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Abstract: In this paper, we developed an age-structured epidemic model that takes into account boost-
ing and waning of immune status of host individuals. For many infectious diseases, the immunity of
recovered individuals may be waning as time evolves, so reinfection could occur, but also their immune
status could be boosted if they have contact with infective agent. According to the idea of the Aron’s
malaria model, we incorporate a boosting mechanism expressed by reset of recovery-age (immunity
clock) into the SIRS epidemic model. We established the mathematical well-posedness of our formu-
lation and showed that the initial invasion condition and the endemicity can be characterized by the
basic reproduction number R0. Our focus is to investigate the condition to determine the direction of
bifurcation of endemic steady states bifurcated from the disease-free steady state, because it is a crucial
point for disease prevention strategy whether there exist subcritical endemic steady states. Based on a
recent result by Martcheva and Inaba [1], we have determined the direction of bifurcation that endemic
steady states bifurcate from the disease-free steady state when the basic reproduction number passes
through the unity. Finally, we have given a necessary and sufficient condition for backward bifurcation
to occur.

Keywords: boosting and waning; immunity clock; epidemic model; Aron model; age-structure; basic
reproduction number

1. Introduction

The dynamics of immune status among host individuals plays a crucial role in the spread of infec-
tious diseases. Individuals which have just recovered from disease obtain any immunity, however, its
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level of effectiveness is not necessarily time-constant but can vary as time evolves. An individual’s im-
munity may decay as time goes by, while it could be regained by boosting, which means the immunity
enhancement by continued or intermittent exposure to infectious agent.

The boosting and waning dynamics of immune status and its epidemiological consequences have
been studied by many authors. Historically speaking, it should be firstly noted that Kermack and
McKendrick [2] had already developed a class-age structured epidemic model allowing reinfection of
recovered individuals from the 1930s. Reinfection of recovered individuals can be seen as a conse-
quence of waning immunity, and it can cause a backward bifurcation of endemic steady state ( [3, 4]).
If the loss of immunity of recovered individuals implies the direct reversion from the recovered class
to the susceptible class, the basic system is formulated as the well-known SIRS model, which has been
long studied in mathematical epidemiology. For example, Bhattacharya and Adler [5] developed a
recovery-age dependent SIRS model to show that loss of immunity could produce oscillations. On the
other hand, Nakata, et al. [6] considered an infection-age structured SIRS model to examine global sta-
bility conditions for an endemic equilibrium. Okuwa, et al. [7] studied a chronological age-structured
SIRS model to establish its endemic threshold results.

It is more challenging to consider synergistic consequences of boosting and waning of immunity.
Heffernan and Keeling [8] discussed how vaccination can have a range of unexpected consequences
as it reduces the natural boosting of immunity as well as reducing the number of naive susceptibles.
Kababiŕe, et al. [9] examined a model for a vector-borne disease with immunity decay and immunity
boosting of human hosts. Leung, et al. [10] studied how immune boosting and cross immunity can
influence the timing and severity of epidemics. It was also shown that the epidemiological patterns of
an infectious disease may change considerably when the duration of vaccine-acquired immunity differs
from that of infection-acquired immunity [11]. Dafilis, et al. [12] showed that allows for boosting of
immunity may naturally give rise to undamped oscillatory behavior for biologically realistic parameter
choices. Diekmann, et al. [13] developed a mathematical model to describe the distribution of immune
status shaped by continuous waning and occasional boosting. Epidemiological consequences of wan-
ing of vaccine-derived immunity are also discussed in [14], which topic should be paid more attention
in the context of COVID-19.

In a series of papers from the 1980s, Aron ( [15–17]) developed mathematical models for malaria
to consider the effect of immunity boosting by reinfection, and discussed that the boosting mechanism
may explain the age-specific prevalence of acute malaria and the functional relationship between the
rate of reversion from the immune class to the susceptible class and the force of infection at the endemic
steady state, although those pioneering works have been so far almost neglected. In those models, the
host population are divided into three classes: susceptibles (uninfected individuals); infecteds (the
individuals with severe and symptomatic infection); immunes (the individuals with mild, subclinical,
or asymptomatic infection). The recovered individuals are assumed to be partially susceptible and
infective, and their immune status can be boosted by reinfection. Since subclinical individuals are
assumed to become completely susceptible again with a recovery-age dependent reversion rate, so the
Aron model can be seen as an extension of the well-known SIRS epidemic model.

In [4], Inaba showed that the Aron model can be more generally formulated as an age-structured
SIRS model, where asymptomatic infecteds are distributed by the recovery-age (or immunity clock),
that is, time elapsed since the moment of recovery from the symptomatic infectious class. In Inaba’s
formulation, the boosting effect is expressed by a boundary condition such that the immunity clock
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is reset to zero by boosting (reinfection). Under this formulation, the functional relationship between
the reversion rate and the force of infection is then naturally induced, and Aron’s result is obtained as
a special case in which the probability density function for the loss of immunity is given by a delta
function. If the immunity level is waning monotonically as time evolves, it is inversely proportional to
recovery-age, that is, the reset of the immunity clock means the boosting of immunity.

By using the immunity clock mechanism, we could consider the dynamics of continuous change
of individual immune status in the spread of infectious diseases, which is more advantageous and
natural than the traditional compartment model formulation. For another kind of structured boosting
models, the reader may refer to [18], [19] and [20], where immune individuals are structured by a
general immunity level parameter. Although the immunity clock mechanism may be more restrictive
than the general immunity level parameter dynamics, the clock mechanism is theoretically much more
tractable.

For the Aron–Inaba formulation, a crucial assumption is that newly boosted individuals have the
same immunity level as individuals who have just recovered from symptomatic infection, but it would
be a restrictive assumption in order to consider the incomplete boosting. Therefore, in this paper, we
extend the Aron–Inaba model so that the effect of boosting is that the immunity clock can be reset to
any time less than the recovery-age at which reinfection occurs. If the immunity level is monotone
decreasing with respect to the recovery-age, our assumption implies that newly boosted (reinfected)
individuals could get, with a given probability, any level of immunity less than the maximum level that
is gained by recovery from symptomatic infection status.

In the following, we first give the well-posedness result of our basic system. Next, we investigate
the initial invasion condition which is formulated by the local stability of disease-free steady state.
Thirdly we consider the existence of endemic steady states. Finally, we provide a bifurcation analysis
of endemic steady states. Based on Lyapunov–Schmidt type arguments, we determine the direction of
bifurcation that endemic steady states bifurcate from the disease-free steady state when the basic repro-
duction number passes through the unity. We give a necessary and sufficient condition for backward
bifurcation to occur.

2. Basic model and preliminary observations

We consider a closed population with the constant total size N divided into three parts: susceptibles,
clinical (symptomatic) infectives and subclinical (asymptomatic) infectives. The subclinical class is
structured by variable τ, called the recovery-age, which is the time elapsed since the recovery from
clinical infectious class. Let S (t) and I(t) be the size of susceptible and clinical infectives at time t,
respectively, and let r(t, τ) be the age density function of subclinical infectious class. By extending the
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Aron–Inaba model [4], we formulate the following age-structured epidemic model:

dS (t)
dt

= µN − µS (t) − λ(t)S (t) +

∫ ∞

0
γ(τ)r(t, τ)dτ,

dI(t)
dt

= λ(t)S (t) − (µ + q)I(t),

∂r(t, τ)
∂t

+
∂r(t, τ)
∂τ

= −(λ(t) + µ + γ(τ))r(t, τ) + λ(t)
∫ ∞

τ

p(τ, σ)r(t, σ)dσ,

r(t, 0) = qI(t) + λ(t)
∫ ∞

0
p(0, σ)r(t, σ)dσ,

(2.1)

where µ > 0 is the natural death rate, q > 0 is the recovery rate from clinical infection, γ(τ) is the
reversion rate at recovery-age τ. The force of infection λ is given by

λ(t) =
1
N

(
β1I(t) +

∫ ∞

0
β2(τ)r(t, τ)dτ

)
, (2.2)

where β1 and β2(τ) are transmission coefficients reflecting the infectivity for clinical individual and
subclinical individual at recovery-age τ, respectively. For simplicity, we assume that the same force of
infection λ is applied to both susceptibles and subclinical individuals.

As a technical but biologically reasonable assumption, we suppose that γ, β2 ∈ L∞(0,∞) and denote
their upper bound as γ∞ and β∞2 , respectively. Moreover, we also define the survival function Γ induced
from the reversion rate γ as follows:

Γ(τ) := exp
(
−

∫ τ

0
γ(z)dz

)
(2.3)

The parameter p(τ, σ) is a key to formulate our novel idea, which means the proportion that subclin-
ical individuals with recovery-age σ reset their recovery-age to τ < σ when their immunity is boosted
by reinfection. Then we assume the following condition:

p(0, σ) +

∫ σ

0
p(τ, σ)dτ = 1, ∀σ > 0, (2.4)

so that the number of subclinical population conserves through the boosting, that is,∫ ∞

0
r(t, σ)dσ =

∫ ∞

0

∫ ∞

τ

p(τ, σ)r(t, σ)dσdτ +

∫ ∞

0
p(0, σ)r(t, σ)dσ,

holds. Furthermore, we assume p∞ := supτ<σ p(τ, σ) < ∞. For instance, following types of function
satisfy the condition (2.4):

1. p(τ, σ) = e−(σ−τ).
2.

p(τ, σ) =


√

2
πs2 exp

(
−

(σ−τ)2

2s2

)
, τ > 0,

1 −
√

2
πs2

∫ σ

0
exp

(
−

η2

2s2

)
dη, τ = 0,

(2.5)

where s > 0 is a given constant.
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3. p(τ, σ) = 1
1+σ

.
4. p(0, σ) = 0 and p(·, σ) is an arbitrary probability density function whose support is [0, σ].

Note that the original Aron model corresponds to the special case that p(0, σ) = 1 and p(τ, σ) = 0
for all τ > 0 ( [4], chapter 8). As is mentioned above, if the immunity level is monotone decreasing
with respect to recovery-age, our assumption implies that, by through the reset of recovery-age, the
immunity level of reinfected individuals could be boosted to any level of immunity less than the highest
immunity level gained by recovery from the clinical status. Finally it is easily checked that

N = S (t) + I(t) +

∫ ∞

0
r(t, τ)dτ, (2.6)

is constant for all t ≥ 0, since we assume there is no disease-induced death rate.
As a preliminary study for our basic system (2.1), we here consider the linearized system at the

diesease-free steady state (S , I, r) = (N, 0, 0). Let (Y, z(·)) be the perturbation of the infected population
densities (I, r) from the equilibrium state (0, 0). Then the linearized system at the disease-free steady
state is described as follows:

dY(t)
dt

= λ(t)N − (µ + q)Y(t),

∂z(t, τ)
∂t

+
∂z(t, τ)
∂τ

= −(µ + γ(τ))z(t, τ),

z(t, 0) = qY(t),

λ(t) =
1
N

(
β1Y(t) +

∫ ∞

0
β2(τ)z(t, τ)dτ

)
,

(2.7)

which is already introduced in [4], because the boosting effect is the second order effect, so the param-
eter p does not appear in (2.7), and the effect of immunity boosting can be neglected as long as we
consider the initial invasion phase.

Let us introduce the renewal equation for the density of newly infecteds denoted by v(t) := Nλ(t).
The linearized equation for clinically infected population density in (2.7) implies

Y(t) = e−(µ+q)tY(0) +

∫ t

0
e−(µ+q)(t−s)λ(s)Nds. (2.8)

Integrating the second equation in (2.7) along the characteristic line, we obtain

z(t, τ) =

{
qY(t − τ)e−µτΓ(τ), t − τ > 0,
z(0, τ − t) Γ(τ)

Γ(τ−t)e
−µτ, t − τ < 0. (2.9)

Then we obtain the following integral equation:

v(t) = β1Y(t) +

∫ ∞

0
β2(τ)z(t, τ)dτ

= g(t) + β1

∫ t

0
e−(µ+q)(t−s)v(s)ds +

∫ t

0
β2(τ)qe−µτΓ(τ)

∫ t−τ

0
e−(µ+q)(t−τ−s)v(s)dsdτ,

(2.10)
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where the initial data is given by

g(t) := β1e−(µ+q)tY(0) +

∫ t

0
β2(τ)qe−µτΓ(τ)e−(µ+q)(t−τ)Y(0)dτ +

∫ ∞

t
qβ2(τ)

Γ(τ)
Γ(τ − t)

e−µtz(0, τ − t)dτ.

Changing the order of integrals, we have the following renewal equation:

v(t) = g(t) +

∫ t

0
Φ(s)v(t − s)ds, (2.11)

where the net reproduction kernel Φ is defined as

Φ(s) := β1e−(µ+q)s +

∫ s

0
β2(τ)qe−µτΓ(τ)e−(µ+q)(s−τ)dτ. (2.12)

Then the basic reproduction number R0 is given by

R0 =

∫ ∞

0
Φ(s)ds =

β1

µ + q
+

q
µ + q

∫ ∞

0
β2(τ)e−µτΓ(τ)dτ, (2.13)

which is the expected number of secondary cases produced by an infected individual during its entire
period of infectiousness in a completely susceptible population.

Note that the basic reproduction number is traditionally defined as the spectral radius of the next
generation operator ( [4, 21, 22]) . Since the density of newly infecteds in the initial invasion phase is
described by the renewal integral equation as (2.11), its next generation operator is given by

K :=
∫ ∞

0
Φ(s)ds, (2.14)

which is acting on the state space of infected individuals. In our case, K is a scalar, so K itself gives
R0.

From the epidemiological threshold principle, we can expect that if R0 > 1, the disease can invade
into the host population, while it cannot if R0 < 1. We will give a mathematical justification for this
invasion principle for our system in section 4.

3. Well-posedness of the basic model

Here we prove the existence, uniqueness and positivity of solution semiflow of the system (2.1).
If I and r(·) are once determined, S is given by the relation (2.6). So it is sufficient to consider the
(I, r)-system as follows:

dI(t)
dt

= λ(t)
(
N − I(t) −

∫ ∞

0
r(t, τ)dτ

)
− (µ + q)I(t),

∂r(t, τ)
∂t

+
∂r(t, τ)
∂τ

= −(λ(t) + µ + γ(τ))r(t, τ) + λ(t)
∫ ∞

τ

p(τ, σ)r(t, σ)dσ,

r(t, 0) = qI(t) + λ(t)
∫ ∞

0
p(0, σ)r(t, σ)dσ,

(3.1)
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where the state space of (I, r) is given by
{
(I, r) ∈ R+ × L1

+(R+) : I + ‖r‖L1 ≤ N
}
.

In order to formulate the basic system (3.1) as a semilinear abstract Cauchy problem ( [23–25]).
Let us define the extended state space Z as Z = R × R × L1(0,∞) and its closed subspace Z0 =

{0} × R × L1(0,∞), where the first element corresponds to the boundary value of r, and the second and
third parts give the states of I and r.

Let A be a differential operator on X := R × L1(R+) such as

(Aψ)(τ) =

(
−µψ1

−(µ + γ(τ))ψ2 −
d
dτψ2(τ)

)
for ψ =

(
ψ1

ψ2(·)

)
∈ D(A) := R ×W1,1(R), (3.2)

and define the linear operatorA acting on Z such that

A

(
0
ψ

)
=

(
−ψ2(0)

Aψ

)
for

(
0
ψ

)
∈ D(A) := {0} × D(A). (3.3)

Next define the nonlinear operator F : Z0 → Z as

F

(
0
ψ

)
=


qψ1 + λ[ψ]

∫ ∞
0

p(0, η)ψ2(η)dη(
λ[ψ](N − ψ1 − ‖ψ2‖L1) − qψ1

−λ[ψ]ψ2(τ) + λ[ψ]
∫ ∞
τ

p(τ, η)ψ2(η)dη

) , (3.4)

where λ[·] : R+ × L1(R+)→ R+ is a functional defined as

λ[ψ] =
1
N

(
β1ψ1 +

∫ ∞

0
β2(τ)ψ2(τ)dτ

)
. (3.5)

Then it is easy to see that F is a Lipschitz continuous nonlinear perturbation, that is, there is a number
L > 0 such that ‖F u − F v‖Z ≤ L‖u − v‖Z for all u, v ∈ Z0.

Now formally the system (3.1) can be written as a semilinear abstract Cauchy problem in Z:

du(t)
dt

= Au(t) + F (u(t)),

u(0) =

(
0
u0

)
∈ Z0.

(3.6)

From biological meaning, we are interested in the solution semiflow in C0 ⊂ Z0, where

C0 :=




0(
ψ1

ψ2(·)

) ∈ Z0+ : |ψ1| + ‖ψ2‖L1 ≤ N

 . (3.7)

ThenA is not densely defined in Z, but its domain is dense in Z0, that is, D(A) = Z0. Moreover, we
can observe thatA is a resolvent positive, Hille-Yosida type operator as follows:

Lemma 1. 1. {ζ ∈ C | <ζ > −µ} ⊂ ρ(A).
2. For ζ > −µ, the Hille-Yosida estimation holds as

‖(ζ −A)−1‖B(Z) ≤
1

ζ + µ
(3.8)
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3. For ζ > 0, it holds that ζ(ζ −A)−1(C) ⊂ C0.

Proof. Let<ζ > −µ. Consider the following resolvent equation

(ζ −A)v = u, v =


0(
v1

v2(·)

) ∈ D(A), u =


u3(
u1

u2(·)

) ∈ Z.

Then v2(0) = u3, ζv1 + µv1 = u1 and ζv2(τ) + (µ + γ(τ))v2(τ) + v′2(τ) = u2(τ) hold. These imply

(ζ −A)−1u =


0 u1
ζ+µ

u3e−(ζ+µ)τΓ(τ) +
∫ τ

0
u2(σ)e−(ζ+µ)(τ−σ) Γ(τ)

Γ(σ)dσ


 .

Hence for ζ > −µ and u ∈ Z

‖(ζ −A)−1u‖Z ≤
|u1|

ζ + µ
+
|u3|

ζ + µ
+

∫ ∞

0

∫ τ

0
|u2(σ)|e−(ζ+µ)(τ−σ)dσ =

‖u‖Z
ζ + µ

.

From the above, it is obvious that ζ(ζ −A)−1(C) ⊂ C0 for given ζ > 0. �

Subsequently we can observe the quasi-positivity of the nonlinear perturbation term F :

Lemma 2. For sufficiently small ε > 0, (I + εF )(C0) ⊂ C.

Proof. Let ψ =


0(
ψ1

ψ2(·)

) ∈ C0, then we have

(I + εF )
(
0
ψ

)
=


ε(qψ1 + λ[ψ]

∫ ∞
0

p(0, η)ψ2(η)dη)(
(1 − εq)ψ1 + ελ[ψ](N − ψ1 − ‖ψ2‖L1)

(1 − ελ[ψ])ψ2(τ) + ελ[ψ]
∫ ∞
τ

p(τ, η)ψ2(η)dη

) .
Since the estimation

λ[ψ] ≤
max{β1, β

∞
2 }

N
‖ψ‖ ≤ max{β1, β

∞
2 },

holds for ψ ∈ C0, if we take ε > 0 such as

0 < ε < min
{

1
max{β1, β

∞
2 }
,

1
q

}
=: ε0,

then (I + εF )(C0) ⊂ Z+. Suppose 0 < ε < ε0. Due to the positivity of each element, we obtain∥∥∥∥∥∥(I + εF )
(
0
ψ

)∥∥∥∥∥∥
Z

= ψ1 + ‖ψ2‖ + ελ[ψ](N − ψ1 − ‖ψ2‖L1)

= (ψ1 + ‖ψ2‖)(1 − ελ[ψ]) + ελ[ψ]N,

where the condition (2.4) is used. Moreover, since 1 − ελ[ψ] > 1 − λ[ψ]
max{β1,β

∞
2 }
≥ 0, the following

estimation holds: ∥∥∥∥∥∥(I + εF )
(
0
ψ

)∥∥∥∥∥∥
Z

≤ N(1 − ελ[ψ]) + ελ[ψ]N = N,

which implies (I + εF )(C0) ⊂ C. �
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In order to construct a semiflow in C0, we rewrite (3.6) as follows:

d
dt

u(t) =

(
A−

1
ε

)
u(t) +

1
ε

(I + εF )u(t), u(0) ∈ C0, (3.9)

where ε is a small positive number such that I + εF maps C0 into C. Hence it is expected that the solu-
tion semiflow of (3.9) could be obtained by a positive iteration for the variation of constants formula,
but the operatorA has a non-dense domain in Z,A− 1/ε is not an infinitesimal generator of a strongly
continuous semigroup. Thus we seek a solution in a weak sense.

For a given T > 0, u : [0,T )→ C0 is an integral solution of (3.9) if u is continuous on [0,T ) and it
satisfies ∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0,T ), (3.10)

and

u(t) = u(0) +

(
A−

1
ε

) ∫ t

0
u(s)ds +

1
ε

∫ t

0
(I + εF )u(s)ds, ∀t ∈ [0,T ). (3.11)

Note that (3.10) implies that u(t) ∈ Z0 = D(A) and the integral solution becomes the classical solution
if and only if u is differentiable on (0,T ) [26].

LetA0 be the part ofA in Z0, that is,

A0 = A on D(A0) =

{(
0
ψ

)
∈ D(A) : A

(
0
ψ

)
∈ Z0

}
. (3.12)

Then the following holds:

Lemma 3. D(A0) = Z0 holds andA0 generates a strongly continuous semigroup {T0(t)}t≥0 on Z0 and
T0(t)C0 ⊂ C0 for all t > 0.

Proof. It follows from definition that
(
0
ψ

)
∈ D(A0) if and only if ψ ∈ D(A) with ψ2(0) = 0. Then we

have D(A0) = Z0. Define a differential operator A0 such that

(A0ψ)(τ) =

(
−µψ1

−(µ + γ(τ))ψ2 −
d
dτψ2(τ)

)
, (3.13)

where

ψ =

(
ψ1

ψ2

)
∈ D(A0) := {ψ ∈ D(A) : ψ2(0) = 0}.

Then A0 is a generator of C0-semigroup T0(t), t ≥ 0 on R × L1(R+) such that

T0(t)ψ =

(
ψ1e−µt

U(t)ψ2

)
, (3.14)

where U(t), t ≥ 0 denotes the translation semigroup on L1 defined by

(U(t)φ)(τ) :=

0, t − τ > 0
φ(τ − t)e−µt Γ(τ)

Γ(τ−t) , τ − t > 0
, φ ∈ L1(R+), (3.15)
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and we have D(A0) = {0} × D(A0). ThusA0 is densely defined on Z0 and it generates a C0-semigroup
on Z0 such that

T0(t)
(
0
ψ

)
=

(
0

T0(t)ψ

)
, (3.16)

Since the semiflow T0(t), t > 0 makes a closed subset {ψ = (ψ1, ψ2) ∈ R+ × L1
+(R+) : |ψ1|+ ‖ψ2‖L1 ≤ N}

positively invariant, we have for t > 0, (T0(t))(C0) ⊂ C0. �

Proposition 1. For a given T > 0 and u(0) ∈ C0, a positive function u ∈ C(0,T ; C0) is an integral so-
lution for (3.9) if and only if it is the positive continuous solution of the extended variation of constants
formula on C0 as

u(t) = e−
1
ε tT0(t)u(0) + lim

ζ→∞

1
ε

∫ t

0
e−

1
ε (t−s)T0(t − s)ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(s)ds. (3.17)

Proof. First we assume that u ∈ C(0,T ; C0) is an integral solution of (3.9). Applying the resolvent
operator ζ(ζ − (A− 1

ε
))−1 with ζ > 0 to the both sides of (3.9), we obtain

uζ(t) = uζ(0) + ζ(ζ − (A−
1
ε

))−1
(
A−

1
ε

) ∫ t

0
u(s)ds + ζ(ζ − (A−

1
ε

))−1 1
ε

∫ t

0
(I + εF )u(s)ds, (3.18)

where uζ(t) := ζ(ζ − (A − 1
ε
))−1u(t). Then it is easily seen that uζ ∈ D(A0) ∩ C0. Since ζ(ζ − (A −

1
ε
))−1(A− 1

ε
) is bounded, it follows that

ζ(ζ − (A−
1
ε

))−1
(
A−

1
ε

) ∫ t

0
u(s)ds =

∫ t

0
ζ(ζ − (A−

1
ε

))−1
(
A−

1
ε

)
u(s)ds

=

∫ t

0

(
A0 −

1
ε

)
ζ(ζ − (A−

1
ε

))−1u(s)ds

=

∫ t

0

(
A0 −

1
ε

)
uζ(s)ds.

On the other hand, due to the continuity of (I + εF )u(t), integral and the resolvent operator can be
interchanged in the third part of the right hand side in (3.18). Therefore we arrive at the following
equation on D(A0) ∩C0:

uζ(t) = uζ(0) +

∫ t

0

(
A0 −

1
ε

)
uζ(s)ds +

1
ε

∫ t

0
ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(s)ds. (3.19)

Then it follows that uζ is a classical solution of the Cauchy problem on Z0 as

d
dt

uζ(t) =

(
A0 −

1
ε

)
uζ(s) +

1
ε
ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(t),

uζ(0) = ζ

(
ζ −

(
A−

1
ε

))−1

u(0).

(3.20)

Applying the standard variation of constants formula to (3.20), we have

u(t) = e−
1
ε tT0(t)u(0) +

1
ε

∫ t

0
e−

1
ε (t−s)T0(t − s)ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(s)ds. (3.21)
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Therefore, it follows from limζ→∞ uζ = u that we have (3.17). Conversely, we assume that u(t) is the
positive continuous solution of (3.17). Consider a linear inhomogeneous Cauchy problem on Z as:

d
dt

v(t) =

(
A−

1
ε

)
v(t) +

1
ε

(I + εF )u(t), v(0) = u(0). (3.22)

Since the generator A − 1
ε

satisfies the Hille–Yosida estimate, it follows from Da Prato–Sinestrari
theorem [27] that (3.22) has a unique integral solution v(t) ∈ Z such that

v(t) = u(0) +

(
A−

1
ε

) ∫ t

0
v(s)ds +

1
ε

∫ t

0
(I + εF )v(s)ds, t ∈ [0,T ). (3.23)

Applying the same argument as above, we obtain the extended variation of constants formula again as:

v(t) = e−
1
ε tT0(t)u(0) + lim

ζ→∞

1
ε

∫ t

0
e−

1
ε (t−s)T0(t − s)ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(s)ds, (3.24)

which shows that u(t) = v(t) for all t ∈ [0,T ). Then the positive continuous solution of (3.17) is the
integral solution of the basic system (3.9). �

From the above arguments, we obtain the well-posedness result for the basic system (3.6) as follows:

Proposition 2. The basic model (3.6) has a unique, global, positive integral solution.

Proof. From the above observation, it is sufficient to show that the extended variation of constants
formula (3.17) has a unique continuous solution for some T > 0. Define an operatorH on C(0,T ; C0)
by

(Hu)(t) := e−
1
ε tT0(t)u(0) + lim

ζ→∞

1
ε

∫ t

0
e−

1
ε (t−s)T0(t − s)ζ

(
ζ −

(
A−

1
ε

))−1

(I + εF )u(s)ds. (3.25)

Since the right hand side of (3.25) is a linear convex combination of elements in C0, so H maps
C0 into itself. Therefore, using the local Lipschitz continuity of the bounded perturbation F and the
contraction mapping principle to H , we can find a small T > 0 such that a positive local solution for
the extended variation of constants formula (3.17) uniquely exists. Moreover, it follows from the fact
‖T0(t)‖ ≤ 1 and ‖ζ(ζ − (A− 1

ε
))−1‖ ≤ 1 that

‖(Hu)(t)‖Z ≤ ‖u(0)‖Z +
1
ε
‖I + εF ‖

∫ t

0
‖u(s)‖Zds.

Hence we know that the fixed point of H grows at most exponentially as time evolves, so the local
solution can be extended to a global solution. �

From the above argument, we know that for each u(0) ∈ C0, (3.9) has a unique integral solution
u : R+ → C0, then T (t)u(0) = u(t) defines the nonlinear semigroup T (t), t ≥ 0 on C0. Here we
consider the stability of steady states of T (t), t ≥ 0, which are time-independent solutions of (3.11)
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4. Disease-free steady state and its stability

Here we examine the initial invasion phase of epidemic, that is, we consider the local stability of
the disease-free equilibrium u = 0 of T (t), t ≥ 0. Since F is continuously Fŕechet differentiable at a
steady state u = u∗, the nonlinear semigroup T (t), t ≥ 0 is also Fréchet differentiable at u = u∗ and
its derivative at u = u∗ is the strongly continuous linear semigroup S(t), t ≥ 0 generated by the part of
B := A + F ′[u∗] in Z0. Let B0 be the part of B in Z0. Then the growth bound ω0(B) and the essential
growth bound ω1(B) are defined as

ω0(B0) = lim
t→∞

t−1 log(‖S(t)‖), ω1(B0) = lim
t→∞

t−1 log(α[S(t)]), (4.1)

if these exist, where α[A] is the measure of noncompactness of an operator A. Let s(B0) :=
supζ∈σ(B0)<ζ be the spectral bound of B0. Then the following holds ( [28, 29]):

ω0(B0) = max {ω1(B0), s(B0)} . (4.2)

If ω0(B0) < 0, we can conclude that the steady state u = u∗ is locally asymptotically stable, in the
sense that for ω ∈ (ω0(B0), 0) there exists δ > 0 such that ‖T (t)u − u∗‖Z ≤ eωt‖u − u∗‖Z for all u ∈ C0

with ‖u−u∗‖Z ≤ δ. On the other hand, u∗ is unstable if at least one eigenvalue of B0 has strictly positive
real part (Theorem 4.2, Corollary 4.3 in [25]).

Here let us consider the stability of the disease-free steady state for (3.6). The linearized system of
(3.6) at u = 0 is given as follows:

d
dt

u(t) = (A + DF [0])u(t), (4.3)

where the Fréchet derivative of F at 0 ∈ Z is denoted by DF [0] and is calculated as

DF [0]
(
0
ψ

)
=


qψ1(

λ[ψ]N − qψ1

0

) . (4.4)

Since the range of DF [0] is finite, it is a compact operator. In the following we investigate the spectrum
of the part B0 of the linearized operator B = A + DF [0].

Lemma 4. Let Pσ(B0) be the point spectrum of B0 and let Σ := {z ∈ C : <z > −µ}. Then it follows
that σ(B0) ∩ Σ = Pσ(B0) ∩ Σ.

Proof. Consider the resolvent equation

(ζ − B0)v = u, v =


0(
v1

v2(·)

) ∈ D(A), u =


0(
u1

u2(·)

) ∈ Z0.

Then we have

v2(0) = qv1,

(ζ + µ + q)v1 = u1 + λ[v]N,
d
dτ

v2(τ) = −(ζ + µ + γ(τ))v2(τ) + u2(τ).
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Solving the above ODE, we have

v2(τ) = qv1e−(ζ+µ)τΓ(τ) +

∫ τ

0
u2(σ)e−(ζ+µ)(τ−σ) Γ(τ)

Γ(σ)
dσ. (4.5)

Moreover, formally we can calculate v1 as

v1 =
1

(ζ + µ + q)(1 − ∆(ζ))

[
u1 +

∫ ∞

0
β2(τ)

∫ τ

0
u2(σ)e−(ζ+µ)(τ−σ) Γ(τ)

Γ(σ)
dσdτ

]
, (4.6)

where

∆(ζ) =
1

ζ + µ + q

[
β1 + q

∫ ∞

0
β2(τ)e−(ζ+µ)τΓ(τ)dτ

]
. (4.7)

Inserting the expression of (4.6) into (4.5), v2 can be expressed by u1, u2, so we can formally calculate
(ζ −B0)−1u. It is clear that (ζ −B0)−1u ∈ D(A) if u ∈ Z0 and<ζ > −µ and ∆(ζ) , 1, so {ζ ∈ C : ∆(ζ) ,
1,<ζ > −µ} ⊂ ρ(B0). Then we have Ω := {ζ ∈ C : ∆(ζ) = 1,<ζ > −µ} ⊃ σ(B0) ∩ Σ. On the other
hand, if ζ ∈ Ω, we can calculate an eigenfunction for B0 associated with ζ as (0, v1, qv1e−(µ+ζ)τΓ(τ))
where v1 is any nonzero constant, so we have ζ ∈ Pσ(B0). Thus we have Pσ(B0)∩Σ ⊃ Ω ⊃ σ(B0)∩Σ,
but trivially it follows that Pσ(B0)∩Σ ⊂ σ(B0)∩Σ, hence we obtain σ(B0)∩Σ = Ω = Pσ(B0)∩Σ. �

Lemma 5. If ∆(−µ) ≥ 1, Ω = {ζ ∈ C : ∆(ζ) = 1,<ζ > −µ} has a dominant real normal eigenvalue ζ0

and it follows that sign(ζ0) = sign(∆(0) − 1).

Proof. Since ζ 7→ ∆(ζ) is an analytic function in Σ, each ζ ∈ Ω is a normal eigenvalue. ∆(ζ) is
monotone decreasing from ∆(−µ) to zero as ζ moves from −µ to ∞. Then there is a unique real root
ζ0 ∈ [−µ,∞) of ∆(ζ) = 1 if ∆(−µ) ≥ 1, and it follows that sign(ζ0) = sign(∆(0) − 1). In this case,
ζ0 is the dominant eigenvalue, that is, <ζ < ζ0 for any ζ ∈ Ω \ {ζ0}. In fact, if ζ ∈ Ω with <ζ ≤ ζ0

and =ζ , 0, we have ∆(ζ0) = 1 = |∆(ζ)| < ∆(<ζ) holds, so <ζ < ζ0 is obtained because of the
monotonicity of ∆ on R. �

Proposition 3. If R0 > 1, then the disease-free steady state is unstable, while if R0 < 1, then it is locally
asymptotically stable.

Proof. It follows from (3.16) that ω1(A0) ≤ −µ and DF [0] is a compact perturbation, we have ω1((A+

DF [0])0) = ω1(A0) ≤ −µ ( [28, 30]). Therefore, sign(ω0(B0)) = sign(s(B0)). From the above Lemma
5, we know that s(B0) < 0 if ∆(0) < 1 ≤ ∆(−µ). If ∆(−µ) < 1, there is no eigenvalue in Σ because
|∆(ζ)| ≤ ∆(<ζ) ≤ ∆(−µ) < 1, so we have s(B0) < 0 if ∆(0) < 1. On the other hand, if ∆(0) > 1, it
follows from Lemma 5 that there exists a dominant positive eigenvalue. Thus we can conclude that the
disease-free steady state is unstable if ∆(0) > 1, while if ∆(0) < 1, it is locally asymptotically stable.
Finally we notice that ∆(0) = R0. �
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5. Existence and non-existence of endemic steady states

Let (S ∗, I∗, r∗(·)) be a steady state. Then we have

0 = µN − µS ∗ − λ∗S ∗ +

∫ ∞

0
γ(τ)r∗(τ)dτ,

0 = λ∗S ∗ − (µ + q)I∗,
dr∗(τ)

dτ
= −(µ + λ∗ + γ(τ))r∗(τ) + λ∗

∫ ∞

τ

p(τ, σ)r∗(σ)dσ,

r∗(0) = qI∗ + λ∗
∫ ∞

0
p(0, σ)r∗(σ)dσ,

(5.1)

λ∗ =
1
N

(
β1I∗ +

∫ ∞

0
β2(τ)r∗(τ)dτ

)
. (5.2)

It is easy to see that S ∗ and I∗ are expressed by λ∗ and r∗ as follows:

S ∗ =
1

µ + λ∗

(
µN +

∫ ∞

0
γ(τ)r∗(τ)dτ

)
,

I∗ =
λ∗

µ + q
1

µ + λ∗

(
µN +

∫ ∞

0
γ(τ)r∗(τ)dτ

)
.

(5.3)

Solving the equation of r∗ in (5.1), we obtain

r∗(τ) = e−(µ+λ∗)τΓ(τ)r∗(0) +

∫ τ

0

∫ ∞

σ

λ∗p(σ, ζ)r∗(ζ)dζ e−(µ+λ∗)(τ−σ) Γ(τ)
Γ(σ)

dσ. (5.4)

Substituting the above expression into the boundary condition of r∗, it follows that

r∗(0) = qI∗ + r∗(0)
∫ ∞

0
p(0, η)L(0, η; λ∗)dη +

∫ ∞

0

∫ η

0

∫ ∞

σ

λ∗p(σ, ζ)r∗(ζ)dζp(0, η)L(σ, η; λ∗)dσdη,

(5.5)
where for σ < η, we define

L(σ, η; λ∗) := λ∗e−(µ+λ∗)(η−σ) Γ(η)
Γ(σ)

.

Then p(ζ, η)L(σ, η; λ∗) gives the probability density that asymptomatic individuals with recovery-age
σ survive to the age of η and then returns to recovery-age ζ. Since

∫ ∞
σ

p(0, η)L(σ, η; λ∗)dη < 1, we
have

r∗(0) =
qI∗ +

∫ ∞
0

∫ η

0

∫ ∞
σ
λ∗p(σ, ζ)r∗(ζ)dζ p(0, η)L(σ, η; λ∗)dσdη

1 −
∫ ∞

0
p(0, η)L(0, η; λ∗)dη

. (5.6)

Then we obtain an integral equation with respect to r∗ as

r∗(τ) =
qI∗e−(µ+λ∗)τΓ(τ)

1 −
∫ ∞

0
p(0, η)L(0, η; λ∗)dη

+
e−(µ+λ∗)τΓ(τ)

∫ ∞
0

∫ η

0

∫ ∞
σ
λ∗p(σ, ζ)r∗(ζ)dζ p(0, η)L(σ, η; λ∗)dσdη

1 −
∫ ∞

0
p(0, η)L(0, η; λ∗)dη

+

∫ τ

0

∫ ∞

σ

p(σ, ζ)r∗(ζ)dζ L(σ, τ; λ∗)dσ,

(5.7)
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which can be expressed as follows:

r∗(τ) = f (τ; λ∗) +

∫ τ

0

∫ ∞

σ

p(σ, ζ)r∗(ζ)dζ L(σ, τ; λ∗)dσ +

∫ ∞

0
r∗(ζ)K1(τ, ζ; λ∗)dζ, (5.8)

where

g(τ; λ∗) :=
e−(µ+λ∗)τΓ(τ)

1 −
∫ ∞

0
p(0, η)L(0, η; λ∗)dη

,

f (τ; λ∗) :=
qλ∗

µ + q
µN
µ + λ∗

g(τ; λ∗),

K1(τ, ζ; λ∗) := g(τ; λ∗)
(

1
µ + λ∗

qλ∗

µ + q
γ(ζ) +

∫ ζ

0

∫ ∞

σ

λ∗p(σ, ζ)p(0, η)L(σ, η; λ∗)dηdσ
)
.

The integral equation (5.8) can be seen as the abstract equation with respect to u ∈ X+ := L1
+(R+):

u = fλ∗ + Vλ∗u + Fλ∗u, (5.9)

where fλ∗(τ) = f (τ; λ∗), Vλ∗ and Fλ∗ are bounded linear operators from X+ into itself given by

(Vλ∗u)(τ) :=
∫ τ

0

∫ ∞

σ

p(σ, η)u(η)dη L(σ, τ; λ∗)dσ,

(Fλ∗u)(τ) :=
∫ ∞

0
u(ζ)K1(τ, ζ; λ∗)dζ.

Since Vλ∗ is a Volterra operator, its spectral radius is zero, so the positive operator (I − Vλ∗)−1 exists.
Thus the equation (5.9) is rewritten as

u = (I − Vλ∗)−1 fλ∗ + (I − Vλ∗)−1Fλ∗u. (5.10)

Since the operator ((I − Vλ∗)−1Fλ∗) is a Volterra operator again, the solution of (5.10) is obtained by
the iteration:

u =

∞∑
k=0

((I − Vλ∗)−1Fλ∗)k(I − Vλ∗)−1 fλ∗ . (5.11)

Substituting the expression (5.11) into (5.2), we obtain the following one-dimensional equation with
respect to unknown λ∗:

1 =
1
N

(
β1

µ + q
1

µ + λ∗

(
µN +

∫ ∞

0
γ(τ)r∗(τ)dτ

)
+

∫ ∞

0
β2(τ)

r∗(τ)
λ∗

dτ
)

=
β1

µ + q
µ

µ + λ∗
+

1
N

∫ ∞

0

(
β1

µ + q
λ∗

µ + λ∗
γ(τ) + β2(τ)

)
r∗(τ)
λ∗

dτ,
(5.12)

where

r∗(τ) =

∞∑
k=0

((I − Vλ∗)−1Fλ∗)k(I − Vλ∗)−1 fλ∗ .

From the above characteristic equation, the following statement is obtained.
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Proposition 4. If R0 > 1, then there exists at least one endemic steady state.

Proof. Let H(λ∗) be the right hand side of (5.12). First, we prove H(0) = R0. For this purpose the
value of r∗(τ)

λ∗
at λ∗ = 0 needs to be calculated. Since the operator F0 is a zero operator, all of the terms

for k ≥ 1 in (5.11) are zero. Then we obtain

r∗(τ)
λ∗

∣∣∣∣∣
λ∗=0

=
fλ∗(τ)
λ∗

∣∣∣∣∣
λ∗=0

=
qN
µ + q

e−µτΓ(τ),

from which it follows that H(0) = R0. Next we prove limλ∗→∞ H(λ∗) = 0. First, observe that

H(λ∗) ≤
β1

µ + q
µ

µ + λ∗
+

1
N

(
β1

µ + q
γ∞ + β∞2

) ∫ ∞

0

r∗(τ)
λ∗

dτ.

By using the equality obtained by dividing (5.9) by λ∗ the following representation follows:∫ ∞

0

r∗(τ)
λ∗

dτ =

∫ ∞

0

[
fλ∗(τ)
λ∗

+
Vλ∗r∗(τ)
λ∗

+
Fλ∗r∗(τ)
λ∗

]
dτ, (5.13)

where each integral of the right hand side of (5.13) can be estimated as follows:∫ ∞

0

fλ∗(τ)
λ∗

dτ ≤
q

µ + q
·
µN
µ + λ∗

∫ ∞

0

e−(µ+λ∗)τΓ(τ)

1 −
∫ ∞

0
p(0, η)L(0, η; λ∗)dη

≤
q

µ + q
·
µN
µ + λ∗

·
µ + λ∗

µ

∫ ∞

0
e−(µ+λ∗)τdτ =

qN
(µ + q)(µ + λ∗)

,

∫ ∞

0

Vλ∗u(τ)
λ∗

dτ ≤
∫ ∞

0

∫ τ

0

∫ ∞

σ

p(σ, η)u(η)dη e−(µ+λ∗)(τ−σ)dσdτ

=

∫ ∞

0

∫ ∞

σ

p(σ, η)u(η)dη
∫ ∞

σ

e−(µ+λ∗)(τ−σ)dτdσ

=
1

µ + λ∗

∫ ∞

0

∫ η

0
p(σ, η)dσu(η)dη ≤

N
µ + λ∗

,∫ ∞

0

Fλ∗u(τ)
λ∗

dτ ≤
µ + λ∗

µ

∫ ∞

0
e−(µ+λ∗)τ ·

1
µ + λ∗

·
q

µ + q
γ(τ)dτ

+
µ + λ∗

µ

∫ ∞

0

∫ τ

0

∫ ∞

σ

p(σ, τ)p(0, η)e−(µ+λ∗)(η−σ)dηdσdτ

≤
qγ∞

µ(µ + q)(µ + λ∗)
+
µ + λ∗

µ

∫ ∞

0
e−(µ+λ∗)τ

∫ ∞

σ

p(σ, τ)
∫ ∞

σ

e−(µ+λ∗)(η−σ)dηdτdσ

≤
1

µ(µ + λ∗)

(
qγ∞

µ + q
+ 1

)
.

Then limλ∗→∞ H(λ∗) = 0 holds. From the above, because of the continuity of H, it turns out that the
equation 1 = H(λ∗) has at least one positive solution if R0 > 1. �

As is seen in the next section, in our basic model (2.1), R0 < 1 does not necessarily imply non-
existence of endemic steady states. However, we can formulate a sufficient condition for the global
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stability of the disease-free steady state implying the non-existence of endemic steady states. Let us
define a time-dependent reproduction number Re(t) at time t as

Re(t) :=
S (t)

(µ + q)N

(
β1I(t) +

∫ ∞

0
β2(τ)r(t, τ)dτ

)
, (5.14)

which is a kind of the effective reproduction number, because it is defined in a partially immunized host
population. For the use and the definition of effective reproduction number, the reader may consult [4].

From the above definition, we have
dI(t)

dt
= (µ + q)(Re(t) − 1)I(t). (5.15)

Then we can expect that the disease will be eradicated if the effective reproduction number Re(t) is
suppressed below the unity and it holds that∫ ∞

0
(Re(x) − 1)dx = −∞, (5.16)

which is a criteria for disease prevention.

Proposition 5. Suppose that (5.16) holds. Then the disease-free steady state is globally asymptotically
stable, that is, there is no endemic steady state.

Proof. It follows from (5.15) that

I(t) = I(0) exp
(
(µ + q)

∫ t

0
(Re(x) − 1)dx

)
,

from which we know that (5.16) implies that limt→∞ I(t) = 0. Next let U(t) :=
∫ ∞

0
r(t, τ)dτ. Observe

that
dU(t)

dt
= qI(t) − µU(t) −

∫ ∞

0
γ(τ)r(t, τ)dτ ≤ qI(t) − µU(t).

Then we have

U(t) ≤ U(0)e−µt +

∫ t

0
e−µ(t−τ)qI(τ)dτ,

which implies that limt→∞U(t) = 0. Then (S (t), I(t), r(t, τ)) converges to (N, 0, 0) as t → ∞, so the
disease-free steady state is globally asymptotically stable. �

Corollary 1. If
β∞N

4(µ + q)
< 1, (5.17)

then the disease-free steady state is globally asymptotically stable.

Proof. Observe that

Re(t) =
S (t)

(µ + q)N

(
β1I(t) +

∫ ∞

0
β2(τ)r(t, τ)dτ

)
≤

β∞

(µ + q)N
S (t)(N − S (t)),

where we know that S (N − S ) ≤ N2/4. If (5.17) holds, we obtain

Re(t) − 1 <
β∞N

4(µ + q)
− 1 < 0,

which implies (5.16). �
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6. Bifurcation of endemic steady states from the disease-free steady state

We here consider the bifurcation problem of endemic steady states from the disease-free steady
state when the basic reproduction number R0 crosses the unity. Especially, the direction of bifurcation
is biologically important because in the case of backward bifurcation, there exist multiple endemic
steady states even when R0 < 1, so R0 < 1 is not a sufficient condition to eradicate the disease, whereas
if forward bifurcation occurs at R0 = 1 and there exists no endemic steady state for R0 < 1, lowering R0

less than unity becomes the almighty policy for disease eradication. Moreover, we can conclude from
the Factorization Theorem [31] that the forwardly bifurcated solution is locally asymptotically stable,
while the backwardly bifurcated solution is unstable as long as |R0 − 1| is small enough.

First, according to [1], we apply the Lyapunov-Schmidt type arguments to the one-parameter bi-
furcation model. Let us consider the nonlinear operator G : Z0 × R → Z with a parameter β̄ defined
as

G(u, β̄)(τ) =


−u2(0) + qu1 + λ[u; β̄]

∫ ∞
0

p(0, σ)u2(σ)dσ
λ[u; β̄](N − u1 − ‖u2‖L1) − (µ + q)u1

−u′2(τ) − (λ[u; β̄] + µ + γ(τ))u2(τ) + λ[u; β̄]
∫ ∞
τ

p(τ, σ)u2(σ)dσ

 (6.1)

for u = T (0, u1, u2(·)) ∈ Z0, where

λ[u; β̄] :=
β̄

N

(
β10u1 +

∫ ∞

0
β20(τ)u2(τ)dτ

)
, (6.2)

where β10 and β20 are normalized transmission coefficients such that

β10

µ + q
+

q
µ + q

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ = 1. (6.3)

Then it follows that β̄ = R0 under the above assumption.
Then the system (2.1) is rewritten as the following abstract differential equation:

du
dt

= G(u, β̄). (6.4)

This equation has a trivial equilibrium 0 ∈ Z0, which corresponds to the disease-free steady state. Let
DuG[u, β̄] and D2

uuG[u, β̄] be the first and second order derivative of G with respect to u, respectively.
Similarly, let D2

uβ̄G[u, β̄] be the second order derivative ofGwith respect to u and β̄. Note that DuG[u, β̄]
is a linear map, while D2

uuG[u, β̄] and D2
uβ̄G[u, β̄] are bilinear maps. In order to study the direction of

the bifurcation, we apply the following theorem:

Theorem 1 ( [1]). Suppose that the following conditions hold:

A1 Let L = DuG[0, 1] be the linearization around the zero equilibrium, evaluated at a critical value
of parameter β̄ = 1, such that L is a closed operator with a simple isolated eigenvalue zero and
remaining eigenvalues having negative real part. Let v̂0 be the unique (up to a constant) positive
solution of Lξ = 0.

A2 G(u, β̄) ∈ C2(U0 × I0,Z) for some neighborhood U0 × I0 of (0, 1).
A3 Let Z∗ be the dual of Z and 〈·, ·〉 be the duality pairing between Z and Z∗. Assume v̂∗0 ∈ Z∗ is the

unique (up to a constant) positive vector satisfying 〈Lu, v̂∗0〉 = 0, ∀u ∈ Z0, that is, dim(kerL∗) = 1,
where L∗ is the adjoint of L, and kerL∗ = span{v̂∗0}.
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A4 〈D2
uβ̄G[0, 1](v̂0, 1), v̂∗0〉 , 0.

Then, the direction of the bifurcation is determined by the numbers

a = 〈D2
uuG[0, 1](v̂0, v̂0), v̂∗0〉, b = 〈D2

uβ̄G[0, 1](v̂0, 1), v̂∗0〉. (6.5)

If b > 0, the bifurcation is backward if and only if a > 0 and forward if only if a < 0.

For our system, the derivatives of the nonlinear mapping G are calculated as the following:

(DuG[0, β̄]ξ)(τ) =


−ξ2(0) + qξ1

λ[ξ; β̄]N − (µ + q)ξ1

−ξ′2(τ) − (µ + γ(τ))ξ2(τ)

 ,

(D2
uβ̄G[0, β̄]ξ)(τ) =


0

λ[ξ; β̄]N
0

 ,

(D2
uuG[0, β̄](ξ, η))(τ) =


λ[ξ; β̄]

∫ ∞
0

p(0, σ)η2(σ)dσ + λ[η; β̄]
∫ ∞

0
p(0, σ)ξ2(σ)dσ

−λ[ξ; β̄](η1 + ‖η2‖L1) − λ[η; β̄](ξ1 + ‖ξ2‖L1)
λ[ξ; β̄]

(∫ ∞
τ

p(τ, σ)η2(σ) − η2(τ)
)

+ λ[η; β̄]
(∫ ∞
τ

p(τ, σ)ξ2(σ) − ξ2(τ)
)
 ,

for ξ = T (0, ξ1, ξ2(·)) ∈ Z0 and η = T (0, η1, η2(·)) ∈ Z0. We define the linear operator L := DuG[0, 1]. If
ζ ∈ C is an eigenvalue of L, there exists ξ = T (0, ξ1, ξ2(·)) ∈ Z0 \ {0} such that

− ξ2(0) + qξ1 = 0,
ζξ1 = λ[ξ; 1]N − (µ + q)ξ1,

ζξ2(τ) = −ξ′2(τ) − (µ + γ(τ))ξ2(τ),
(6.6)

Then the eigenvalue ζ is given as a root of the characteristic equation:

ζ + µ + q = β10 + q
∫ ∞

0
β20(τ)e−(ζ+µ)τΓ(τ)dτ. (6.7)

If β̄ = 1, we can use the similar discussion as in the Section 4 to show that the equation (6.7) has
a single solution zero and each of the remaining solutions has negative real part. Solving Lξ = 0, the
positive eigenvector v̂0 ∈ Z corresponding to the eigenvalue 0 is obtained as

v̂0 = T (q, 1, qe−µτΓ(τ)). (6.8)

Next we calculate the adjoint operator of L and its eigenfunctional corresponding to the dominant
eigenvalue zero. For ξ = (0, ξ1, ξ2(·)) ∈ Z0 and ψ = T (ψ2(0), ψ1, ψ2(·)) ∈ Z∗ = R × R × L∞,

〈Lξ, ψ〉 = (−ξ2(0) + qξ1)ψ3 + (λ[ξ, 1]N − (µ + q)ξ1)ψ1 −

∫ ∞

0

(
ξ′2(τ) + (µ + γ(τ))ξ2(τ)

)
ψ2(τ)dτ

= (ψ2(0) − ψ3)ξ2(0) + (qψ3 − (µ + q − β10)ψ1)ξ1

+

∫ ∞

0
[ψ′2(τ) − (µ + γ(τ))ψ2(τ) + β20(τ)ψ1]ξ2(τ)dτ,
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hence the following representation is obtained:

L∗ψ(τ) =


ψ2(0) − ψ3

qψ3 − (µ + q − β10)ψ1

ψ′2(τ) − (µ + γ(τ))ψ2(τ) + β20(τ)ψ1

 for ψ(τ) =


ψ3

ψ1

ψ2(τ)

 ∈ Z∗, (6.9)

where Z∗ denotes the adjoint space of Z. In order to find the eigenvector of L∗ corresponding to the
eigenvalue zero, we consider L∗ψ = 0, that is,

ψ2(0) = ψ3,

(µ + q − β10)ψ = qψ3,

ψ′2(τ) = (µ + γ(τ))ψ2(τ) − β20(τ)ψ1.

(6.10)

By our assumption (6.3), we have

µ + q − β10 = q
∫ ∞

0
β20(τ)e−µσΓ(σ)dσ > 0. (6.11)

Then it follows that
ψ1 =

qψ3

µ + q − β10
. (6.12)

Solving the ordinary differential equation in (6.10), we have

ψ2(τ) =
ψ3

e−µτΓ(τ)
−

qψ3

µ + q − β10

∫ τ

0
β20(τ)e−µ(σ−τ) Γ(σ)

Γ(τ)
dσ

=
ψ3

e−µτΓ(τ)

[
1 −

q
µ + q − β10

∫ τ

0
β20(σ)e−µσΓ(σ)dσ

]
=

qψ3

µ + q − β10

∫ ∞

τ

β20(σ)e−µ(σ−τ) Γ(σ)
Γ(τ)

dσ.

(6.13)

Therefore the unique (up to constant) eigenfunctional v̂∗0 ∈ Z∗ of L∗ corresponding to eigenvalue zero
is obtained as

v̂∗0 =


µ+q−β10

q

1∫ ∞
τ
β20(σ)e−µ(σ−τ) Γ(σ)

Γ(τ) dσ

 . (6.14)

From the above, it is obvious that b := 〈D2
uβ̄G[0, 1](v̂0, 1), v̂∗0〉 > 0, hence the bifurcation is backward if

a > 0, while if a < 0, the bifurcation is forward.
Now calculate the value of a := 〈D2

uuG[0, 1](v̂0, v̂0), v̂∗0〉. Since

D2
uuG[0, 1](v̂0, v̂0) = 2λ[v̂0; 1]


∫ ∞

0
p(0, η)qe−µηΓ(η)dη

−
(
1 +

∫ ∞
0

qe−µτΓ(τ)dτ
)∫ ∞

τ
p(τ, η)qe−µηΓ(η)dη − qe−µτΓ(τ)

 , (6.15)

it follows that the value of a satisfies

a =
2(µ + q)

N

[
µ + q − β10

q

∫ ∞

0
p(0, η)qe−µηΓ(η)dη −

(
1 +

∫ ∞

0
qe−µτΓ(τ)dτ

)
+

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτ
[∫ ∞

σ

p(σ, η)qe−µηΓ(η)dη − qe−µσΓ(σ)
]

dσ
]
.

(6.16)
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In order to see the meaning of the bifurcation condition by the parameter a, we adopt a more
intuitive argument to find the direction of the bifurcation based on the characteristic equation (5.12).
The direction of the bifurcation is determined by the sign of H′(0) when R0 = 1. In fact, if R0 < 1 but
|R0 − 1| is small enough, H′(0) > 0 implies the existence of positive solution for the equation (5.12)
(Figure 1).

𝐻(𝜆∗)

𝜆∗

𝑅0 = 𝐻(0)

1

Figure 1. If H(0) < 1 and |H(0) − 1| is sufficiently small, then there exist solutions for the
equation H(λ∗) = 1.

Then we can conclude that if H′(0) > 0, the bifurcation is backward, while it is forward if H′(0) < 0
at R0 = 1. Now we prove the equivalence of both conditions.

Proposition 6. Suppose that R0 = 1. Then it holds that sign(a) = sign(H′(0)).

Proof. First we calculate the derivative
d

dλ∗
r∗(τ)
λ∗

∣∣∣∣∣
λ∗=0

using the equality (5.11). For the purpose of calculating the derivative at zero, we may neglect the
second or higher terms of λ∗, hence

d
dλ∗

r∗(τ)
λ∗

∣∣∣∣∣
λ∗=0

=
d

dλ∗

(
fλ∗(τ)
λ∗

+
V∗λ fλ∗
λ∗

(τ) +
F∗λ fλ∗
λ∗

(τ)
)∣∣∣∣∣∣
λ∗=0

.

Since
d

dλ∗
g(τ; λ∗)

∣∣∣∣∣
λ∗=0

= −τe−µτΓ(τ) + e−µτΓ(τ)
∫ ∞

0
p(0, η)e−µηΓ(η)dη

holds, it follows that

d
dλ∗

fλ∗(τ)
λ∗

∣∣∣∣∣
λ∗=0

=
qN
µ + q

e−µτΓ(τ)
[
−τ −

1
µ

+

∫ ∞

0
p(0, η)e−µηΓ(η)dη

]
.

Next,

d
dλ∗

Vλ∗ fλ∗
λ∗

(τ)
∣∣∣∣∣
λ∗=0

=

∫ ∞

0

∫ ∞

σ

p(σ, η)
f (τ; λ∗)
λ∗

∣∣∣∣∣
λ∗=0

d
dλ∗

L(σ, τ; λ∗)
∣∣∣∣∣
λ∗=0

dηdσ

=
qN
µ + q

e−µτΓ(τ)
∫ τ

0

∫ ∞

σ

p(σ, η)e−µ(η−σ) Γ(η)
Γ(σ)

dηdσ
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and

d
dλ∗

Fλ∗ fλ∗
λ∗

(τ)
∣∣∣∣∣
λ∗=0

=

∫ ∞

0

q
µ + q

µN
µ + λ∗

g(ζ; λ∗)g(τ; λ∗)
(

1
µ + λ∗

q
µ + q

γ(ζ)

+

∫ ζ

0

∫ ∞

σ

p(σ, ζ)p(0, η)L(σ, η; λ∗)dηdσ
)∣∣∣∣∣∣
λ∗=0

dζ

=e−µτΓ(τ)
N
µ

(
q

µ + q

)2 ∫ ∞

0
e−µηΓ(η)γ(η)dη

are obtained. Finally we arrive at the following expression:

H′(0) = −
β10

µ(µ + q)
+

β10

µ(µ + q)
·

q
µ + q

∫ ∞

0
γ(τ)e−µτΓ(τ)dτ

+
q

µ + q

∫ ∞

0
β20(τ)e−µτΓ(τ)

[
−τ −

1
µ

+

∫ ∞

0
p(0, η)e−µηΓ(η)dη

+

∫ τ

0

∫ ∞

σ

p(σ, η)e−µ(η−σ) Γ(η)
Γ(σ)

dηdσ +
q

µ(µ + q)

∫ ∞

0
e−µηΓ(η)γ(η)dη

]
dτ.

(6.17)

Now let us prove that

(µ + q)H′(0) =
N

2(µ + q)
a. (6.18)

Let
(µ + q)H′(0) = H1 + H2 + H3 + H4,

where

H1 := −
β10

µ
+
β10

µ
·

q
µ + q

∫ ∞

0
e−µτΓ(τ)γ(τ)dτ −

q
µ

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ,

H2 :=q
∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

[∫ ∞

0
p(0, η)e−µηΓ(η)dη +

q
µ(µ + q)

∫ ∞

0
e−µηΓ(η)γ(η)dη

]
,

H3 :=q
∫ ∞

0
β20(τ)e−µτΓ(τ)

∫ τ

0

∫ ∞

σ

p(σ, η)e−µ(η−µ) Γ(η)
Γ(σ)

dηdσdτ,

H4 := − q
∫ ∞

0
τβ20(τ)e−µτΓ(τ)dτ.

Note that the following holds:∫ ∞

0
e−µτΓ(τ)γ(τ)dτ = 1 − µ

∫ ∞

0
e−µτΓ(τ)dτ. (6.19)

Then each Hi can be calculated as follows:

H1 = −
β10

µ + q

(
1 + q

∫ ∞

0
e−µτΓ(τ)

)
−

q
µ

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

= −

(
1 −

q
µ + q

∫ ∞

0
β20(τ)Γ(τ)dτ

) (
1 + q

∫ ∞

0
e−µτΓ(τ)

)
−

q
µ

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ
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= −

(
1 + q

∫ ∞

0
e−µτΓ(τ)

)
−

q2

µ(µ + q)

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

+
q2

µ + q

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

∫ ∞

0
e−µτΓ(τ)dτ,

H2 =q
∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

·

[∫ ∞

0
e−µηΓ(η)

(
1 −

∫ η

0
p(σ, η)dη

)
dη +

q
µ(µ + q)

(
1 − µ

∫ ∞

0
e−µηΓ(η)dη

)]
=

q2

µ(µ + q)

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ − q

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

∫ ∞

0

∫ η

0
p(σ, η)dσe−µηΓ(η)dη

+
µq
µ + q

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

∫ ∞

0
e−µηΓ(η)dη,

H3 =q
∫ ∞

0

∫ ∞

σ

∫ ∞

σ

β20(τ)e−µτΓ(τ)p(σ, η)e−µ(η−σ) Γ(η)
Γ(σ)

dηdτdσ

=

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτ
∫ ∞

σ

qp(σ, η)e−µηΓ(η)dηdσ,

H4 = −

∫ ∞

0

∫ τ

0
dσβ20(τ)qe−µτΓ(τ)dτ = −

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτqe−µσΓ(σ)dσ.

Therefore we have

H′(0) =

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

∫ ∞

0
qe−µηΓ(η)

[
1 −

∫ η

0
p(σ, η)dσ

]
dη −

(
1 + q

∫ ∞

0
e−µτΓ(τ)

)
+

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτ
[∫ ∞

σ

qp(σ, η)e−µηΓ(η)dη − qe−µσΓ(σ)
]

dσ

=
µ + q − β10

q

∫ ∞

0
p(0, η)qe−µηΓ(η)dη −

(
1 + q

∫ ∞

0
e−µτΓ(τ)

)
+

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτ
[∫ ∞

σ

p(σ, η)qe−µηΓ(η)dη − qe−µσΓ(σ)
]

dσ,

(6.20)

which implies the equality (6.18). �

In order to see under what kind of biological conditions the backward bifurcation could occur, let
us define a function:

F(η) :=
∫ ∞

0
β20(x + η)e−µx Γ(x + η)

Γ(η)
dx. (6.21)

Then F(η) is the expected number of reproduction (reproductive value) for sub-clinically infected
individuals at recovery-age η, especially F(0) gives the reproduction number of newly recovered indi-
viduals. Note that our condition (6.3) is expressed as

R0 =
β10

µ + q
+

q
µ + q

F(0) = 1. (6.22)
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Moreover we define
G(η) := F(0)p(0, η) +

∫ η

0
F(σ)p(σ, η)dσ. (6.23)

Then G(η) denotes the average reproduction number of sub-clinical individuals boosted at recovery-age
η.

Proposition 7. Under the assumption (6.3), backward bifurcation of endemic steady states occurs at
R0 = 1 from the disease-free steady state if and only if

q
∫ ∞

0
G(η)e−µηΓ(η)dη > q

∫ ∞

0
(F(η) + 1)e−µηΓ(η)dη + 1. (6.24)

Proof. From the above arguments so far, it is sufficient to show that

H′(0) = q
∫ ∞

0
G(η)e−µηΓ(η)dη − q

∫ ∞

0
(F(η) + 1)e−µηΓ(η)dη − 1. (6.25)

It follows from (6.20) that

H′(0) = qJ − 1 − q
∫ ∞

0
(1 + F(η))e−µηΓ(η)dη,

where

J : =

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ

∫ ∞

0
e−µηΓ(η)

(
1 −

∫ η

0
p(σ, η)dσ

)
dη

+

∫ ∞

0

∫ ∞

σ

β20(τ)e−µ(τ−σ) Γ(τ)
Γ(σ)

dτ
∫ ∞

σ

p(σ, η)e−µηΓ(η)dη

= F(0)
∫ ∞

0
e−µηΓ(η)

(
1 −

∫ η

0
p(σ, η)dσ

)
dη +

∫ ∞

0
F(σ)

∫ ∞

σ

p(σ, η)e−µηΓ(η)dηdσ

=

∫ ∞

0
F(0)p(0, η)e−µηΓ(η)dη +

∫ ∞

0

∫ η

0
F(σ)p(σ, η)dσe−µηΓ(η)dη.

Therefore it is easy to see that (6.25) holds. �

Corollary 2. Suppose that
G(η) ≤ F(η) + 1, ∀η ≥ 0. (6.26)

Then the forward bifurcation of endemic steady states occurs at R0 = 1 from the disease-free steady
state. Especially one of the following typical conditions is satisfied, then (6.26) holds:

1. F is constant,
2. supσ≥0 F(σ) ≤ 1,
3. p(0, η) = 1 and F(0) ≤ 1 + F(η) for all η.

Proof. From (6.25), it is clear that (6.26) is a sufficient condition in order to satisfy H′(0) < 0. If F is
constant, it follows from (2.4) that G(η) − F(η) = 0, hence we have (6.26). Next, from (2.4), we have
G(η) ≤ supσ≥0 F(σ), so (6.26) holds if supσ≥0 F(σ) ≤ 1. Finally, if p(0, η) = 1 for all η, that is, all
newly reinfected individual has recovery age zero, it follows that G(η) = F(0), so again (6.26) holds,
if F(0) ≤ 1 + F(η) for all η. �
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Corollary 3. Suppose that
∫ ∞
σ

p(σ, η)dη ≤ 1 for all σ > 0. Then, the endemic steady state bifurcates
forwardly from the disease-free steady state at R0 = 1.

Proof. Since

R0 =
β10

µ + q
+

q
µ + q

F(0) = 1,

we have β10 = µ + q − qF(0). Since β10 is nonnegative, F(0) should satisfy

F(0) ≤
µ + q

q
. (6.27)

Moreover, since p(0, η) = 1 −
∫ η

0
p(σ, η)dσ for all η > 0, we have

p(0, η) ≤ 1 (6.28)

for all η > 0. From (6.27) and (6.28), we have

q
∫ ∞

0
F(0)p(0, η)e−µηΓ(η)dη ≤(µ + q)

∫ ∞

0
e−µηΓ(η)dη

≤µ

∫ ∞

0
e−µηdη + q

∫ ∞

0
e−µηΓ(η)dη

=q
∫ ∞

0
e−µηΓ(η)dη + 1. (6.29)

Moreover, we have

q
∫ ∞

0

∫ η

0
F(σ)p(σ, η)dσe−µηΓ(η)dη = q

∫ ∞

0
F(σ)

∫ ∞

σ

p(σ, η)e−µηΓ(η)dηdσ

= q
∫ ∞

0
F(σ)

{[∫ η

σ

p(σ, ρ)dρe−µηΓ(η)
]∞
σ

+

∫ ∞

σ

[
µ + γ(η)

] ∫ η

σ

p(σ, ρ)dρe−µηΓ(η)dη
}

dσ

≤ q
∫ ∞

0
F(σ)

∫ ∞

σ

[
µ + γ(η)

]
e−µηΓ(η)dηdσ

= q
∫ ∞

0
F(η)e−µηΓ(η)dη. (6.30)

Since
G(η) = F(0)p(0, η) +

∫ η

0
F(σ)p(σ, η)dσ,

we have from (6.29) and (6.30) that

q
∫ ∞

0
G(η)e−µηΓ(η)dη ≤ q

∫ ∞

0

[
F(η) + 1

]
e−µηΓ(η)dη + 1.

Thus, the inequality (6.24) does not hold. �

Corollary 4. Suppose that F is monotone on [0,∞). Then, the endemic steady state bifurcates for-
wardly from the disease-free steady state at R0 = 1.
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Proof. First, suppose that F is monotone nonincreasing on [0,∞). Since p(0, η) = 1−
∫ η

0
p(σ, η)dσ for

all η > 0, we have

G(η) =F(0)p(0, η) +

∫ η

0
F(σ)p(σ, η)dσ

=F(0) +

∫ η

0
[F(σ) − F(0)]p(σ, η)dσ

≤F(0) ≤
µ + q

q
, ∀η ≥ 0.

Hence, we have

q
∫ ∞

0
G(η)e−µηΓ(η)dη ≤(µ + q)

∫ ∞

0
e−µηΓ(η)dη

≤q
∫ ∞

0
e−µηΓ(η)dη + µ

∫ ∞

0
e−µηdη

≤q
∫ ∞

0

[
F(η) + 1

]
e−µηΓ(η)dη + 1.

Thus, the inequality (6.24) in Proposition 7 does not hold. Next, suppose that F is monotone nonde-
creasing on [0,∞). We then have

G(η) =F(0)p(0, η) +

∫ η

0
F(σ)p(σ, η)dσ

≤F(0)p(0, η) + F(η)
∫ η

0
p(σ, η)dσ

≤F(0) + F(η)

≤
µ + q

q
+ F(η), ∀η ≥ 0.

Hence, we have

q
∫ ∞

0
G(η)e−µηΓ(η)dη ≤(µ + q)

∫ ∞

0
e−µηΓ(η)dη + q

∫ ∞

0
F(η)e−µηΓ(η)dη

≤q
∫ ∞

0

[
F(η) + 1

]
e−µηΓ(η)dη + µ

∫ ∞

0
e−µηdη

≤q
∫ ∞

0

[
F(η) + 1

]
e−µηΓ(η)dη + 1.

Thus, (6.24) in Proposition 7 does not hold. �

Proposition 8. F(0) ≤ 1 if and only if∫ ∞

0
β20(τ)e−β1τΓ(τ)dτ ≤ 1. (6.31)

And the condition (6.31) is satisfied if supτ≥0 β20(τ) ≤ β10. Then if p(0, η) = 1 for all η ≥ 0, the
condition (6.31) is a sufficient condition to show that the forward bifurcation of endemic steady states
occurs at R0 = 1 from the disease-free steady state.
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Proof. It follows from (6.22) that β10 − µ = q(1 − F(0)). Then F(0) ≤ 1 implies β10 ≥ µ. Hence we
have ∫ ∞

0
β20(τ)e−β10τΓ(τ)dτ ≤

∫ ∞

0
β20(τ)e−µτΓ(τ)dτ = F(0) ≤ 1,

so F(0) ≤ 1 implies (6.31). Conversely suppose that (6.31) holds. If we assume that F(0) > 1, it
follows that β10 − µ < 0, which implies

F(0) <
∫ ∞

0
β20(τ)e−β1τΓ(τ)dτ ≤ 1,

which contradicts F(0) > 1, then it must hold that F(0) ≤ 1. Therefore, the condition (6.31) implies
F(0) ≤ 1, and it also implies the condition 3 of Corollary 2, so the bifurcation is forward. Finally note
that if supτ≥0 β20(τ) ≤ β10, then we can observe that∫ ∞

0
β20(τ)e−β10τΓ(τ)dτ ≤

supτ≥0 β20(τ)
β10

≤ 1.

Then the condition (6.31) is satisfied. �

From the above propositions, we know that age-dependent variability of the transmission coefficient
for subclinical status is needed to produce possibility of backward bifurcation of endemic steady states
at R0 = 1 from the disease-free steady state. Yang and Nakata [32] proved that if p(0, η) = 1 for all
η ≥ 0 and the condition (6.31) is satisfied, there exists a unique endemic steady state exists if and only
if R0 > 1. Therefore, if all newly boosted infecteds have the recovery-age zero, subcritical endemic
steady state does not exist if there is no enhancement of the infectivity such that supτ≥0 β20(τ) > β10

among subclinical infecteds.

7. Discussion

In this paper, we have extended the Aron epidemic model so that the immunity clock can be reset to
any time less than the recovery-age at which reinfection occurs. If we assume that the immunity level
is determined by the immunity clock, our model assumption allows that newly boosted (reinfected)
individuals could get any level of immunity, which is a most flexible extension for the epidemic with
boosting and waning of immune status.

We have established the mathematical well-posedness of our formulation and have shown that the
initial invasion condition and the endemicity can be characterized by the basic reproduction number
R0. Our focus is the bifurcation analysis of endemic steady states. Based on Lyapunov–Schmidt type
arguments, we have determined the direction of bifurcation that endemic steady states bifurcate from
the disease-free steady state when the basic reproduction number passes through the unity. We have
given a necessary and sufficient condition for backward bifurcation to occur. Although we have not
yet discovered biologically reasonable, concrete numerical examples of subcritical endemic steady
states for our model∗, we have cleared what kind of mathematical conditions are needed to create the
backward bifurcation from the disease-free steady state under the reset mechanism of the immunity
clock.

∗In numerical simulation, we can use a standard method such as Gauss-Laguerre quadrature to calculate numerical integrals on
infinite intervals.
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Mathematically speaking, even in case that the forward bifurcation occurs, it is still a difficult prob-
lem to show conditions for the uniqueness of endemic steady state. It is a future challenge to investigate
the global dynamics of the epidemic model with boosting and waning of immune status. From applica-
tion point of view, it would be also important to extend our recovery-age dependent model to take into
account the chronological-age structure of host population. As is suggested in [4], the chronological-
age dependent model is essential to understand the age-specific prevalence dynamics for the epidemic
with boosting and waning of immune status.

Finally, we can again stress importance to consider the waning and boosting dynamics in the real-
world application. As is strongly expected in the pandemic of COVID-19, we believe that vaccination
is the most effective tool to control the pandemic. However, if the effect of vaccination is not necessarily
lifelong and it will wane as time evolves, so we may well have to boost the immune status by repeating
vaccination to keep the herd immunity. To make an appropriate immunization policy, we may need to
know the waning and boosting dynamics of immune status under any vaccination policy. It is a future
challenge to extend our model by taking into account possible vaccination policy.
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