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Abstract: Small changes in retinal blood vessels may produce different pathological disorders which 
may further cause blindness. Therefore, accurate extraction of vasculature map of retinal fundus 
image has become a challenging task for analysis of different pathologies. The present study offers 
an unsupervised method for extraction of vasculature map from retinal fundus images. This paper 
presents the methodology for evolution of vessels using Modified Pixel Level Snake (MPLS) 
algorithm based on Black Top-Hat (BTH) transformation. In the proposed method, initially bimodal 
masking is used for extraction of the mask of the retinal fundus image. Then adaptive segmentation 
and global thresholding is applied on masked image to find the initial contour image. Finally, MPLS 
is used for evolution of contour in all four cardinal directions using external, internal and balloon 
potential. This proposed work is implemented using MATLAB software. DRIVE and STARE 
databases are used for checking the performance of the system. In the proposed work, various 
performance metrics such as sensitivity, specificity and accuracy are evaluated. The average 
sensitivity of 76.96%, average specificity of 98.34% and average accuracy of 96.30% is achieved for 
DRIVE database. This technique can also segment vessels of pathological images accurately; 
reaching the average sensitivity of 70.80%, average specificity of 96.40% and average accuracy of 
94.41%. The present study provides a simple and accurate method for the detection of vasculature 
map for normal fundus images as well as pathological images. It can be helpful for the assessment of 
various retinal vascular attributes like length, diameter, width, tortuosity and branching angle. 
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snake 

 

1. Introduction 

Retinal vascular network is a tree-like structure that includes arteries, arterioles, capillaries, veins 
and venules. It is useful to find the other normal features of retina such as macula or fovea or optic 
disk or for the automatic identification of pathological elements like hemorrhage, micro aneurysms, 
exudates or lesions [1]. As vascular diseases present a challenging health problem for society, so an 
efficient vascular segmentation algorithm is needed for understanding and analysis of vascular 
diseases in a better way. Segmentation of blood vessels using manual method and semi-automatic 
method is tedious and time consuming task because high skills and training is required in both these 
methods. Moreover, these segmentation techniques are susceptible to errors. With the use of fully 
automatic segmentation techniques, problems of manual segmentation and semi-automatic 
segmentation can be overcome. These automatic techniques are helpful in the advancement of 
computer-aided diagnostic systems which are used for identification of various ophthalmic disorders. 
Segmentation of vessels in an accurate manner is a tedious job because of the less variations in the 
contrast between vasculature and surrounding tissue, presence of noise in the retina image; variation 
in the vessel width, shape, branching angle and brightness of image and presence of lesions, exudates, 
hemorrhage and other pathologies.  

Although various segmentation techniques have been used [2–4] for segmentation of different 
diseases and anatomical structures of the body but the main goal of this paper is to present the 
methodology used for extraction of vessels from fundus image. Modified Pixel level snake (PLS) 
technique has been used for extraction of vessels. PLS is an iterative technique, in which internal and 
external forces are used for evolution of pixels of contour. Various segmentation approaches can be 
used for extraction of blood vessels, which includes unsupervised approach [5–8], supervised 
approach [9–16], tracking approach [17–19], deformable models approach [20–26], filtering approach 
[27] and morphological approach [28,31]. 

Stall et al. [29] proposed a method for extraction of ridges of image from the color retinal fundus 
image. Soares et al. [30] presented a technique in which enhancement of retinal fundus image is 
performed using gabor filter and classification is performed using Bayesian classifier. Martinez et al. 
[32] proposed a method based on multiscale feature extraction approach for segmentation of 
vasculature map from red-free and fluorescein retinal fundus images. You et al. [33] presented a 
scheme based on the radial projection and semi-supervised method, for the extraction of retinal 
vasculature map. Alonso-Montes et al. [40] proposed a method based on PLS. In this, PLS has been 
used and tested in single instruction multiple data (SIMD) parallel processor array, for segmentation 
of retinal vasculature map. Time of execution and accuracy has also been analyzed. Perfetti et al. [41] 
proposed Cellular neural network (CNN) technique for extraction of vessels. Normally, in PLS, 
external potential is computed using edge based techniques. In our proposed methodology, BTH 
transformation is used for the computation of external potential, which results in improved accuracy 
of the extracted vasculature map. 

Contribution of the proposed approach is as follows: 
 Bimodal masking is applied for the extraction of the mask of the fundus image. 
 Global thresholding is used for segmentation of vasculature map of fundus image. 
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 MPLS based on BTH transformation has been proposed for evolution of map in four cardinal 
directions. 

The remaining paper is structured as follows. Section 2 described the materials used for proposed 
work. Section 3 described the methodology used for extraction of the vasculature map of the fundus 
image. Section 4 represented the results and discussions and section 5 represented the conclusion of 
the work. 

2. Materials 

2.1. Database used 

For analysis purpose, the color fundus image of the retina has been taken from the DRIVE 
(Digital Retinal Images for Vessels Extraction) database [42]. This database contains 40 images, out 
of which 20 are test images and 20 are training images. Out of 40 images, 7 images are pathological 
images and 33 are normal images. Images are produced at 45° field of view (FOV), using Canon CR5 
nonmydriatic 3CCd camera. Size of each image in this database is 565 × 584 pixels.  

After implementation of the algorithm on the DRIVE dataset, simulation is also performed on 20 
images (700 × 605 pixels each) of the STARE (Structured Analysis of Retina) database [43]. 

2.2. Performance metrics 

Pixel based classification is used for extraction of vasculature map from the fundus image. Pixel 
classification is done on the basis of whether the pixel belongs to the vessel or surrounding tissue. So, 
four different possible events are possible which include pixel classifications and pixel 
misclassifications. True positive (TP) and true negative (TN) are the two pixel classifications and false 
positive (FP), and false negative (FN) are the two pixel misclassifications which are used for 
evaluation of various performance metrics. An event is classified as TP if a vessel pixel is correctly 
identified as vessel and TN if the non-vessel pixel or pixel in the surrounding tissue is correctly 
identified as a non-vessel pixel. An event is said to be FN if the predicted pixel represents a non-vessel 
pixel but actually it was a vessel pixel. An event is said to be FP if the predicted pixel represents 
vessel pixel but actually it was a non-vessel pixel. The important performance metrics which can be 
derived from the above events are sensitivity, specificity, and accuracy. 

2.2.1. Sensitivity (SN) 

SN metrics represents the ability of a segmentation method to detect the vessel pixels. SN is 
defined as the ratio of TP to the sum of TP and FN. Range of sensitivity is between 0 and 1. More SN 
means the algorithm is able to identify vessel pixels correctly. SN measure is expressed by Eq (1). 

SN                                    (1) 

2.2.2. Specificity (SP) 

SP metrics represents the ability of a segmentation algorithm to detect background or non-vessel 
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pixels. SP is also defined as the ratio of TN to the sum of TN and FP. Range of specificity is also 
between 0 and 1. More SP means the algorithm is able to identify non-vessel pixels correctly. SP 
measure is expressed by Eq (2). 

SP                                   (2) 

2.2.3. Accuracy (Acc) 

Acc is evaluated by taking the ratio of total number of true events which is the sum of TP and 
TN, to the total population which is the total number of pixels actually present in the image. The 
formula for accuracy is expressed by Eq (3). 

Acc                                (3) 

3. Methods 

Proposed methodology for automated extraction of vasculature map of fundus image is 
presented in Figure 1. The main components of the pre-processing are: RGB to gray conversion, 
generation of mask using bimodal masking and contrast enhancement using CLAHE (Contrast 
Limited Adaptive Histogram Equalization). 

 

Figure 1. Proposed algorithm. 
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3.1. RGB to gray conversion 

Initially RGB fundus image (1_test of DRIVE database) is read and converted to gray scale 
image for segmentation of vessels. Conversion of RGB to gray image also reduces the time required 
for processing of the image. Different weights for R, G & B components are selected for conversion 
purpose. RGB to gray conversion is performed using the formula represented by Eq (4) [44]. 

G = 0.2989*r + 0.5870*g + 0.1140*b                        (4) 

Where r, g and b symbolize the red, green, and blue channels of the fundus image respectively 
and G is the gray image produced after conversion. The green channel is the channel which gives the 
maximum information of the fundus image, so the weight of the green channel is chosen larger as 
compared to other channels. RGB image and its corresponding gray-scale image is represented by 
Figure 2(a),(b) respectively. 

3.2. Proposed bimodal masking 

 
(a)     (b) 

 
(c) 

 

(d)     (e)     (f) 

Figure 2. (a) Original image (b) Grayscale image (c) Flowchart for generation of mask (d) 
Histogram of image (e) Mask generated using bimodal masking (f) Mask generated using 
thresholding. 

Vasculature map of retinal fundus image is used for detection of diseases and monitoring of 
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diseases. After applying certain image processing techniques on fundus images, the speed of 
analyzing these images can be increased. Since analyses require more time and computational effort, 
operations should be focused only on the object pixels. For getting the object pixels, first the binary 
mask is generated and then multiplied with the original image so as to get the accurate image 
required for segmentation.Flow chart for the generation of mask using bimodal masking is shown in 
Figure 2(c). Mask is generated from the gray image, obtained after RGB to gray conversion. Initially 
histogram of image is generated as shown in Figure 2(d) and then dominant peaks and valleys are 
identified according to the histogram [45]. Then the second valley is selected as threshold level for 
the conversion of gray image into binary image. Binary image is produced after thresholding is 
termed as final mask, shown in Figure 2(e). Figure 2(f) represents the mask of image, produced after 
simple thresholding techniques. So, it can be easily analyzed that the mask produced after bimodal 
masking is accurate as compared to simple thresholding technique. 

3.3. Contrast enhancement using CLAHE  

 

(a) 

(b) 

 
(c)    (d)     (e)     (f) 

Figure 3. (a) Enhanced image (b) Block diagram of adaptive segmentation (c) Average 
image (d) Segmented image (e) Initial contour image (f) Contour image without border. 

CLAHE operation is performed for enhancement of contrast of an image. CLAHE works on 
small areas in the image rather than the entire image. These small regions are termed as ‘tiles’. 
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Enhancement of contrast has been performed tile wise. After that all neighboring tiles are combined 
using bilinear interpolation method. In this paper, two level enhancements have been done using 
CLAHE technique. It means CLAHE has been applied two times for getting the proper enhanced 
image. Size of tiles used for CLAHE is [8 8] and the number of bins is 128. Enhanced image 
produced after applying CLAHE technique is shown in Figure 3(a). 

3.4. Processing or segmentation 

The main component of the pre-processing is global thresholding used for extraction of initial 
contour. 

3.4.1. Extraction of initial contour 

Enhanced image produced using CLAHE is further used to produce the segmented image. For 
generation of segmented image, initially adaptive segmentation is required because gray values along 
vessels in retina vasculature are non-uniform. Input of adaptive segmentation is preprocessed image 
(enhanced image) and output is segmented image. Figure 3(b) represents the block diagram of 
adaptive segmentation. Average filter having size 9 is applied on preprocessed image to produce 
averaged image as shown in Figure 3(c). After that, a subtracted image is produced by taking the 
difference between the averaged image and the preprocessed image. Then a global thresholding 
technique is applied on the subtracted image for computation of threshold level of image. Global 
thresholding technique (Algorithm 1) is stated as follows: 

Algorithm 1: Global thresholding technique. 

1. Choose an initial random threshold T for segmentation. This threshold is called the global 
threshold. 
2. Using threshold T, segment the fundus image. Two groups of pixels are produced: 
(i) All pixels having value more than T, belong to group G1. 
(ii) All pixels having value less than or equal to T, belong to group G2. 
3. Evaluate the average intensities m1 and m2 of both the groups G1 and G2 respectively. 
4. Again compute the threshold using T = (1/2)(m1 + m2). 
5. Repeat steps 2–4 until the successive iterations threshold difference is smaller than the already 
defined value. 
6. Segment the image by taking T as threshold value. 

Using this threshold, the subtracted image is converted to the binary image, which is called as 
the segmented image as represented by Figure 3(d). This segmented image will be used to find the 
initial contour which is defined implicitly as the region boundary. After that morphological operation, 
closing is applied on the segmented image by taking disk shaped structuring element (SE) having 
size 1. Then small areas having pixel size less than 35 are removed from the closed image. The 
image produced is called the initial contour of the image shown in Figure 3(e). 
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3.4.2. Removal of border 

Next task is to remove the border from the contour image because the retinal vasculature map 
does not include the outer border as shown in the initial contour image represented by Figure 3(e). So, 
the border is removed from the initial contour image using the mask produced using bimodal 
masking. To perform this operation, the initial contour image is subtracted from the complement of 
the mask. If after subtraction, some pixels contain values greater than 0, then value 1 is assigned to 
those pixels and if some pixels contain values less than zero, then 0 is assigned to those pixels. So 
after subtraction and assigning values to the subtracted image, a contour image without border is 
produced. After that morphological operation (dilation) using disk shape SE having size 1 is applied 
on the image. The image shown in Figure 3(f) is further used for evolution using MPLS. 

3.5. Post processing 

The main components of the post processing are evolution of contour using modified PLS and 
removal of noise. 

3.5.1. Evolution of contour using modified pixel level snake 

 

Figure 4. Flow chart of PLS evolution. 
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In a PLS algorithm the evolution of contour is performed by pixel-by-pixel shifting of the 
contour, towards a position where the potential is minimum. Figure 4 shows the flowchart of PLS 
algorithm. In this algorithm, contour pixels evolve iteratively according to the potential field. This 
potential field comprises of three potentials named as internal, external and balloon potential and the 
weights of these potentials are adjusted according to the application. The main components of a PLS 
algorithm is contour evolution. Topological Transformations module is also used to handle merging 
and splitting of contours. This module is basically used to avoid collisions between contours. 

(1) External potential computation 
In existing methods, external potential is calculated using edge based techniques like sobel and 

canny edge detection. But in this paper, MPLS is proposed in which external potential of image is 
calculated by using BTH transformation method because the external potential produced using BTH 
method contains more information about the vasculature map resulting in higher accuracy. Using this 
external potential, the total potential of the image is computed which evolves the contour in an 
efficient way as compared to previous existing methods. Flow chart for computation of external 
potential for modified PLS is shown in Figure 5(a). Here, BTH transformation is applied on the 
green channel of the retinal fundus image (as shown by Figure 5(b)) by taking three different 
structuring elements. 

 
(a) 

 
(b)    (c)     (d) 

Figure 5. (a) Flow Chart for computation of external potential for MPLS (b) Green 
channel of masked image (c) External potential image (d) Complemented weighted 
external potential image after 1st Iteration. 
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The BTH transform is the transformation which is evaluated by subtracting the input image 
from the closing of the input image. The BTH transform of image (f) is given by Eq (5). 

T I I ⊙ b I                                         (5) 

Here, I is the input image; b represents the SE and ⊙ represents the closing operation. 
Output 𝑇 𝐼  represents the BTH transformed image. 
Three different disk shaped structuring elements having size 2, 7, 11 are used for closing 

operation in computation of external potential. Then the sum of all three BTH transformed images is 
taken to produce the external potential image as represented by Figure 5(c). For evolution of contour 
towards minimum potential, complement of external potential is taken. Complement of external 
potential image (Pe) is represented by Figure 5(d). 

This is the potential which guides the contour of the image towards edges of the vasculature 
map. If the image is static, then external potential is computed once. Applications like real time 
computer vision, in which moving images are there, external potential is computed for each frame of 
the image. Evolution of PLS will be done by external potential which is stronger in areas close to the 
edges. 

(2) Internal potential computation 
This potential is useful in maintaining the smooth shape of the contour. During the evolution of 

PLS, all vessel discontinuities are avoided using internal potential. Internal potential is computed 
from the initial contour. Flow chart for computation of internal potential of the image is shown in 
Figure 6(a). In this, initially a binary contour edge image is produced from the initial contour image 
shown in Figure 5(e) using the expression: C = IC and not (ICN and ICS and ICW and ICE). Here IC 
represents the initial contour of the image, ICN represents IC(x,y − 1), i.e., active region pixels in 
NORTH direction from the current pixel IC(x,y) .Similarly ICE, ICW and ICS represents IC(x,y+1), IC(x 
−1,y), IC(x+1,y), i.e., active region pixels in East, West and South directions from the current pixel 
IC(x,y) respectively. Figure 6(b) represents the edge image produced from the initial contour image. 
Diffusion of image has been performed on edge image of initial contour by anisotropic diffusion 
method taking lambda = 0.25; and no. of iterations = 20. Anisotropic diffusion of contour image is 
performed to obtain an internal potential field. Anisotropic diffusion, also called Perona–Malik 
diffusion, is a technique used to reduce noise present in the image without removing important parts 
of the image content. 

Anisotropic diffusion is defined by Eq (6). 

div c x, y, t ∇I ∇c. ∇I c x, y, t ∆I                    (6) 

Where ∆ denotes the laplacian, ∇ denotes the gradient, div is the divergence operator and 
c(x,y,t) is the diffusion coefficient. Two functions for diffusion coefficient are proposed by Perona 
and Malik which are representedby Eqs 7(a) and 7(b). 

c ‖∇I‖ e
‖∇ ‖

                                (7a) 

And 

c ‖∇I‖  ‖∇ ‖                                 (7b) 
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Constant K is used to control the sensitivity to edges. Here the value of K is chosen as 40.  The 
diffused image as shown in Figure 6(c) is multiplied with weight having value 0.1 to get an internal 
potential image. After that, the complement of the internal potential image (Pi) has been taken for 
contour evolution in the proper direction. Figure 6(d),(e) represent the weighted internal potential 
image and complemented image respectively. 

 

(a) 

 

(b)      (c)      (d)      (e) 

Figure 6. (a) Flow chart for computation of Internal Potential (b) Edge of contour image 
(c) Diffused image (d) Weighted internal potential image (e) complement of weighted 
image. 

(3) Balloon potential computation 
When external potential is too weak, then it’s not possible for external potential to guide the 

contour in all directions. In that case, there is one potential which produces forces, to guide the 
contour towards object pixels. Initially PLS is controlled by balloon potential because initially 
contour is far from vessel edges. To get balloon potential image, initial contour is multiplied with 
weight having value 0.1. Flowchart for computation of balloon potential is shown in Figure 7(a). 
Figure 7(b),(c) represents weighted balloon potential and complement of balloon potential image (Pb) 
respectively. 

(4) Guiding force extraction module 
Potential field is computed as the weighted sum of external, internal and balloon potential as 

represented by equation 8. All internal and external forces are produced through the potential field 
that guides the evolution of contour towards minimum energy level. 

PT=Pe + Pi + Pb                                                   (8) 

Here PT represents the total potential field of an image, Pe represents the external potential of 
image, Pi represents the internal potential image and Pb represents the balloon potential of image. 
Figure 7(d) represents the potential field image produced after the addition of all potential images. 
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(a) 

`  
(b)      (c)     (d) 

Figure 7. (a) Flow chart of balloon potential (b) weighted balloon potential image (c) 
complemented image (d) Potential image. 

(5) Directional contour evolution with topological transformation and collision detection 
module 

Evolution of directional contour is the most important part of PLS technique. It is performed in 
four prime directions: NORTH, EAST, WEST and SOUTH (NEWS). After iteration each pixel of 
contour is moved towards a position, where it can acquire minimum potential. 

The expansion of contour may result in merging and splitting of contours. But in segmentation 
of retinal vasculature, it’s required to prevent the collision between the contours. For preventing the 
collision, a collision detection module has been used. When contour expands in each direction, the 
two vessels may combine with each other. So, this expansion of contour is done in such a way that 
there should be no danger of collision. Figure 8(a) represents the different cases for dangers of 
collisions. Considering the danger of collision point in mind, expression for expansion in NORTH, 
SOUTH, EAST and WEST direction is computed below. 

Expansion in north direction: 
Pixel wise expansion of initial contour has been performed in the north direction based on 

potential of image. Expression for expansion in NORTH direction is given by Condition 1. 
If (not D) and ICS and (PT< PT S), then IC becomes equal to 1.      Cond.(1) 

Here D = R or RE or RW and R = (not IC) and ICN. 
Here, PT represents the total potential field, PTS represents potential field in south direction, R 

represents the active/background pixel pairs in the vertical direction, D represents the danger of 
collision which is determined by taking logic ‘OR’ of the current pixel of R with its east (RE) and 
west (RW) neighbor. 

Expansion of the initial contour in the north direction is represented by taking a matrix of 10:10 
elements. Figures 8(b),(c) represents the initial contour of 100 pixels and its expanded version in 
north direction respectively. Observe the pixel values and potential of initial contour highlighted with 
red box in Figure 8(d),(e) respectively. If the pixel has value 0 and its potential is less than potential 
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in its south direction, then value 1 is assigned to that pixel as represented in Figure 8(f). 

 
(a)        (b)   (c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. (a) Different cases for dangers of collisions (b) Initial contour (c) contour 
expanded in north direction (d) Initial contour matrix (e) Potential matrix (f) Expansion 
matrix in north direction. 

Similarly, expressions in other directions can be computed by considering the danger of 
collision. 

Expression in south direction is given by Cond.(2) 
If (not D) and ICN and (PT < PTN) then IC becomes equal to 1.    Cond.(2) 
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Here D = R or RE or RW and R = (not IC) and ICS. 
Expression in east direction is given by Cond.(3) 

If (not D) and ICW and (PT < PTW) then IC becomes equal to 1.    Cond.(3) 
Here D = R or RN or RS and R = (not IC) and ICE. 
Expression in west direction is given by Cond.(4) 

If (not D) and ICE and (PT < PTE) then IC becomes equal to 1.     Cond.(4) 
Here D = R or RN or RS and R = (not IC) and ICW. 
Images produced after expansion in N, S, E, W directions are represented by Figure 9(a)–(d). 

 
(a)    (b)             (c)  (d) 

Figure 9. Expanded image in (a) North (b) South (c) East (d) West direction. 

(6) Inversion 
Image produced after expansion in all directions is inverted to ensure contour evolution towards 

minimum potential. Inversion of the active region produces a new contour shifted by one pixel. So, 
the inverted image is not simply calculated by (not IC) but using the following expression. 

Inv = (not IC) or c. Here c = IC and not (ICN and ICS and ICW and ICE). Inverted image is 
represented by Figure 10(a). After inversion, evolution of contour image is again performed in all 
directions. So, expansion and contraction of active and background regions is performed in each 
iteration. Also steady direction of forces which are inflating and deflating in nature, can be 
maintained by inverting balloon potential after each iteration. Figure 10(b)–(e) represents contour 
expansion in all directions in the second iteration respectively. 

 
(a)   (b)      (c)    (d)      (e) 

Figure 10. (a) Inverted image (b) Expanded image in north direction (c) Expanded image 
in south direction (d) Expanded image in east direction (e) Expanded image in west 
direction. 
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3.6. Removal of noise 

In the last stage, small objects (extracted from retinal vasculature obtained after MPLS 
evolution) having pixels less than 30 are removed. Noise which is present outside the border has 
been removed by multiplying the final vasculature map with the complement of mask. After that 
morphological closing with SE disk having size 1 is applied on the image. This is the final 
vasculature map as shown by Figure 11(a), which can be further used for identification of various 
diseases. 

4. Results & discussion 

Various performance metrics such as SN, SP and Acc have been computed by using extracted 
vasculature map and ground truth map. Acc of proposed algorithm is better is due to extraction of 
accurate binary mask of fundus image; better enhancement of image and evolution of vasculature 
map using MPLS technique in all four cardinal directions. Figure 11(a),(b) represents extracted map 
and ground truth image of original retinal fundus image. 

 
(a)      (b) 

Figure 11. (a) Extracted map (b) Ground truth. 

The algorithm can be applied on all images of the DRIVE database. Figure 12 represents the 
results of the three normal images of the DRIVE database and their extracted vasculature map 
respectively. 

Table 1 represents comparative analysis of SN, SP and Acc metrics for DRIVE database. For 
analysis purpose, the proposed method results are compared with the results obtained by Staal [29] et 
al., Soares [30] et al., Mendonc-a [31] et al., Martinez-Perez [32] et al., You [33] et al., Fraz [34] et 
al., Ravichandran et al. [35], Zhao et al. [36], Yin et al. [37], Frucci [38] et al. and Zhang [39] et al., 
Adapa [46], Ma [47]. It has been observed that for MPLS, average SN comes out to be better than 
existing methodologies except [47] and SP comes out to be better than existing methodologies except 
[38], because there is a trade-off between SN and SP of image. Acc of proposed methodology is 
better than Acc of all existing methodologies. 



5752 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5737–5757. 

 
(a) (b)     (c) 

 
(d)                         (e)                          (f) 

Figure 12. (a)–(c) Original images, (d)–(f) Corresponding extracted vasculature map. 

Table 1. Comparative analysis of SN, SP & Acc for DRIVE database. 

Method Year SN SP Acc 
Staal [29] 2004 0.7194 0.9773 0.9442 

Soares [30] 2006 0.7230 0.9762 0.9446 
Mendonc-a [31] 2006 0.7344 0.9764 0.9452 

Martinez-Perez [32] 2007 0.7246 0.9655 0.9344 
You [33] 2011 0.7410 0.9751 0.9434 
Fraz [34] 2012 0.7406 0.9807 0.9480 

Ravichandran [35] 2014 0.7259 0.9799 0.9574 
Zhao [36] 2014 0.7354 0.9789 0.9477 
Yin [37] 2015 0.7246 0.9790 0.9403 

Frucci [38] 2016 0.670 0.986 0.959 
Zhang [39] 2017 0.7861 0.9712 0.9466 
Adapa [46] 2019 0.6994 0.9811 0.945 

Ma [47] 2020 0.7875 0.9813 0.9566 
Proposed Method 2021 0.76959 0.9834 0.9630 

This algorithm has been tested on all test images and pathological images of the DRIVE 
database. Figure 13 represents the results of the two pathological images of the DRIVE database and 
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their extracted vasculature map respectively. Table 2 represents SN, SP and Acc results for 5 
pathological images of the DRIVE database. It has been observed that the average SN, SP and Acc 
for pathological images is 70.80%, 96.40% and 94.41% respectively. Simulation has also been 
performed on 20 images of the STARE dataset. Table 3 shows the comparative analysis of average 
values of SN, SP and Acc for different images of STARE dataset and it has been observed that 
proposed technique has high Acc even for the STARE dataset also which proves the robust nature of 
proposed algorithm. 

 
(a)               (b) 

 
(c)        (d) 

Figure 13. (a)–(b) Pathological images of DRIVE database, (c)–(d) Corresponding 
extracted vasculature map. 

Table 2. SN, SP & Acc values of pathological images of DRIVE database. 

Image SN SP Acc 
1 0.6769 0.9941 0.9664 
2 0.7617 0.9646 0.9519 
3 0.7483 0.9220 0.9083 
4 0.7012 0.9868 0.9702 
5 0.6522 0.9523 0.9239 

Average 70.80 96.40 94.41 
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Table 3. Comparative analysis of SN, SP & Acc for STARE database. 

Method Year SN SP Acc 
Soares et al. [30] 2006 0.7181 0.9765 0.9500 
Fraz et al. [34] 2012 0.7262 0.9764 0.9511 

Azzopardi et al. [7] 2015 0.7716 0.9701 0.9497 
Li et al. [16] 2015 0.7726 0.9844 0.9628 

Roychowdhury et al. [8] 2016 0.7720 0.9730 0.9510 
Li et al. [48] 2017 0.7843 0.9837 0.9690 
WA-Net [47] 2020 0.7740 0.9871 0.9645 

Proposed Work 2021 0.7930 0.9895 0.9745 

5. Conclusions 

Accurate segmentation of the vasculature map of the fundus image plays a crucial role in the 
diagnostic procedure of various retinal disorders. In the proposed work, initially the binary mask of 
fundus image is generated using bimodal masking technique and vasculature map is extracted using 
global thresholding technique. MPLS technique has been used for evolution of contour in all 
directions to extract the vasculature map in accurate manner. Simulated results demonstrate that the 
proposed technique can extract vasculature maps of normal images as well as pathological images 
accurately. Since the methodology used for extraction of vessels is unsupervised, no training is 
required. Vessel connectivity has also been done without any danger of collision. Proposed algorithm 
is an efficient technique because it is used for extraction of vasculature maps from normal as well as 
pathological images. Further extracted vasculature maps can be used to find the features of retina 
such as macula or fovea or optic disk or for the automatic identification of pathological elements like 
hemorrhage, microaneurysms, exudates or lesions accurately. Also the quantitative and objective 
assessment of arteriovenous nicking can be performed in future. 
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