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Abstract: Taking different types of addictive drugs such as methamphetamine, heroin, and mixed 

drugs causes brain functional Changes. Based on the prefrontal functional near-infrared spectroscopy, 

this study was designed with an experimental paradigm that included the induction of resting and drug 

addiction cravings. Hemoglobin concentrations of 30 drug users (10 on methamphetamine, 10 on 

heroin, and 10 on mixed type) were collected. For these three types of individuals, the convolutional 

neural networks (CNN) was designed to classify eight Brodmann areas and the entire prefrontal area, 

and the average accuracy of the three classifications on each functional area was obtained. As a result, 

the classification accuracy was lower on the left side than on the right in the dorsolateral prefrontal 

cortex (DLPFC) of the drug users, while it was higher on the left than on the right in the ventrolateral 

prefrontal cortex (VLPFC), frontopolar prefrontal cortex (FPC), and orbitofrontal cortex (OFC). Then 

the differences in eight functional areas between the three types of individuals were statistically 

analyzed, and results showed significant differences in the right VLPFC and right OFC. 

Keywords: drug addiction; fNIRS; machine learning; Brodmann areas; accuracy of brain regions; 

differences in brain function 

 

1. Introduction 

The brain function of people will be impaired after an extended period of drug abuse across a 

diverse variety. The classification accuracy of the eight encephalic regions (ERs) in the left and right 

hemispheres of the prefrontal lobe was analyzed on the basis of the fNIRS data acquired to identify 
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the differences, if any. Statistical analysis was then performed on the eight ERs to find out which of 

them stand out in drug abusers. The study Innovations: 1) Drug abusers were classified; 2) The 

differences in classification accuracy were identified by classifying the drug abusers in conjunction 

with the ERs via CNN; 3) ERs with discernible distinctions in the drug abusers were identified through 

statistical analysis on the eight ERs in the left and right hemispheres of the prefrontal lobe. 

In recent years, near-infrared research is still a new field, and its advantages are gradually 

recognized by researchers [1]. NIRS in optical brain imaging is a spectral measurement method based 

on scalp detection, which measures the hemodynamic function of brain tissue using optical injection 

and detection points, and can record blood-oxygen level [2,3]. Compared with electroencephalography 

(EEG), a novel mode of brain functional imaging, it has the advantages of convenient wearing, high 

anti-interference ability and portability [4]. In human body, oxyhemoglobin (HbO2) and 

deoxyhemoglobin (Hbb) have specific absorption for near-infrared light at 700–900 nm. However, 

other biological tissues in the brain are relatively transparent in this wavelength range. Therefore, the 

changes in near-infrared light intensity at 760 and 850 nm emitted into the brain were measured, and 

the indirect changes in brain functional activity were based on the hemodynamic data transformed 

according to the Beer-Lambert law [5]. 

Song et al, using fNIRS to extract oxy-Hb signals from schizophrenia patients and healthy people 

to construct a prefrontal brain network, and extract features from it to classify schizophrenia patients 

and healthy people, with a total accuracy rate of 85.5% [6]. Hu et al. propose a hybrid, multi-

dimensional fusion structure of spatial and temporal segmentation model for the automated detection 

of thermography defects. In the model, creatively designed attention blocks the resources for local 

interaction along neighboring pixels, allowing for an adaptive recalibration of the feature maps. The 

performance of the two classifications is improved [7]. Kim et al. used NIRS technology to study the 

relationship between walking speed and blood oxygen activation in brain regions [8]. The proposed 

network of Koh et al. addresses the need in deep learning to match the data function of a time series 

with an appropriate network structure. This improves the classification accuracy of EEG and human 

activity signals [9]. Holtzer researched that changes in walking step length lead to activation of the 

prefrontal cortex, while Caliandro found that when the walking step length increases, the blood oxygen 

concentration of the lateral frontal cortex also shows an increasing trend [10,11]. Rodriguez-Rodriguez 

et al., in the process of monitoring type 1 diabetes mellitus (DM1), creatively used machine learning 

technology, developed six-feature selection techniques and four predictive algorithms, obtaining the 

best average performance and the best algorithm classification accuracy [12]. Li et al. calculated the 

normal people and schizophrenia patients in the 60 s task state [13]. Hennrich et al. collected human 

near-infrared signals and compared the classification performance of deep neural networks (DNN) for 

three mental tasks [14]. Abibullaev et al. used DNN to classify four mental tasks with an accuracy rate 

of 94% [15]. 

fNIRS is used in the rehabilitation of stroke patients with motor imaging therapy, which can better 

monitor the changes in the treatment process [16]. Akiyama et al., using fNIRS to study the bilateral 

frontal cortex of depression patients [17]. fNIRS monitors the neonatal brain development stage, and 

its cerebral oxygen metabolism and hemodynamic characteristics are significantly different from those 

of adults [18]. 

fNIRS is mainly aimed at evaluating and imaging the degree of brain damage in drug addicts, and 

detecting differences in the activation of the forehead brain area of people with different degree of 

addiction and Long-term methamphetamine users mid-near infrared detection showed abnormal 



5694 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5692–5706. 

activation of the prefrontal cortex, orbital frontal cortex, and the anterior cingulate gyrus [19,20]. Now 

fNIRS has been applied in many fields, such as the research of brain development, the research of 

perception and cognition, the research of motor control, the research of mental illness, the research of 

stroke and brain injury [21–24]. 

According to the demographic scale, oral statement and medical examination, 30 drug addicts 

were selected. According to the experimental paradigm containing resting state and drug addiction 

induction, the near-infrared hemoglobin concentration data was collected. There are 30 subjects in 

total, classified into three classify. and Based on the CNN model, classification is performed. 

2. Materials and methods 

2.1. Participates 

Study participant criteria: 1) Meet the diagnostic criteria for disorders caused by DSM-5 

psychoactive substances; 2) Patients within six months of a withdrawal period; 3) Junior high school 

education and above; 4) Age 18–41 years; 5) Voluntary study participation and willingness to sign the 

informed consent form. Exclusion criteria: 1) Severe cognitive dysfunction, inability to cooperate and 

complete project-related assessment and testing; 2) Patients with severe physical diseases; 3) Patients 

with severe psychotic symptoms; 4) Current participation in other psychological interventions and 

treatments; 5) Current abuse of other substances that affect mental activities (except nicotine). The 

study was following with the declaration of Helsinki and was approved by the Ethics Committee of 

Shanghai University (Approval No. ECSHU2020-071). 

Table 1. Non-sensitive information of participants. 

N 30 

Sex (M/F) Male 
Age range (Year) 19–41 
Years of education 10 ± 2.72 
Years of drug abuse 8.2 ± 4.74 
Drug abuse per 
week: 

Most people 3–5 times a week. 

withdrawals 1.4 ± 0.98 
Reasons for taking 
drugs 

decompression needs; sex; emotion; curiosity; emotional frustration  

Subject No. 1 2 3 4 5 6 7 8 9 10 
Age: Year 41 28 25 35 35 39 29 35 33 32 
Type of drug METH METH METH METH METH METH MET

H 
MET
H 

METH METH 

Drug history 12 9 8 9 17 12 11 7 7 12 
Subject No. 11 12 13 14 15 16 17 18 19 20 
Age: Year 37 31 38 26 32 29 37 26 38 32 
Type of drug Heroin Heroin Heroin Heroin Heroin Heroin Heroin Heroi

n 
Heroin Heroin 

Drug history 14 6 13 8 4 5 12 13 17 17 
Subject No. 21 22 23 24 25 26 27 28 29 30 
Age: Year 37 31 31 24 40 34 35 40 39 36 

Type of drug 
Heroin, 
Cannabi
s, LSD, 
MDMA, 
Molly, 
Magu 

Pethidin
e 
hydroch
loride, 
heroin, 
MDMA, 
ketamin
e, 
METH 

Cocaine, 
MDMA, 
Molly, 
ketamin
e, LSD, 
cannabis
, 

Cannab
is, 
Cocain
e, LSD, 
trimeth
oprim, 
MDMA
, Molly 

Heroin, 
Meth, 
MDM
A 

METH
, 
heroin, 
ketami
ne, 
MDM
A 

MET
H, 
heroin, 
pethidi
ne 
hydroc
hlorid
e 

Heroi
n, 
MET
H, 
ketam
ine, 
MDM
A, 
canna
bis 

Heroin, 
METH, 
MDMA, 
ketamin
e, 
pethidin
e 
hydroch
loride 

Heroin, 
METH, 
MDMA, 
ketamine
, 
cannabis 

Drug history 16 11 7 6 19 13 11 20 20 19 
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2.2. Subject description 

According to the demographic scale prepared in the early stage, data of 30 subjects (all men), 

such as drug use type, drug history, average drug dosage, and drug use frequency, were collected and 

recorded. Moreover, combining these data with personal health information collected from hospital 

records and experts’ discussion and suggestions, three types of drugs were finally screened out, 

including methamphetamine, heroin, and mixed drugs, where ten subjects each were taking 

methamphetamine, heroin, and mixed drugs. Table 1 non-sensitive information of participants. METH: 

means Methamphetamine. 

2.3. Near-infrared spectroscopy technology equipment introduction 

NIRSIT (OBELAB, Seoul, Korea) and a light source with dual wavelength vertical-cavity 

surface-emitting laser were used with the following technical spectrum: continuous wave, 780 nm and 

850 nm; spatial resolution, 4 × 4 mm2; time resolution, 8.13 Hz; number of light points, 24; number of 

detection points, 32; and detection depth, 0.2–1.8 cm. The NIRS system used in the experiment allowed 

measurement of signals from four Source-Detector separations (15, 21.2, 30 and 33.5 mm) and 

hemodynamic reaction changes at different depths [25,26]. It is a functional NIRS device with 204 

channels. Figure 1 NIRSIT wearing method in the experiment. 

 

Figure 1. NIRSIT wearing method in the experiment. 

2.4. NIRSIT channel and functional area division 

The NIRSIT channel and functional area are shown in Figure 3. The four advanced functional 

areas detected through the forehead near-infrared device are as follows: the dorsolateral prefrontal 

cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), frontopolar prefrontal cortex, and orbital 

frontal cortex (OFC). Regarding specific channel distribution, the right DLPFC has 1, 2, 3, 5, 6, 11, 17 

and 18 channels. The left dorsolateral prefrontal lobe has 19, 20, 33, 34, 35, 38, 39 and 43 channels. 

The VLPFC of the left and right hemispheres have 4, 9, 10, 40, 44 and 45 channels. The left and right 

OFC have 14, 15, 16, 29, 30, 31, 32, 46, 47 and 48 channels. The frontopolar prefrontal cortex electrode 

arrangement has 7, 8, 12, 13, 21, 22, 23, 24, 25, 26, 27, 28, 36, 37, 41 and 42 channels. 
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Figure 2. NIRSTI channel and functional area division. 

2.5. Near-infrared imaging theory  

When light passes through a uniform, non-scattering medium, only the absorption of photons by 

the medium is considered. According to Beer-Lambert law, the attenuation of light intensity is 

expressed as: 

  ( )
0

lg
I

OD log cd e
I

 = = −                           (1) 

Among them, 0I  is the incident light intensity, I   is the output light intensity, ( )    is the 

extinction coefficient of the substance at the wavelength  , which is determined by the absorbing 

medium and the wavelength of the light, c   is the medium concentration, and the depth L of the 

penetration medium. Define the absorption coefficient as a : 

 ( )( )a c   =                                    (2) 

The total absorption coefficient in the medium can be expressed as the linear superposition of the 

absorption coefficient of each medium: 

 ( )( )
N

a i i

i

c   =                                 (3) 

The optical density can be expressed as: 

 ( )
0

N

i i

i

I
OD log c L

I
 = =                           (4) 

The absorbance OD represents the degree of light attenuation after passing through the medium, 

which is related to the absorption coefficient a  of the medium, depth L of the penetration medium, 

and wavelength λ of the irradiated light. The available formula is as follows: 
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 ( )aOD L =                                      (5) 

Among them, the absorption coefficient a  can be expressed as the product of the chromophore 

concentration c and its extinction coefficient ε. Considering the scattering problem, a differential path 

factor “DPF (λ)” is generally introduced, so it can be further expressed as follows: 

 )()(  DPFLcOD =                            (6) 

In the near-infrared band from 650 to 1000 nm, the main absorber of photons is hemoglobin. 

Although other chromophores also absorb light in this range, their contribution is assumed to be 

constant so that the change in the measured absorption signal over time can be attributed only to 

hemoglobin, and it can be expressed as follows: 

 )())(][)(][()(  DPFLHbbHboOD HbbHbo +=                   (7) 

In the formula, [Hbo] and [Hbb] represent the concentrations of oxyhemoglobin and 

deoxyhemoglobin, respectively. Changes in the concentrations of oxyhemoglobin and 

deoxyhemoglobin can be obtained by deformation: 
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 (9) 

2.6. Experiment and data collection  

We used E-prime software package (Psychology Software Tools, Pittsburgh, PA) to write the 

experimental paradigm, with each picture numbered. The experimental paradigm consisted of three stages. 

Figures 3 and 4, are examples of drug abuse-related images and neutral images used in the 

experimental paradigm. Figure 5 The whole process of experimental paradigm. P means: drug picture; 

N means: Neutral Picture; 

The first stage of the experiment, which lasted for 10 minutes, involved the participants closing 

their eyes for five minutes and then leaving their eyes open for five minutes.  

The second stage of the experiment, which lasted for six minutes, included the drug and neutral 

pictures. Each time block lasted for 10 seconds, for a total of 16 pictures, which were each displayed 

for 0.6 seconds. At the beginning, the first four pictures contained two drug images randomly displayed 

in a group, and the remaining 12 neutral images were displayed randomly. After a block had ended, a 

4-second interval picture was shown, with a white background and a black cross.  

The third stage of the experiment, which lasted for 4.6 minutes, a completely neutral image was 

shown. Each time block lasted for 10 seconds and a total of 16 pictures were shown. The picture display 

time was 0.6 seconds, with a 4-second interval picture shown between each block. 
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Figure 3. The example of drug pictures. 

 

Figure 4. The example of neutral pictures. 

 

Figure 5. The whole experimental structure. 

3. Results 

3.1. Introduction to methamphetamine, heroin, and mixed drugs 

Methamphetamine easily causes intense excitement, which is difficult to eradicate after 

addiction [27,28].  

Heroin is a psychoanaesthetic drug. Once a person becomes addicted, their physiological reaction 

is intense, and they have a compulsion to seek medication [29,30].  

“Mixed drug abusers” refers to drug users who attempt to mix two or three drugs at a time. A 

major feature of mixed drug users is that they are the first to be exposed to new drugs. Mixed drugs 
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have strong psychedelic properties, which causes the body to produce neurochemicals and form a 

dependence on them [31–33]. 

3.2. CNN network design 

Data on a total of 30 classified drug users were collected, each drug user containing 56 trials. 

Each trial corresponded to the channels of near-infrared data 0.625 seconds after the drug image 

appears. The whole CNN network has 20 layers, including 24 subjects in the training data, 3 in the 

validation data, and 3 in the testing data. Figure 6, CNN classification model of different types of drug 

abuse. The CNN model parameter are shown in Table 2. 

Table 2. CNN parameters. 

Layer (type) Output Shape Parameter # 

conv2d (Conv2D) (None, 5, 8, 32) 96 

activation (Activation) (None, 5, 8, 32) 0 

average_pooling2d (None, 5, 4, 32) 0 

conv2d_1 (Conv2D) (None, 5, 4, 16) 2064 

activation_1 (Activation) (None, 5, 4, 16) 0 

average_pooling2d_1 (None, 5, 3, 16) 0 

conv2d_2 (Conv2D) (None, 5, 3, 32) 1056 

activation_2 (Activation) (None, 5, 3, 32) 0 

average_pooling2d_2 (None, 5, 2, 32) 0 

conv2d_3 (Conv2D) (None, 5, 2, 32) 2080 

activation_3 (Activation) (None, 5, 2, 32) 0 

average_pooling2d_3 (None, 5, 1, 32) 0 

flatten (Flatten) (None, 160) 0 

dense1 (Dense) (None, 160) 25760 

dropout (Dropout) (None, 160) 0 

Dense2 (Dense) (None, 160) 25760 

dropout_1 (Dropout) (None, 160) 0 

dense3 (Dense) (None, 160) 25760 

dropout_2 (Dropout) (None, 160) 0 

dense4 (Dense) (None, 4) 644 

3.3. EEG and NIRS data preprocessing  

3.3.1. EEG and NIRS filtering 

NIRS networks are designed with Butterworth filters. The expression of n-order Butterworth filter is:  

 |𝑯(𝒇)|𝟐 =
𝟏

𝟏+(
𝒇

𝒇𝒄
)

𝟐𝒏 =
𝟏

𝟏+𝛜𝟐(
𝒇

𝒇𝒑
)

𝟐𝒏                                                               (10) 

where n is the order, 𝒇𝒄 is the cutoff frequency, and 𝒇𝒑 is the passband edge frequency. 
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3.3.2. Convolutional layer 

Convolutional layers are the core of convolutional neural networks. Its main role is to extract 

features from the input data. The calculation form is as follows: 

𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖∈𝑀𝑗

⋅ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙)                     (11) 

𝑥𝑗
𝑙 is the 𝑗th feature of the layer 𝑙. 𝑘𝑖𝑗

𝑙  is the 𝑗th feature of the layer 𝑙 and the 𝑖th feature of the 

layer 𝑙 − 1 .  𝑏𝑗
𝑙 is a bias parameter, 𝑓(•) is the activation function. 

3.3.3. Pooling layer 

The calculation form is as follows: 

 𝑥𝑗
𝑙 = 𝑓(β1

𝑙 \𝑑𝑜𝑤𝑛(𝑥𝑗
𝑙−1) + 𝑏𝑗

𝑙) (12) 

𝑥𝑗
𝑙  is the 𝑗 th feature of the layer 𝑙 .𝛽1

𝑙   is the Subsampling coefficient.𝑏𝑗
𝑙  is the bias parameter, 

𝑑𝑜𝑤𝑛(•) is a sub-sampling function, 𝑓(•) is the activation function. 

3.3.4. Normalization of data 

The specific implementation process is as follows: 

Input: Values of x over a mini-batch:𝐵 = {𝑥1 … 𝑥𝑚}; 

Parameters to be learned: 𝛾, 𝛽 

Output: {𝑦𝑖 = 𝐵𝑁γ,β(𝑥𝑖)} 

1. Calculate the mean of each mini-batch: 

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1   

2. Calculate the variance of each mini-batch: 

σℬ
2 ←

1

𝑚
∑ (𝑥𝑖 − μℬ)2𝑚

𝑖=1   

3. Normalize the data： 

𝑥̂𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜀

  

4. Scale and shift： 

𝑦𝑖 = 𝛾𝑥𝑖̂ + 𝛽 ≡ 𝐵𝑁γβ(𝑥𝑖)  

3.3.5. Activation function 

In this paper, the activation function uses a modified linear unit (ReLU), and the formula is as follows: 

 𝑓(𝑥) = max(0, 𝑥) (13) 

3.3.6. Full connection layer 

The calculation formula is as follows: 

 ℎ𝑤,𝑏(𝑥) = θ(𝑤T𝑥 + 𝑏) (14) 
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ℎ𝑤,𝑏(𝑥) is the output value of the neuron. 𝑥 is the input feature vector of the neuron. 𝑤 is the 

weight. 𝑏 is the bias parameter θ(∙) is the activation function. 

3.3.7. Softmax layer 

The softmax function formula is as follows: 

 𝑧𝑖 = Softmax(𝑜𝑖) =
exp(𝑜𝑖)

∑ exp(𝑜𝑐)𝑐
 (15) 

𝑜𝑖 is the value of the output neuron corresponding to the Ith category 

 

Figure 6. CNN classification model of different types of drug abuse. 

3.4. Accuracy of different brain regions 

Under the same CNN network structure and parameters, there are DLPFC, VLPFC, FPC and OFC 

prefrontal cortical regions in the left and right hemispheres of the brain. The average accuracy of 10 

times obtained is shown in the Table 3. 

Table 3. Average accuracy. 

Prefrontal cortex Channel Accuracy (%) 

Left-DLPFC 1, 2, 3, 17, 18, 5, 6, 11 51–61% 

Right-DLPFC 19, 20, 33, 34, 35, 38, 39, 43 56–72% 

Left-VLPFC 4, 9, 10 50–60% 

Right-VLPFC 40, 44, 45 40–50% 

Left-FPC 7, 8, 21, 22, 12, 13, 25, 26 55–70% 

Right-FPC 23, 24, 36, 37, 27, 28, 41, 42 50–60% 

Left-OFC 14, 15 16, 29, 30 50–62% 

Right-OFC 31, 32, 46, 47, 48 49–64% 

ALL-PFC 1, 2, 3, 17, 18, 5, 6, 11, 19, 20, 33, 34, 35, 38, 39, 43, 4, 9, 10, 

40, 44, 45, 7, 8, 21, 22, 12, 13, 25, 26, 23, 24, 36, 37, 27, 28, 41, 

42, 14, 15, 16, 29, 30, 31, 32, ,46, 47, 48 

70–77% 

4. Discussion 

4.1. Confusion matrix of classification accuracy of persons abusing different drugs 

In this study, the accuracy rates of eight areas of the prefrontal cortex and of the entire brain were 
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determined. Herein, the accuracy rates of all channels in terms of true-positive, true-negative, false-

positive, and false-negative results are given as examples, with methamphetamine abusers labeled 

as 0, heroin abusers as 1, and mixed abusers as 2. Among the three categories of participants, the 

accuracy rate of identifying methamphetamine abuse is lower than that of heroin and mixed drugs. 

Further adjustments to the model can increase the uniformity of the accuracy rate. Figure 7, 

Confusion matrix of three types of drug abusers. 

 

Figure 7. Confusion matrix of three types of drug abusers. 

4.2. Three classification accuracy rate statistics 

According to the unified CNN framework, there are 8 functional areas in the prefrontal lobe of 

the brain, and the correct rate statistics are shown in Figure 8. According to the statistical results, the 

following conclusions are drawn that the accuracy rate obtained in Left-DLPFC is lower than the 

Right-DLPFC prefrontal cortex. However, In VLPFC, FPC, OFC functional areas, the accuracy of the 

left hemisphere of the brain is higher than that of the right hemisphere. 

 

Figure 8. The accuracy of the forehead area. 

4.3.  Statistical analysis of three types of drug abusers 

Heroin, methamphetamine, and mixed drug abusers, through one-way ANOVA analysis revealed 
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three types of personnel differences. The analysis results of Table 4 are as follows: Right-VLPFC, 

Right-OFC, there are significant differences between the three types of personnel. The differences in 

other functional areas are not very obvious.  

The following results can be obtained: 

1) Long-term drug abuse of drug users has caused the function of the brain to become stronger or weaker. 

2) Long-term drug abuse by drug users on Right-VLPFC and Right-OFC can infer the functional 

damage of the cortical area. 

Table 4. statistical analysis of drug abusers in different functional areas. 

Heroin addicts 

Meth addicts  

Mixed drug addicts 

Left-DLPFC 

ANOVA summary F P-value R- square (P < 0.05)  
 1.467 0.2327 0.01223 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.001373 2 0.0006866 

F (2, 237) = 
1.467 

P = 
0.2327 

Residual (within 
columns) 0.1109 237 0.0004680   
Total 0.1123 239    

Right-DLPFC 

ANOVA summary F P-value R- square (P < 0.05)  
 2.794 0.0660 0.02267 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.001266 2 0.0006332 

F (2, 237) = 
2.749 

P = 
0.0660 

Residual (within 
columns) 0.05459 237 0.0002303 0.05459 

 

Total 0.05586 239    

Left-VLPFC 

ANOVA summary F P-value R- square (P < 0.05)  
 0.2203 0.8032 0.01038 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.001820 2 0.0009100 

F (2, 42) = 
0.2203 

P = 
0.8032 

Residual (within 
columns) 0.1735 42 0.004130 

  

Total 0.1753 44    

Right-VLPFC 

ANOVA summary F P-value R- square (P < 0.05)  
 4.068 0.0243 0.1623 Yes  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.000564 2 0.0002820 

F (2, 42) = 
4.068 

P = 
0.0243 

Residual (within 
columns) 0.002912 42 6.933e-005 

  

Total 0.003476 44    

Left-FPC 

ANOVA summary F P-value R- square (P < 0.05)  
 1.492 0.2293 0.02486 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.001555 2 0.0007773 

F (2, 117) = 
1.492 

P = 
0.2293 

Residual (within 
columns) 0.06097 117 0.0005211   
Total 0.06252 119    

Right-FPC 

ANOVA summary F P-value R- square (P < 0.05)  
 2.762 0.0657 0.02839 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.000312 2 0.0001562 

F (2, 189) = 
2.762 

P = 
0.0657 

Residual (within 
columns) 0.01069 189 5.655e-005   
Total 0.01100 191    

Left-OFC 

ANOVA summary F P-value R- square (P < 0.05)  
 1.422 0.2446 0.01879 No  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.000153 2 7.679e-005 

F (2, 147) = 
1.422 

P = 
0.2446 

Residual (within 
columns) 0.007941 147 5.402e-005   
Total 0.008094 149    

Right-OFC 

ANOVA summary F P-value R- square (P < 0.05)  
 6.930 0.0013 0.08780 Yes  
ANOVA table SS DF MS F (DFn, DFd) P value 
Treatment (between 
columns) 0.000685 2 0.0003425 

F (2, 144) = 
6.930 

P = 
0.0013 

Residual (within 
columns) 0.007118 144 4.943e-005   
Total 0.007803 146    
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5. Conclusions 

Due to the different pathogenic mechanisms of drugs, drug users who abuse different types of 

drugs suffer from different brain damages. In this paper, the blood oxygen levels of 30 drug users were 

obtained by high-density functional near-infrared spectroscopy. The eight Brodmann areas and the 

entire prefrontal area of the three types of individuals were identified and classified by the designed 

CNN to obtain the final results: the 3-class accuracy was lower on the left side than on the right in the 

DLPFC, while it was higher on the left than on the right in the VLPFC, FPC, and OFC. Statistical 

analysis on the eight functional areas showed significant differences in the right VLPFC and right OFC, 

and preliminarily predictions were for the brain damages caused by abusing different drugs. 
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