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Abstract: As an epitome of deep learning, convolutional neural network (CNN) has shown its 

advantages in solving many real-world problems. Successful CNN applications on medical prognosis 

and diagnosis have been achieved in recent years. Their common goal is to recognize the insights from 

the subtle details from medical images by building a suitable CNN model with maximum accuracy 

and minimum error. The CNN performance is extremely sensitive to the parameter tuning for any given 

network structure. To approach this concern, a novel self-tuning CNN model is proposed with a 

significant characteristic of having a metaheuristic-based optimizer. The most optimal set of 

parameters is often found via our proposed method, namely group theory and random selection-based 

particle swarm optimization (GTRS-PSO). The insights of symmetric essentials of model structure and 

parameter correlation are extracted, followed by the hierarchical partitioning of parameter space, and 

four operators on those partitions are designed for moving neighborhoods and formulating the swarm 

topology accordingly. The parameters are updated by a random selection strategy at each interval of 

partitions during the search process. Preliminary experiments over two radiology image datasets: 

breast cancer and lung cancer, are conducted for a comprehensive comparison of GTRS-PSO versus 

other optimization algorithms. The results show that CNN with GTRS-PSO optimizer can achieve the 

best performance for cancer image classifications, especially when there are symmetric components 

inside the data properties and model structures. 
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1. Introduction  

Catastrophic illnesses including breast and lung cancers are the most leading factors among all 

global deaths in the past decade [1]. They cause the most top categories of severe diseases by affecting 

those individuals in urban and rural livings of both developed and developing countries [2]. It is very 

obvious that the trend of morbidity increases among young people gradually every year, and the 

reasons why these deadly sicknesses happen include but not limited to side effects of medication and 

genetics, stress, obesity, unhealthy diets and improper lifestyles, etc. Although there is still some doubt 

whether cancer screening is beneficial or harmful for patients, it is critical to detect illnesses in early 

stage for treating and enhancing the survival of cancers and early diagnosis and screening are two 

common clinical measures for most prevalent cancers [3,4]. The risks of death are decreasing to a low 

degree by taking early diagnosis, reducing difficulties of barriers and improving access to cancer 

medical services. Besides that, even if the diseases are confirmed, it is still vital to detect features of 

such illnesses by different techniques during the physical examination. 

In most of these cases, the physical examination for inspecting suspicious masses on tissues is 

usually conducted by the experimented radiologist or medical specialist with the respective domain 

knowledge [5]. However, it is easy to omit the subtle information from detection due to various reasons, 

such as irregular and fuzzy masses, certain angle orientation and focus of the subject on nature, human 

errors, etc. And this also causes the occurrence of misjudgments consequently, which makes the early 

detection very difficult for visual determination on whether the patient is normal or otherwise. Hence, 

it is always desirable for medical practitioners to have computer-aided detection and diagnosis (CAD) 

that can offer an objective assessment based on the results of data processing [6]. The functioning 

strategy of the CAD system is mainly to use some computer techniques to detect the pathological 

changes in potential abnormal regions, highlight the suspicious components that may be ignored by 

naked human eyes and inform the medical experts to spot them for the further study and diagnosis. 

As the crucial part of the artificial intelligence (AI) fields, deep learning (DL) acts as a collection 

of intelligent algorithms that attempt to provide the high-level presentations of data features using 

multiple processing layers containing complex structures with many nonlinear transformations and 

obtain the relatively accurate results through such a model of classification or prediction instead of 

manual diagnosis. As a famous member of deep learning family, the convolutional neural network 

(CNN) would be able to extract multiple data features from different underlying levels by convoluting, 

nonlinear mapping, pooling and fully connecting the feature details from raw to fine. Distinguished 

from the conventional structure of artificial neural network (ANN) with full connections of all layered 

neurons in machine learning, the convolutional layer and the previous layer are linked in a unique way 

by local connection and weight sharing, their purposes are to reduce the input of dimensions, number 

of parameters and complexity of entire network architecture. Additionally, these two main strategies 

can impose the robustness and prevent over-fitting of the model effectively. Furthermore, based on 

those prominent essentials of CNN, we explore the internal characteristics of symmetries inside the 

model from the aspects of architecture construction and parameter correlation to get the deeper 

understanding of CNN. 
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In order to analyze the symmetry, the brief concept of group theory is introduced hereby. Group 

theory is the study of algebraic structures known as groups. Groups are special sets equipped with an 

operation (like multiplication, addition, or composition) that satisfies certain fundamental axioms of 

properties. In reality, real-world applications from many disciplines can be modeled by group theory 

(e.g., magic cube, crystals, hydrogen atom system, polynomial roots, cryptography, etc.), especially 

for those who have the symmetric characteristics of the whole system. Group theory usually embodies 

the internal symmetry of some structures in the form of automorphism groups. The internal symmetry 

of the structure often exists as an invariant property simultaneously. The combinations of these 

operations based on group theory can decompose and reconstruct the components of the entire system 

and help find the more intrinsic and underlying formation of system structure. 

Nevertheless, a critical problem resides in CNN model associating with its technical limitations, 

its performance highly relies on parameter configuration when the model structure is determined 

during the process of learning. So, it is not parameter-free and needs a specific strategy for parameter 

initialization and learning because the value range of those variables may vary from relatively tiny to 

extremely huge from the continuous parameter space. As a consequence, CNN is quite sensitive to 

parameter configuration, while changing the parameter values slightly could lead to totally different 

results probably, and the inaccurate model would become very fatal to a patient in some important 

assessment and recommendation of clinical tasks. 

Thereby, the optimization of CNN parameters emerges significantly and under this circumstance, 

we propose a metaheuristic-based optimization mechanism for solving parameter learning problem 

and tuning CNN model to its tip-top state with the highest performance. The parameters that are being 

optimized differ from hyperparameters (related to network architecture, e.g., convolutional filter size, 

stride step, pooling dimension, number of feature maps, learning rate, stacked layer design, etc.) in the 

model, they are those weights and biases of neurons connecting to each other of different layers within 

the architecture, and they are also learnable when the training process is started while hyperparameters 

are usually predefined before that. The critical component of CNN optimizer is presented as the group 

theory and random selection-based particle swarm optimization (GTRS-PSO). According to the 

symmetry analysis of both local connection and weight sharing in CNN, the symmetric group is 

adopted for particle encoding with the discretization of continuous values into several discrete intervals 

from the parameter space. And then, the property of parameter space is studied and it is further divided 

into four hierarchical partitions called conjugacy class, cyclic form, orbital plane and orbit based on 

group theory on those discrete intervals. Next, four operators are designed to search and move the 

neighborhoods on each level of the hierarchical partitions, providing a balanced relation between 

exploitation and exploration for particle update. At last, the formulating of swarm topology with the 

random selection from updated permutations of those intervals is carried out to ensure that the search 

process is proceeding into the next iteration gradually.  

The highlights of CNN with GTRS-PSO are listed as follows: 

•Symmetry of CNN model is revealed via parameter correlation and model structure studies; 

•Parameter space is decomposed into four hierarchical partitions exhaustively and exclusively by 

discretization of intervals, so the landscape of solutions becomes more explicit; 

•Function composition-based operators on those layered partitions are defined for neighborhood 

movements, and the swarm topology with random selection within discrete intervals is designed for 

the complete search procedure; 

•A tradeoff between diversification (exploration) and intensification (exploitation) is kept and the 
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computational complexity is reduced due to the utilization of group theory. 

Many researchers are dedicating themselves to the works related to CNN optimization. Sahiner 

et al. [7] are the pioneers who attempt to solve the mammography analysis problem by the three layers 

of local texture features in CNN. After that, lots of progress works have been done to follow up with 

the significant meaning of CNN research. A customized CNN with intensive dropout and input 

distortion techniques is presented by Li et al. [8] to avoid over-fitting for classifying lung disease. A 

research paper by Kooi et al. [9] shows the superior result generated by CNN compared to other state-

of-the-art CAD techniques. Although CNN has performed brilliantly in medical image related tasks, it 

is realized that we need further optimization for fast diagnosis and better decisions. Some ordinary 

methods such as Bayesian are deployed in hyperparameter and parameter optimization tasks of a neural 

network [10]. The most used approaches of the CNN optimizer are optimizations based on gradient 

descent, examples can be found in batch gradient descent (BGD), stochastic gradient descent (SGD) 

and mini-batch gradient descent (MBGD), or with the transfer learning of parameter fine-tuning [11]. 

The technology of automated machine learning (AutoML) is a promising solution for the construction 

of a deep model without human assistance [12], and as far as the architecture optimization is concerned, 

the grid and random methods are very practical and efficient to search the hyperparameter space [13]. 

Metaheuristics are also combined with CNN optimization as a common application. The EvoNets 

proposed by Liu et al. [14] is an evolutionary approach with genetic algorithm (GA) to search the 

optimal architecture of the CNN model for best performance. Their work is further improved by Parsa 

et al. [15] with three different schemes of GA (steady state, generational and elitism) to optimize CNN 

from the same point of view. Pawelczyk et al. [16] make the improved version of GA via the assistance  

of gradient learning during the search process to optimize the parameters from the genetically trained 

deep neural network. Silva et al. [17] reduce the false positive rate of lung image classification with 

conventional particle swarm optimization (PSO) when optimizing hyperparameters of CNN. Ribalta 

et al. [18] propose a PSO-based optimization method for hyperparameter selection in deep neural 

networks such like LeNet and SimpleNet. They show that PSO can allow a deep neural network of a 

minimal structure to obtain the good performance compared to other methods. Lan et al. [19] optimize 

CNN parameters using PSO with Lévy fight and long-tailed distribution to make a balance between 

local and global search. Also a confidence function-based PSO can extract appropriate information 

from normal distribution knowledge, and the CNN model is tested using a fast linear prediction to 

minimize the fitness function score [20]. In the reports of research works [21], the simulated annealing 

(SA) acts as the optimizer of solution vectors, hyperparameters or parameters in CNN to accelerate 

training process while preserving solution quality. SA and its two variants named macrocanonical 

annealing (MA) and threshold accepting (TA) are tested and compared to optimize the network 

model [22], the common thing of these three methods is that they all belong the single-solution 

optimization approach. The strategy is to select the best value of objective function on the last 

layer of the model, and then update the weights and biases on the previous layer. Rosa et al. [23] 

optimize CNN hyperparameters using harmony search (HS) for detecting patterns in one 

dimensional respiratory data. And many variants of HS, like improved HS, global-best HS, self-

adaptive HS, are also involved in the CNN optimization tasks then. 

For symmetry analysis in CNN, Gens et al. [24] introduce SymNets as the deep symmetry 

structure for the generalized form. They instantiate the model with the affine group including rotation, 

scaling and shearing operations to handle parameters in high dimensional symmetry space. The 

training and optimization method is backpropagation with partial derivative of loss function. The 
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paperwork of Vijay et al. [25] reveals the scale invariance of CNN weights and solves the problem of 

weight space symmetry by constraining the convolutional filters on the unit-norm manifold. SGD 

works on that manifold as the optimizing strategy of the model.  

Table 1. Summary and comparison of different parameter optimization approaches in CNN. 

 Gradient descent Grid and random Single solution Population 

Theorerical 

background 

Gradient descent 

optimization 

Grid decomposition 

and random access 

Single candidate 

optimization in  

metaheuristic 

Swarm intelligence in 

metaheuristic  

Typrical 

examples 

SGD, BGD, 

MBGD, Adam 

GS, RS SA, MA, TA GA, PSO, HS 

Advantages Deterministic to 

guarantee the 

global optimum, 

easy to implement 

and fast to execute 

Competitive to 

optimize baseline, 

high reproducible 

ability, easy to 

implement and fast 

to execute 

Heuristic to search 

the global optimum, 

concentrate on single 

solution quality and 

update strategy, high 

intensification of 

solutions 

Heuristic to search the 

global optimum, 

concentrate on 

population strategy and 

agent behavior, high 

diversity of solutions 

Disadvatanges Difficulty with 

escaping local 

optimum, gradients 

vanishing and 

exploding  

Slow convergence, 

extremely random 

quality of a solution 

Low diversification 

of solutions, high 

computational cost 

for complex problem 

High computational 

cost for complex 

problem, tradeoff 

between diversification 

and intensification 

To sum up briefly about the reviewed literature in Table 1, we find that most majority of works 

are focused on architecture or hyperparameter optimization in CNN, few of them are devoted to 

parameter or weight optimization of CNN model. The gradient descent-based fine-tuning algorithms 

would encounter serious problems of gradient exploding or vanishing during backpropagation learning, 

while extremely large or small multiplied values of weights can lead to a very unstable model and get 

stuck in the suboptimal state of parameter space. If the learning rate is too low, the algorithm becomes 

very hard to converge. On the contrary, the high rate would make the search skip the optimum and 

vibrate around it. Similar to the gradient descent-based methods, the grid and random search is also a 

stochastic approach of optimization and it would have the same issues with gradient descent, such as 

the difficulty with escaping local optimum and slow convergence, which can lead to the low quality of 

solutions. Therefore, the metaheuristics are introducted to improve the optimization strategy and 

overcome the disadvantages mentioned above. There are various types of metaheuristics, although 

some are also applied to optimize the CNN parameters, many of them are single-solution approaches 

and have limited performance compared to population-based ones. The drawbacks of single solution-

based metaheuristics are mainly about the lack of low diversity of candidates and this would also 

potentially cause the fact that the global optimum may not reach and it may get stuck in local optimum. 

Meanwhile, the population-based metaheuristics can overcome these weaknesses by adopting the 

swarm intelligence strategy and boosting the diversity of solutions from the search space. One of its 

main challenges is to maintain the tradeoff or balanced relationship between diversification and 

intensification during the search process. Also, the key challenge in SymNets is that it is intractable to 
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maintain the explicit representation when extending original space to affine space, and the high 

dimensional feature maps are required to compute the symmetry. The situation is also true for the 

steepest gradient descent update of weights on the manifold because of expensive computation. 

In this research work, our contribution is to present a group theoretic PSO as the CNN optimizer, 

it is one of the population-based swarm intelligent metaheuristics and can encode solutions of particles 

in the form of symmetric groups, which is more intuitive than affine group and manifold and easy to 

implement. It extracts the weight symmetry without a much larger scale of original solution space, so 

the computational time complexity remains constant with the CNN architecture as well. Group theory 

also offers a powerful tool to study the properties of parameter space systematically by hierarchical 

partitions, and the integrated PSO would be able to escape from the suboptimal state and make the 

search balanced between diversification and intensification in terms of the dynamic swarm topology 

with hierarchical operators on those partitions. 

The remainder of this paper is organized as below: Section 2 describes the symmetry in CNN 

model, the mechanism of optimizer of CNN parameters and the design idea of integrated methodology 

of GTRS-PSO as the CNN optimizer based on particle representation, space landscape, neighborhood 

movement, swarm topology and random selection. The materials for some preliminary experiments 

are introduced as well. Section 3 shows the experimental results compared to other optimization 

algorithms embedded in CNN model. Section 4 discusses the results, gives the reasons behind its 

superior performances and analyzes the time complexity of GTRS-PSO optimizer. Section 5 concludes 

the paper. Some related definitions and concepts in group theory used in this paper are listed out in the 

last section of Supplementary. 

2. Materials and methods 

In this section, we start to describe the details of design principles of our proposed method to 

incorporate with the analysis of symmetries of parameters and the study of metaheuristic-based 

optimizer structure of CNN. The experimental materials are followed by then, which involves data 

visualization, hyperparameter configuration and computational environment.  

2.1. CNN symmetry 

As mentioned in the introduction, two main highlighted features of the convolutional layer in 

CNN are local connection and weight sharing. Derived from the cortical structure of human brain, the 

idea of local perceptual strategy is designed for establishing the link between convolutional filter in 

the current layer and some regions of nodes from the previous layer, which refers to the fact that only 

partial nodes of the human vision neurons would react in the process of sensing the external objects. 

The correlation between nodes with relatively close distance is strong, and vice versa. This local 

correlation theory is also applicable to image classification tasks. It can be seen from Figure 1 that 

nodes in the certain region of the input image are connected to the filter to receive partial 

information, and the complete information is aggregated after the whole process of convolution.  

As for weight sharing, during the sliding of convolutional layer upon the image with multiple input 

channels, all the regions of the nodes share the same collection of weight coefficients. The 

statistical properties extracted by the same convolutional filter are similar at various locations of 

the image, only distinguishing filters will correspond to different weight parameters to detect extra 
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features within that image. 

 

Figure 1. Symmetry of local connection and weight sharing in CNN with multiple image channels. 

Basically, we suppose that all weights inside a single filter have the same range of value intervals 

based on the aforementioned assumptions, thus considering the weight reparameterization of 𝑚 × 𝑛 

matrix in a filter: 

𝑤 = [𝑤1 𝑤2 ⋯ 𝑤𝑛] = [
𝐼11 𝐼12 ⋯ 𝐼1𝑛

⋮ ⋮ ⋱ ⋮
𝐼𝑚1 𝐼𝑚2 ⋯ 𝐼𝑚𝑛

] (1) 

where 𝑛 is the size of weight dimension and 𝑚 is number of value intervals of one particular weight 

𝑤𝑖. This matrix stands for the weight space with symmetric representation, and similarly, the bias is 

reorganized as the form of 𝑚 × 1 vector: 

𝑏 = [
𝑏1

⋮
𝑏𝑚

] (2) 

2.2. CNN optimizer 

Since this research work is aiming at the effort of GTRS-PSO optimizer, so LeNet with the 

simplest structure is chosen as the demonstration of CNN parameter optimization. Figure 2 illustrates 

its structure with feature extraction (two convolutional layers 𝑐1 and 𝑐2, two subsampling layers 𝑠1 

and 𝑠2, two non-linear ReLU rectifications 𝑟1 and 𝑟2) and classification (two fully connected layers 

𝑛1 and 𝑛2,) parts. Notice that the red numbers are hyperparameters predefined before training and the 

sum of those blue ones are the parameter dimension of both weights and biases of the entire model. 

The black numbers are determined by the size of the input image. 
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Figure 2. Architecture of LeNet as a standard CNN model. 

Figure 3 demonstrates two optimization approaches of CNN, they are traditional gradient descent 

in the top right and population-based metaheuristic in the bottom right. The fatal issue of gradient 

descent encountered during backpropagation is that the model has been trapped into suboptimal state 

and the gradient may be vanishing or exploding. Then our motivation is to replace it with the 

population-based metaheuristic, and the proposed GTRS-PSO can avoid this issue through multiple 

search agents called particles and appropriate operators to move the neighborhoods and search the 

space in equilibrium between diversification (exploration) and intensification (exploitation).  

 

Figure 3. Optimization strategies of a standard CNN model implemented by traditional 

gradient descent and population-based metaheuristic. 

The objective fitness of the optimization is the cross-entropy as the loss function, it is a widely 

used criterion to evaluate the extent of how an algorithm works to fit with the original inputs. 

𝑙𝑖 = −log (
𝑒𝑓𝑦𝑖

∑ 𝑒𝑓𝑖𝑗
) (3) 

where 𝑓𝑖 is the array of predicted class scores for every single instance in the label class, 𝑦𝑖 is one-

hot encoding value of that label class, and 𝑙𝑖 is the loss value of cross-entropy computed by the output 
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of the SoftMax classifier. The fraction after the log is the normalized probability of the correct 

prediction. Furthermore, the regularization with coefficient 𝜆 is added to evaluate the model more 

reliably and prevent over-fitting. 

𝐿 =
1

𝑁
∑ 𝑙𝑖

𝑖

+
1

2
𝜆 ∑ ∑ 𝑤𝑘,𝑙

2

𝑙𝑘

 (4) 

2.3. GTRS-PSO as CNN optimizer  

As a unifying mathematical framework for population-based metaheuristic of CNN optimizer, 

group theory and random selection are integrated with PSO to form up the search of parameters in this 

subsection. We use group theory to redesign PSO from four different aspects, namely particle 

representation of intervals, landscape of parameter space, neighborhood movement on defined 

operators and dynamic swarm topology. The random value is selected from each interval after the 

update of particle velocity, and it works together with the trend of both local and global optima to 

update the position of that particle at the next iteration.  

2.3.1. Particle representation 

The essentials of symmetry in CNN network structure lead to effective representation of the 

particle by the symmetric group. According to the definitions of permutation and symmetric group, the 

encoding is a mapping function composed of the matrix with two rows that maps the index in the top 

to its corresponding value at the bottom. 

𝑝 = (
𝐼

𝑝(𝐼)) = (
𝐼1 ⋯ 𝐼𝑖 ⋯ 𝐼𝑛

𝑝(𝐼1) ⋯ 𝑝(𝐼𝑖) ⋯ 𝑝(𝐼𝑛)
) 

= (𝑝(𝐼1) 𝑝(𝐼2) ⋯)(⋯ 𝑝(𝐼𝑖−1) 𝑝(𝐼𝑖) ⋯)(⋯ 𝑝(𝐼𝑛−1) 𝑝(𝐼𝑛)) 

(5) 

The form of matrix is sometimes abbreviated to one row vector with only image values inside 

several pairs of parentheses. The discrete intervals are those elements of the mapping from the 

parameter space and the permutation 𝑝 stands for the transformation from one state to another.   

2.3.2. Solution landscape 

The structure analysis of solution landscape can divide the parameter space into hierarchical 

components of conjugacy classes, cyclic forms, orbital planes and orbits, respectively. Each of them is 

related to the different level of search, the partition scheme is complete and exhaustive of the space 

and the efforts are put on the concentration of more effective regions. In Figure 4, an example of space 

partitioning of a set with eight elements is shown, and the plot with only three dimensions is displayed 

because of intuitive visualization. 
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Figure 4. Hierarchical partitioning with four layers of the solution space. 

Conjugacy class. The first order partition of hierarchy is the conjugacy class from the solution 

space. According to its definition, two elements within the same conjugacy class are conjugate to each 

other, so the structure of a conjugacy class has several cyclic factors, where each of them is a cycle 

with the length between one and 𝑛. Two cycles with the same length are merged in the form similar 

to exponential notation. A conjugacy class with the structure of multiple cyclic factors of 𝑘𝑖 𝑖-cycles 

is denoted by factor form: 

𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑐𝑦 𝑐𝑙𝑎𝑠𝑠 = 1𝑘12𝑘2 ⋯ 𝑖𝑘𝑖 ⋯ 𝑛𝑘𝑛 , 𝑖 ∈ [1, 𝑛], 𝑘𝑖 ∈ [0, 𝑛] (6) 

∑ 𝑖𝑘𝑖

𝑛

𝑖=1

= 𝑛 (7) 

Cyclic form. The second order partition of hierarchy is the cyclic form of a conjugacy class. 

According to the definitions of conjugacy class and cycle, the cyclic forms are specified by both length 

of each cycle and ordering of these cycles, and thus cyclic form differs from each other based on these 

two metrics. We can determine the relation of two cyclic forms in terms of the permutation of their 

cyclic factors, the notation of a cyclic form is: 

𝑐𝑦𝑐𝑙𝑖𝑐 𝑓𝑜𝑟𝑚 = (𝑥 𝑥 ⋯)(⋯ 𝑥 𝑥 ⋯)(⋯ 𝑥 𝑥) (8) 

Orbital plane. The third order partition of hierarchy is the orbital plane within a cyclic form. 

According to the definition, given a set of 𝑋 with 𝑛 letters, 𝑋 is divided into a collection of subsets 

{𝑋𝑘}  using 𝑘  cyclic forms. If 𝑝1  and 𝑝2  are two permutations of the symmetric group 𝑆𝑛 , let 

𝑌𝑘(𝑝) denote the element positions of nontrivial cycles (not unit cycle) of {𝑋𝑘} in alphabetical order, 

then the orbital plane is the set of partitions of 𝑋 where the element positions in {𝑋𝑘} are the same 

under two group actions of 𝑝1 and 𝑝2. The associated equivalence relation for this definition is: 

𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑒 = {𝑋𝑘}, 𝑖𝑓𝑓 𝑋𝑖(𝑝1) = 𝑋𝑖(𝑝2), ∀𝑖 ∈ [1, 𝑘] (9) 
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Orbit. The last order partition of hierarchy is the orbit per orbital plane. According to the 

definitions of group action and orbit, the orbit is the collection of all elements in a given set 𝑋 to 

which its subset 𝑥 can be moved by group action 𝑔 from a given group 𝐺: 

𝑜𝑟𝑏𝑖𝑡 = 𝑜𝑟𝑏𝑖𝑡(𝑔, 𝑥) = {𝑔𝑥|𝑔 ∈ 𝐺}, ∀ 𝑥 ∈ 𝑋 (10) 

As far as the parameter space of CNN is concerned, the basic element is the discrete value interval 

of each weight and the purpose of space partitioning is to provide the systematical analysis of solution 

landscape and the design foundations of neighborhood movements in the following subsection. 

2.3.3. Neighborhood movement 

In the proposed method, a movement of a particle is defined as a particular group action on the 

incumbent solution that can change it to a new one. And the neighborhood of a particle is defined as 

the region of space reached by particular steps of group actions with its center to be the initial position 

itself. Four operators based on the above hierarchical partitions are presented to form up the velocity 

update strategy of GTRS-PSO. Let ∇ denote the operator based on various group actions and ⊗ 

denote the group multiplication. 

Conjugator. The conjugator jumps neighborhoods of a particle to a different conjugacy class, so 

it is an inter conjugacy class operator. By its definition, the operation of conjugators promotes global 

exploration at the early stages or when the process is trapped into the local optimum. For example: 

𝑥 = (1 3 2)(4 6)(5 8)(7)𝑋 ∈ 𝐶𝐶8 = 312211 

∇𝑐𝑛𝑗 ⊗ 𝑥 = 𝑥 (2 4) 𝑥−1 (2 4)−1 = (1 6)(2 4)(3)(5)(7)(8)𝑋 ∈ 𝐶𝐶3 = 2214 
(11) 

Cycler. The cycler enables the particle to move across different cyclic form structures inside the 

same conjugacy class, and it belongs to the operator of the intra conjugacy class, inter cyclic form and 

has the effort of global exploration at the early and middle stages of the search process. For example: 

𝑥 = (1 3 2)(4 6)(5 8)(7)𝑋 ∈ 𝐶𝐹 ∶ 3 − 2 − 2 , (𝑥 𝑥 𝑥)(𝑥 𝑥)(𝑥 𝑥) 

∇𝑐𝑦𝑐 ⊗ 𝑥 = (1 4 2) 𝑥 = (1 3)(2 4 6)(5 8)(7)𝑋 

∈ 𝐶𝐹 ∶  2 − 3 − 2 , (𝑥 𝑥)(𝑥 𝑥 𝑥)(𝑥 𝑥) 

(12) 

Swapper. The swapper changes the contents in each cycle while keeps the structure unchanged 

within a cyclic form, this is done by taking the conjugation and the result seems to be swapped between 

two different cycles. The swap operator is intra cyclic form, inter orbital plane and concentrates on the 

local exploitation at the middle and late stages of the search process. For example: 

𝑥 = (1 3 2)(4 6)(5 8)(7)𝑋 ∈ 𝑂𝑃, (1 3 2)(𝑥 𝑥)(𝑥 𝑥)(𝑥) 

∇𝑠𝑤𝑝 ⊗ 𝑥 = (2 4) 𝑥 (2 4)−1 = (1 3 4)(2 6)(5 8)(7)𝑋 

∈ 𝑂𝑃, (1 3 4)(𝑥 𝑥)(𝑥 𝑥)(𝑥) 

(13) 

Traverser. The traverser searches along the orbits one by one from each cycle, just like the 

traversal on an orbital plane, and obviously it is intra orbital plane. It works to intensify the local 

exploitation at the late stages of the search process. For example: 
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𝑥 = (1 3 2)(4 6)(5 8)(7)𝑋 

∇𝑡𝑟𝑣 ⊗ 𝑥 = 𝑜𝑟𝑏𝑖𝑡((1 3 2), 𝑋) = (1 2 3)𝑋, (1 3 2)𝑋, (𝑒)𝑋 
(14) 

The mapping relation of parameter space from flattened encoding to hierarchical partitioning is 

established in Figure 5. Each update step of intervals of the flattened vector is linked to a specific 

region of hierarchical space with the same dimension, and the update with random selection of intervals 

maps to the certain point of hierarchical space. Four operators (traverser in yellow, swapper in green, 

cycler in red and conjugator in blue) take place concurrently to move neighborhoods in the hierarchical 

space heuristically. 

 

Figure 5. Mapping relation from flattened vector to hierarchical space. 

2.3.4. Swarm topology 

Preserving the guidance trend of both local and global optima in traditional PSO, GTRS-PSO 

imposes the inertia item by defined operators instead of purely random search. Let ∇  denote the 

operator based on various group actions by group multiplication ⊗ and its formulas are: 

∇ = (𝑟𝑐𝑛𝑗∇𝑐𝑛𝑗) ⊗ (𝑟𝑐𝑦𝑐∇𝑐𝑦𝑐) ⊗ (𝑟𝑠𝑤𝑝∇𝑠𝑤𝑝) ⊗ (𝑟𝑡𝑟𝑣∇𝑡𝑟𝑣) (15) 

𝑣𝑘+1
𝑖 = 𝑅(∇ ⊗ 𝑣𝑘

𝑖 ) + 𝑟1(𝑝𝑘
𝑖 − 𝑥𝑘

𝑖 ) + 𝑟2(𝑝𝑘
𝑔

− 𝑥𝑘
𝑖 ) (16) 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖  (17) 

where 𝑅 is random selection from intervals, 𝑘 is the count for iterations, 𝑖 is the index of particles, 

𝑝𝑘
𝑖  is the local best fitness of 𝑖𝑡ℎ particle after 𝑘 iterations and 𝑝𝑘

𝑔
 is the global best fitness of the 

entire swarm after 𝑘 iterations. 

2.4. Materials  

For validating the proposed GTRS-PSO optimizer of CNN, two empirical datasets of clinical 
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diagnosis of breast and lung cancers are introduced. The breast dataset is the digital database for 

screening mammography, and it is the collaborative efforts of Massachusetts General Hospital, Sandia 

National Laboratories and the University of South Florida Computer Science and Engineering 

Department. The lung cancer dataset is collected in specialist hospitals of Iraq oncology teaching 

hospital and their national center for cancer diseases. As well known, the bright and scattered 

distribution of irregular calcification tissue in a breast MRI or the irregular lobulation sign a lung CT 

image (Figure 6b,d) is an important clinical symptom to diagnose. This lesion can also be detected by 

the margin or border of normal tissue and sick area using their significant difference of obscured, 

circumscribed and speculated texture properties. It is also challenging to identify breast and lung 

cancers very precisely due to the dense tissue under mammogram screening and the analogous 

symptoms from an infection or other breast diseases. 

 

(a) Breast normal 

 

(b) Breast cancer 

 

(c) Lung normal 

 

(d) Lung cancer 

Figure 6. Visualization of breast and lung CT images with binary labels. 

Table 2. Data descriptions of breast and lung images. 

Dataset Image no. Train / Test Task 

Breast 18860 10-fold cross validation  Binary classification (normal and cancer) 

Lung 1097 10-fold cross validation Binary classification (normal and cancer) 

The detailed information about dataset descriptions and hyperparameter and parameter settings 

of CNN and GTRS-PSO is displayed in Tables 2 and 3, respectively. The experiment mainly 

emphasizes on the evaluation of loss function of cross-entropy of CNN optimizers over a number of 
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iterations, the targets of optimization are weights and biases in the model, and the compared algorithms 

are Adam (adaptive moment estimation, which is gradient descent with extra RMSprop and 

Momentum technologies), RS, SA, GA, PSO, LLT-PSO (our proposed method from previous research 

and publication) [26] and the proposed GTRS-PSO. Each of them is a typical algorithm form the 

reviewed literature and summarized methods in Section 1, and the experiment aims at providing the 

comprehensive comparison of the efforts of various optimization technologies utilized in CNN model 

of the parameter learning process. The training and testing mechanism is 10-fold cross validation. 

Table 3. Hyperparameter setting of CNN and parameter setting of GTRS-PSO. 

Hyperparameter Value Task 

𝜆 [0.5, 2.0] Regularization coefficient in Eq (4) 

𝛼 10-4 Learning rate of CNN 

𝑓𝑠 3 Filter size of CNN 

𝑝𝑠 2 Pooling or subsampling rate of CNN 

𝑓𝑚 16 Feature map number of CNN 

𝑎𝑐𝑡 ReLU Activation function of CNN 

𝑓𝑐 64 Fully connected layer neuron number of CNN 

𝑚 10 Interval number in Eq (1) 

𝑟 (0.0, 1.0) Uniform distributed random number in Eqs (15) and (16) 

𝑐 1.0 Acceleration coefficient in Eq (16) 

𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 [-2.0, 2.0] Velocity range in Eq (16) 

𝑘 2000 Iteration number in Eqs (16) and (17) 

𝑝𝑜𝑝 30 Population size in Eqs (16) and (17) 

The experiments are conducted under the computational environment of a PC with the hardware 

equipment of HP EliteDesk 800 G2 Tower with Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz, 16GB 

RAM and Nvidia GeForce GTX 750. The software programming platform on Ubuntu 16.04 operating 

system is TensorFlow 1.2.1, Python 3.7.2 and SymPy 1.7.1, which is a Python library of symbolic 

mathematics for group theory implementation. 

3. Results 

The experiment is a case study and the explicit performances of CNN models with compared 

algorithms on breast and lung cancer datasets are tabulated in Table 4. The performances include final 

results of cross-entropy and computational time after a certain number of iterations. Overall, the fitness 

values of every different optimizer are all less than 1.0, and GTRS-PSO has the number which is even 

less than 0.5 on both datasets. Meanwhile, the Adam and RS optimizers wrapped in CNN generate the 

worst fitness scores, but they all share the fairly less time than others, which are less than 1 hour. The 

time costs of the rest of the algorithms would vary from almost 300 to 500 minutes and they are much 

larger than Adam and RS, because their search mechanisms differ. According to the factor of fitness 

score, it can be inferred that our proposed GTRS-PSO outperforms other optimizers based on fitness 

value, and its time cost is relatively acceptable and even shorter than LLT-PSO, but more than PSO 

and other metaheuristic approaches. Figure 7 shows the descending curves of cross-entropy during the 
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whole optimization process of different methods. All the curves have the trend of decaying and the 

final fitness score will get converged over some iterations. At first glance, one may realize that the 

plots of Adam, RS and SA have a different shape compared to other optimizers, it is similar to a smooth 

and descending curve while others share the shape of stair like curves. Furthermore, there are convexity 

and concavity in SA plot, on the contrary, Adam and RS plots only contain convex component. All the 

visual differences are caused by the search mechanisms of multiple optimizers behind. 

Table 4. Comparative results of CNN performances with various optimizers on breast and 

lung datasets. 

 Breast Lung 

 Fitness Time (min) Fitness Time (min) 

CNN-Adam 0.518 40.723 0.641 21.485 

CNN-RS 0.584 15.285 0.590 12.541 

CNN-SA 0.497 391.606 0.564 288.973 

CNN-GA 0.501 417.385 0.497 301.245 

CNN-PSO 0.478 378.539 0.527 279.782 

CNN-LLT-PSO 0.470 446.443 0.503 354.384 

CNN-GTRS-PSO 0.440 472.846 0.476 337.456 

 

(a) Breast 

 

(b) Lung 

Figure 7. Converging trends of CNN fitness with various optimizers on breast and lung datasets. 

4. Discussion 

Overall, the proposed GTRS-PSO as the CNN optimizer has the best performance, the curve 

shape is different from Adam, RS and SA because its search mechanism is metaheuristic style, the 

fitness score remains fixed and the update of globel best value would not take place untill a better 

solution is found, so the shape is a little bit like the slop-down pattern with different levels of stairs. 

For Adam, it searches according to the gradient, so the whole process works more smoothly and 

gradually, the situation is also true for RS. As for SA, its curve keeps a high value of fitness in the early 

stage but suddenly drops to a low level because of the physical phenomenon of annealing during the 

cooling process. The converging rate of GTRS-PSO is fast on breast dataset but it is slow on lung 
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dataset as far as PSO and LLT-PSO are concerned, the reason behind this phenomenon is that four 

operators in Eq (15) are function composition-based and they form up the final update of inertia weight 

of neighborhood movement in Eq (16), each of them is carried out concurrently with different 

happening rate controlled by a random number. So in the early stage of the whole process, the search 

of GTRS-PSO would focus on a broader region of exploration and its converging rate is slower, but 

after some iterations, it intensifies the search within a narrower area of exploitation and the converging 

rate becomes faster. From Figure 7 we can also find that the population-based methods would always 

be initialized with smaller fitness scores than those of single-based, gradient descent-based and 

random-based methods. The best initial value will be selected among a number of candidates of 

potential solutions, and in the subsequent search steps, the population can offer the sustainable support 

to find the global optimum and better exploration of diversities, so they show the faster convergence 

rate than others as well. 

Adam is gradient descent-based method and RS is randomness oriented, they may get stuck in 

local optimum. And SA would not be able to produce good result because it is single solution-based 

metaheuristic. The inertia update in PSO is quite random, and it has the strong capability to control the 

particle behavior via altering mean and standard deviation of the Gaussian distribution to which the 

seach space is linked. The particles near the global best would generate the small standard deviation, 

so that the neighborhood close to these particles can be searched in the first priority, and this will lead 

to the early convergence furthermore. Although its converging rate is descending rapidly, the final 

fitness score is not good enough because of lack of local search or intensification ability. As for LLT-

PSO, it is derived initially from conventional PSO with the extra Lévy flight (long-tailed distribution) 

for partial swarm as leaders, thus its converging curve has the similar shape with PSO and its 

performance is better than PSO due to the particle ability of Lévy flight of escaping from local 

optimum. In Eq (16) of GTRS-PSO, the meaning of inertia item ∇ with random selection 𝑅 is the 

moving step in search space and the coefficients of local and global items are the area (𝑟1, 𝑟2) of the 

reachable region in that space. All these three items are controlled by the dynamic configuration in 

GTRS-PSO, and a tradeoff between exploration and exploitation is maintained, which causes the result 

that the search space is decomposed systematically and the vast majority of the space can be searched 

and the duplicated search space with symmetric components is avoided, hence GTRS-PSO can get the 

best performance. 

Structural complexity of CNN: for a single convolutional layer, it is 𝑂(𝑚2 ∗ 𝑛2 ∗ 𝑐𝑖𝑛 ∗ 𝑐𝑜𝑢𝑡), 

where 𝑚 is the size of feature map, 𝑛 is the size of filter, 𝑐𝑖𝑛 is the number of feature maps from 

the previous layer and 𝑐𝑜𝑢𝑡 is the number of feature maps from the current layer. For a single fully 

connected layer, it is 𝑂(𝑐𝑖𝑛 ∗ 𝑐𝑜𝑢𝑡) and it has the same scale as a single convolutional layer because 

𝑚  and 𝑛  are fixed for specific applications. Totally, the structural complexity of CNN is 

𝑂(𝑑 ∗ 𝑚2 ∗ 𝑛2 ∗ 𝑐𝑖𝑛 ∗ 𝑐𝑜𝑢𝑡), where 𝑑 is the depth of CNN model. 

Time complexity of GTRS-PSO: in the single iteration, each operator has the complexity of 

𝑂(𝐷), where 𝐷 is the dimension of objective function and it is a linear rearrangement of the sequence 

of all elements. The objective function evaluating cost is 𝑂(𝑐𝑜𝑓), the time complexity during the 

single iteration is 𝑂[𝑁 ∗ (𝐷 + 𝑐𝑜𝑓)], where 𝑁 is population number, and total time complexity is 

𝑂[𝑘 ∗ 𝑁 ∗ (𝐷 + 𝑐𝑜𝑓)], where 𝑘 is iteration number. 

Total complexity of CNN with GTRS-PSO optimizer: the objective function evaluating cost 

equals the update process of CNN, 𝑂(𝑐𝑜𝑓) = 𝑂(𝑑 ∗ 𝑚2 ∗ 𝑛2 ∗ 𝑐𝑖𝑛 ∗ 𝑐𝑜𝑢𝑡) , and the dimension of 

objective function is the number of weights and biases in CNN, which has the same scale as CNN 
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structural complexity. So the total complexity is 𝑂(𝑘 ∗ 𝑁 ∗ 𝐷) ≤ 𝑂(𝐷2). 

5. Conclusions 

A novel group theoretic particle swarm optimization with random selection is proposed to 

optimize the CNN parameters of weights and biases. The novelty of this research includes applying 

the group theory framework combined with PSO search scheme in order to improve the solution 

landscape analysis and design the corresponding operators that can search for the best neighborhood 

solutions systematically. The swarm topology keeps the tradeoff for balancing both exploitation and 

exploration. The symmetries that are based on local connection and weight sharing in CNN are 

presented and extracted by group theory encoding. A case study on breast and lung cancer datasets is 

conducted and the preliminary results demonstrate that CNN with GTRS-PSO optimizer can have the 

optimal performance overall. 
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