuxu2
y + 4tuxu2

y + 2tutuy + 2tuyutxx + 2tuyuxxy − 2tuutt

− tuuty + 2tutuxxy − 2tutxuxy + 2xuyu2
x − yuuty +

2
3

uuxuy −
1
2

xuxxuxy

+
1
2

xuyuxxx + 2yuyuxxy + tu2
y −

1
2

uuy − tu2
xy + 2xuuxuxy +

1
2

xuuxxxy

+
1
2

xuuxy +
1
2

xuxuxxy +
3
2

uyuxx +
2
3

u2uxy − yu2
xy −

8
3

tuuyutx + 8tutuxuy

+
8
3

tuutuxy +
1
2

xuxuy −
5
2

uut +
1
2

uuxxy,

T y
2 = −

8
3

tuutuxx − 2xuuxuxx −
2
3

u2uxx −
1
2

xuuxx −
8
3

uu2
x −

16
3

tuuxutx

− uux − 2tuutxxx − tuutx −
1
2

xuuxxxx + yuutx − 2uuxxx;

Case 3. For Q3 = x − 4tuy, we have the conserved vector

T t
3 = xux − 2tuxuy,
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T x
3 = − 8tuxu2

y + 2tuuty + xuuxy + 3xuxuy − 4tuyuxxy + 2tu2
xy − 2tu2

y

+ uuy + xuxxy + xuy − uxy,

T y
3 = − 2tuutx − xuuxx − 2uux − u;

Case 4. For Q4 = ut, we have the conserved vector

T t
4 =

4
3

uuxuxy +
2
3

uuyuxx +
1
2

uutx +
1
2

uuxxxy +
1
2

uuxy +
1
2

utux,

T x
4 =

2
3

uutuxy + 2utuxuy +
1
2

utuxxy +
1
2

utuy −
2
3

uuyutx +
1
2

uyutxx

−
1
2

uutt −
1
2

utxuxy,

T y
4 = −

2
3

uutuxx −
4
3

uuxutx −
1
2

uutx −
1
2

uutxxx;

Case 5. For Q5 = ux, we have the corresponding conserved vector as

T t
5 =

1
2

u2
x,

T x
5 = 2u2

xuy +
1
2

(4uuxy + uxxy + uy)ux +
1
2

(u − uxx)uxy +
1
2

uuxxxy +
1
2

uyuxxx,

T y
5 = −

1
2

u(4uxuxx + uxx + uxxxx);

Case 6. For Q6 = uy, we have the conserved vector given by

T t
6 =

1
2

uxuy,

T x
6 = 2uxu2

y + uyuxxy +
1
2

u2
y −

1
2

uuty −
1
2

u2
xy,

T y
6 =

1
2

uutx;

Case 7. For Q7 = f ′(t)y − 2 f (t)ux, we have the conserved vector

T t
7 = f ′(t)yux − f (t)u2

x,

T x
7 = − f ′′(t)yu + f ′(t)

{
(3yuy + u)ux + y(uuxy + uxxy + uy)

}
− f (t)

{
4u2

xuy

+(4uuxy + uxxy + uy)ux + u(uxxxy + uxy) + uyuxxx − uxyuxx

}
,

T y
7 = u {4 f (t)uxuxx − f ′(t)yuxx + f (t)uxx + f (t)uxxxx} ;

Case 8. For Q8 = g(t), we have the conserved vector

T t
8 = g(t)ux,

T x
8 = − g′(t)u + g(t)(3uxuy + uy + uuxy + uxxy),

T y
8 = − g(t)uuxx.
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3.2. Use of Noether’s theorem

We now utilize the classical Noether’s theorem [38] to construct conservation laws for the eCBS
equation (1.4).

A 2nd-order Lagrangian of equation (1.4) is

L =
1
2

uxxuxy −
1
2

utux −
1
2

uxuy − u2
xuy. (3.3)

Thus, the Noether symmetries

N = τ(t, x, y, u)
∂

∂t
+ ξ(t, x, y, u)

∂

∂x
+ φ(t, x, y, u)

∂

∂y
+ η(t, x, y, u)

∂

∂u

of eCBS equation (1.4) are constructed by employing the Lagrangian (3.3) on the determining equation

N[2]L +L
{
Dt(τ) + Dx(ξ) + Dy(φ)

}
− Dt(Bt) − Dx(Bx) − Dy(By) = 0, (3.4)

with N[2] being the second extension of N and Bt, Bx, By are gauge functions. Expanding (3.4) and
solving the resultant PDEs, we obtain the following Noether symmetries and the corresponding gauge
functions:

N1 =
∂

∂t
, Bt = 0, Bx = 0, By = 0,

N2 =
∂

∂y
, Bt = 0, Bx = 0, By = 0,

N3 = f (t)
∂

∂u
, Bt = 0, Bx = −

1
2

u f ′(t), By = 0,

N4 = 4t
∂

∂y
+ x

∂

∂u
, Bt = −

1
2

u, Bx = 0, By = −
1
2

u,

N5 = 2g(t)
∂

∂x
+ yg′(t)

∂

∂u
, Bt = 0, Bx = −

1
2

uyg′′(t) −
1
2

ug′(t), By = 0,

N6 = 8t
∂

∂t
+ 2x

∂

∂x
+ 4y

∂

∂y
− (x + 2u)

∂

∂u
, Bt =

1
2

u, Bx = 0, By =
1
2

u.

Now using the above Noether symmetries and invoking [38, 39]

Ck = Łξk +
(
ηα − uαx jξ

j
)  ∂Ł
∂uα

xk

−

k∑
l=1

Dxl

 ∂Ł
∂uα

xl xk

 +

n∑
l=k

(
ζαl − uαxl x jξ

j
) ∂Ł
∂uα

xk xl

the corresponding conserved vectors are, respectively, given by

Ct
1 =

1
2

uxxuxy − uyu2
x −

1
2

uxuy,

Cx
1 = 2utuxuy +

3
4

utuxxy −
1
4

uxxuty −
1
2

utxuxy +
1
2

utuy +
1
2

u2
t ,

Cy
1 = utux

2 +
1
2

utux +
1
4

utuxxx −
1
4

uxxutx;
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Ct
2 =

1
2

uxuy,

Cx
2 =

1
2

utuy + 2uxuy
2 +

3
4

uyuxxy −
1
2

u2
xy −

1
4

uxxuyy +
1
2

u2
y ,

Cy
2 = −

1
2

utux +
1
4

uxxuxy +
1
4

uxxxuy;

Ct
3 = −

1
2

f (t)ux,

Cx
3 = − 2 f (t)uxuy −

3
4

f (t)uxxy −
1
2

f (t)uy −
1
2

f (t)ut,

Cy
3 = − f (t)ux

2 −
1
2

f (t)ux −
1
4

f (t)uxxx;

Ct
4 = 2tuxuy −

1
2

xux,

Cx
4 = 8tuxuy

2 + 3tuyuxxy − 2tuxy
2 − tuxxuyy −

1
2

xut + 2tuy
2 + 2tutuy −

1
2

xuy

− 2xuxuy +
1
2

uxy −
3
4

xuxxy,

Cy
4 = tuxxuxy + tuxxxuy − 2tutux − xu2

x −
1
2

xux +
1
4

uxx −
1
4

xuxxx;

Ct
5 = g(t)ux

2 −
1
2

yg′(t)ux,

Cx
5 = 2g(t)ux

2uy +
3
2

g(t)uxuxxy −
1
2

g(t)uxxuxy −
1
2

yg′(t)ut − 2yg′(t)uxuy

−
3
4

yg′(t)uxxy +
1
4

g′(t)uxx −
1
2

yg′(t)uy,

Cy
5 = 2g(t)ux

3 + g(t)ux
2 +

1
2

g(t)uxxxux −
1
2

g(t)uxx
2 − yg′(t)ux

2 −
1
2

yg′(t)ux

−
1
4

yg′(t)uxxx;

Ct
6 = xux

2 − 8tuyux
2 +

1
2

xux + uux − 4tuyux + 2yuyux + 4tuxyuxx,

Cx
6 = 2yuy

2 + 8yuxuy
2 + 2xux

2uy +
1
2

xuy + uuy + 2xuxuy + 4uuxuy

−
3
2

uxxuy + 3yuxxyuy + 4tutuy + 2yutuy + 16tuxutuy − 2yuxy
2 + 4tut

2

− 2uxuxy −
1
2

uxy − yuyyuxx −
1
2

xuxyuxx +
3
4

xuxxy +
3
2

uuxxy + uut
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+
3
2

xuxuxxy +
1
2

xut + 6tuxxyut − 2tuxxuty − 4tuxyutx,

Cy
6 = 2xux

3 + 2xux
2 + 2uux

2 + 8tutux
2 +

1
2

xux + uux − uxxux +
1
2

xuxxxux

+ 4tutux − 2yutux −
1
2

xuxx
2 + yuxyuxx −

1
4

uxx +
1
4

xuxxx +
1
2

uuxxx

+ yuyuxxx + 2tuxxxut − 2tuxxutx.

4. Concluding remarks

In this paper, we investigated the eCBS equation (1.4). We determined the Lie point symmetries
of this equation, which were then used to construct group of transformations. Thereafter, symmetry
reductions were performed and eCBS equation (1.4) was reduced to the NODE (2.8). This NODE
was solved by direct integration and the solution was obtained in terms of incomplete elliptic integral,
which represents periodic solution. Moreover, Kudrayshov’s along with (G′/G)−expansion methods
were employed to obtain solutions of the NODE. These solutions were presented graphically and we
also included the parametric values of the parameters involved in the solutions. Finally, we used the
multiplier method and Noether’s theorem to derive the conservation laws of (1.4). The multiplier
method yielded eight multipliers which gave eight local conservation laws for eCBS equation (1.4)
whereas Noether’s theorem gave six local conservation laws. The conservation laws obtained contain
the conservation of energy and momentum. It is worth mentioning here, that Noether’s theorem has a
limitation when it is applied to some differential equations. The limitation is that differential equations
should come from a variational problem. On the other hand, the multipliers approach can be applied
to any differential equation irrespective of it being variational or not.
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