
http://www.aimspress.com/journal/MBE

MBE, 18(5): 5505–5524.
DOI: 10.3934/mbe.2021278
Received: 05 May 2021
Accepted: 17 June 2021
Published: 21 June 2021

Research article

Stability and bifurcation analysis of S IQR for the COVID-19 epidemic
model with time delay

Shishi Wang, Yuting Ding∗, Hongfan Lu and Silin Gong

Department of Mathematics, Northeast Forestry University, Harbin, 150040, China

* Correspondence: E-mail: yuting840810@163.com.

Abstract: Based on the S IQR model, we consider the influence of time delay from infection to
isolation and present a delayed differential equation (DDE) according to the characteristics of the
COVID-19 epidemic phenomenon. First, we consider the existence and stability of equilibria in the
above delayed S IQR model. Second, we analyze the existence of Hopf bifurcations associated with
two equilibria, and we verify that Hopf bifurcations occur as delays crossing some critical values.
Then, we derive the normal form for Hopf bifurcation by using the multiple time scales method for
determining the stability and direction of bifurcation periodic solutions. Finally, numerical simulations
are carried out to verify the analytic results.
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1. Introduction

COVID-19 is a respiratory infectious disease and was first reported in Wuhan, China. It is caused
by a novel coronavirus named SARS-CoV-2. SARS-COV-2 appeared after severe acute respiratory
syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS) [1]. Coro-
naviruses are enveloped nonsegmented positive-sense RNA viruses and are broadly distributed in mam-
mals, including humans. They can destroy the human respiratory systems and cause severe acute res-
piratory syndrome [2]. Infected individuals usually cough, have a fever, and have difficulty breathing.
Some of them even die of COVID-19. Moreover, there are many ways to spread COVID-19, such as
direct transmission, aerosol transmission and contact transmission. This caused COVID-19 to spread
rapidly worldwide. As a global infectious disease, COVID-19 has caused more than one million deaths.
We attempt to establish a model to analyze the spread of COVID-19 and provide some advice to make
COVID-19 controllable.

In recent investigations, many researchers have studied different epidemic models applied to the
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spread of COVID-19. In ref. [3] and ref. [4], Varotsos et al. established an S PRD model that included
people that were susceptible, infected, recovered and dead. The model was based on COVID-19 data
and was established to predict COVID-19 spread. We think there is no need to include people who died
as a main part of the model because the proportion of people who died is very small. In ref. [5], León
et al. developed an S EIARD mathematical model to investigate the COVID-19 outbreak in Mexico.
The S EIARD model included infection with symptoms, infection without symptoms (asymptomatic),
recovery from symptomatic infection and recovery from asymptomatic infection. If we consider only
the infectivity of COVID-19, both infection with symptoms and infection without symptoms (asymp-
tomatic) can infect the suspected cases. There is no need to divide them into infected with symptoms
and infected without symptoms (asymptomatic). Both the recovery from symptomatic infection and
the recovery from asymptomatic infection have very small possibilities for reinfection. There is no
need to divide them into recovered from symptomatic infection and recovered from asymptomatic in-
fection. In ref. [6], an S EIR epidemic model was developed for COVID-19. In ref. [7] and ref. [8],
two S IR epidemic models were developed for COVID-19. For COVID-19, many countries have taken
quarantine measures, which play an important part in the spread of COVID-19. These authors did not
consider the influence of these quarantine measures. The quarantine measures taken by many coun-
tries make the proportion of quarantined people large. These quarantine measures can prevent infected
individuals from infecting suspected individuals. In addition, exposure to air pollution can damage the
heart and lungs and increase vulnerability to more serious coronavirus effects [9]. These quarantine
measures can reduce the influence of air pollution. We think it is necessary to consider quarantined
people because of the importance of these quarantine measures and the number of quarantined people.
We attempt to construct an S IQR epidemic model including quarantined people to describe the spread
of COVID-19.

In the spreading process of COVID-19, there is a time delay from infection to isolation. There are
some studies about other epidemics with time delays. Liu et al. [10] developed an S EIRU epidemic
model with a time delay before an infected person can transmit the infection to another person. They
evaluated the effect of the latency period on the dynamics of COVID-19. Xu [11] and Yang et al. [12]
also developed epidemic models with time delays before an infected person can transmit the infection
to another person. Although this kind of time delay exists, human beings have difficulty changing this
kind of time delay. In addition, Wang et al. [13] and Liu et al. [14] made time delays in their models
the sojourn times in an infective state. Lu et al. [15] presented an S IQR model with a time delay
from infection to recovery. The influence of the time delay from infection to recovery was discussed
in detail. According to their conclusions, the smaller the time delay from infection to isolation was,
the better COVID-19 was controlled. We decide to focus on the time delay from infection to isolation
and discuss the effect of the time delay from infection to isolation on the spread of COVID-19, which
is the main difference between our work and the works of others.

Stability and bifurcation have great significance to epidemic models, and some studies have ana-
lyzed stability and bifurcation for some epidemic models. In ref. [16], Greenhalgh investigated the
stability of some S EIRS epidemiological models with vaccination and temporary immunity. Green-
halgh proposed that there was a threshold parameter R0, and the disease could persist if and only if R0

exceeded one. In addition, disease-free equilibrium always existed and was locally stable if R0 < 1
and unstable if R0 > 1. However, for R0 > 1, the endemic equilibrium was unique and locally asymp-
totically stable. Based on this conclusion, we think it is necessary for us to calculate the threshold
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parameter R0 in our model. In ref. [17], Xie et al. investigated the global stability of endemic equi-
librium of an S IS epidemic model in complex networks. They proved that the endemic equilibrium
was globally asymptotically stable by using a combination of the Lyapunov function method and a
monotone iterative technique. However, the Hopf bifurcation analysis was not mentioned in this paper.
In refs. [18, 19], two S IS models were proposed. In ref. [20], an S IQRS model was proposed. The
stability of the models was analyzed, but bifurcation analysis was not mentioned. In refs. [21, 22, 23,
24], the stability and bifurcation of some S IR models were analyzed by different authors. In refs. [25,
26, 27, 28], different S IR models were developed. The stability and bifurcation of them were analyzed.
In ref. [29], an S IR epidemic model with time delay was proposed. In ref. [30], an S IR model with
information-dependent vaccination was proposed. We compare the methods they used to analyze the
stability and bifurcation of these S IR models. Then, we use the multiple time scales method, which
was also used in ref. [21]. The multiple time scales method is systematic. It is a standard method
for calculating the normal form of Hopf bifurcation. It can be directly applied to the original nonlin-
ear dynamical system, which is described by ordinary differential equations and delayed differential
equations, without application of the center manifold theory [31].

It is obvious that the isolation measures taken by many countries play an important role in control-
ling the spread of COVID-19. The time delay also has a considerable influence on the spread. Thus, we
attempt to develop one mathematical model with a time delay to investigate the spread of COVID-19
and analyze the stability of this model. In some studies such as refs. [3, 4, 5], the authors forecasted
how the epidemic situation changed with detailed data. However, we decide to focus on the stability
of equilibria in our model, calculate the critical time delay from infection to isolation and analyze the
dynamical property of our model to discuss the tendency of the spread of COVID-19.

The main objective of this paper includes constructing the DDE model for COVID-19 and analyzing
the stability of the model, the existence of Hopf bifurcation and the stability of the bifurcating periodic
solution. The rest of the paper is organized as follows. In Section 2, we construct the DDE model
according to the characteristics of the spread of COVID-19. In Section 3, we analyze the existence and
stability of the equilibria and the existence of Hopf bifurcation associated with the COVID-19 model
with a time delay. We calculate the critical time delay from infection to isolation and analyze the
dynamic properties of our model. In Section 4, we derive the normal form of the Hopf bifurcation for
the above model and analyze the stability of the bifurcating periodic solution. In Section 5, we present
the results of simulations to verify the correctness of our analysis. Finally, the conclusion is drawn in
Section 6.

2. Mathematical modeling

Suspected individuals can be infected with COVID-19 by infected individuals. After individuals are
infected with COVID-19, some of them will be quarantined, and some of them will die of COVID-19.
The quarantined individuals will not infect others. For COVID-19, we ignore the effect of reinfec-
tion because the probability of reinfection is very small. In addition, we ignore the probability of
transforming the suspected individuals into recovered individuals directly since the probability is also
small. We divide people into four kinds (suspected, infected, quarantined and recovered) based on their
infectivity. The specific conversion between the four kinds of people is given in Figure 1.
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Figure 1. Flow chart for the model S IQR.

The variables and parameters in Figure 1 are given in Table 1.

Table 1. The definitions of parameters and variables.
Symbol Definition

S The number of suspected people
I The number of infected people
Q The number of quarantined people
R The number of recovered people
Λ The population growth
µ The natural mortality
α1 The rate of COVID-19 death of infected people
α2 The rate of COVID-19 death of quarantined people
β The transmission rate from S to I
ε The transmission rate from I to Q
γ1 The transmission rate from I to R
γ2 The transmission rate from Q to R

For COVID-19, there is a latent period after the suspected individuals are infected. In the latent
period, the infected individuals have no symptoms. However, these asymptomatic infected individuals
can also infect suspected individuals. If we consider only their infectivity, there is little difference
between asymptomatic infected individuals and symptomatic infected individuals. Thus, both of them
can be divided into infected. Additionally, some suspected individuals may be quarantined, and they
will not be infected. This means that the number of suspected persons who can be infected will de-
crease. Considering the influence of the suspected individuals who are quarantined, we can reduce
the transmission rate from S to I, and there is no need to include the suspected individuals who are
quarantined in the model.

Based on Figure 1, we construct the DDE model (2.1):
S ′(t) = Λ − µS (t) − βS (t)I(t),
I′(t) = βS (t)I(t) − εI(t-τ) − µI(t) − α1I(t) − γ1I(t),
Q′(t) = εI(t-τ) − γ2Q(t) − α2Q(t) − µQ(t),
R′(t) = γ1I(t) + γ2Q(t) − µR(t),

(2.1)

where the definitions of parameters and variables are presented in Figure 1 and Table 1, and τ > 0
denotes the time delay from infection to isolation.

The initial condition of system (2.1) is φS (θ) ≥ 0, φI(θ) ≥ 0, φQ(θ) ≥ 0, φR(θ) ≥ 0, where
Φ = (φS (θ), φI(θ), φQ(θ), φR(θ)) ∈ C([−τ, 0],R4

+0) for θ ∈ [−τ, 0], and C([−τ, 0],R4
+0) is the Ba-

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5505–5524.



5509

nach space of continuous functions mapping interval [−τ, 0] into R4
+0. For the system (2.1), R4

+0 =

{(S , I,Q,R) |S ≥ 0, I ≥ 0,Q ≥ 0,R ≥ 0 }.
According to the initial condition of system (2.1), we present a theorem addressing the nonnegativity

and the boundedness of the solution to system(2.1).

Theorem 2.1. If S (0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,R(0) ≥ 0, the solution S ∗(t), I∗(t), Q∗(t), R∗(t) to
system (2.1) with τ = 0 is nonnegative and bounded when t > 0.

Proof. First, we prove S ∗(t) ≥ 0 when t ≥ 0 under the initial condition of system (2.1).
We assume that S ∗(t) is not always nonnegative for t ≥ 0 and make t1 the first time that S ∗(t1) = 0,

S ′(t1) < 0. According to the first equation of system (2.1), we can obtain S ′(t1) = Λ > 0. The two
conclusions we obtain are contradictory.

Therefore, S ∗(t) ≥ 0 when t > 0. In the same way, I∗(t) ≥ 0, Q∗(t) ≥ 0, R∗(t) ≥ 0 when t > 0. The
solution to system (2.1) is positive when t > 0.

Then, let N(t) = S (t) + I(t) + Q(t) + R(t), and N(t) represent the total number of people at time t.
Add four equations of Eq. (2.1), and we obtain N′(t) = Λ−µ(S (t)+ I(t)+ Q(t)+R(t)). Then, we can

obtain lim
t→∞

supN(t) = Λ
µ

. Thus, the solution S ∗(t), I∗(t), Q∗(t), R∗(t) to system (2.1) is bounded when
t > 0. �

Remark 1: We prove if S (0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,R(0) ≥ 0, the solution S ∗(t), I∗(t), Q∗(t),
R∗(t) to system (2.1) with τ = 0 is positive. It is not easy for us to prove that the solution to system
(2.1) is positive when τ > 0. However, according to our numerical simulation, we can find that when
system (2.1) is stable, the solution to system (2.1) is always positive, which is not contradictory to the
positivity of the solution to system (2.1).

Next, we consider the dynamic phenomena of system (2.1).

3. Analysis of stability

3.1. Existence and stability of equilibria

In this section, the system (2.1) is considered, and we first determine the equilibria of the above
system. Obviously, the system (2.1) has two equilibria:

E1 = (S ∗1, I
∗
1,Q

∗
1,R

∗
1), E2 = (S ∗2, I

∗
2,Q

∗
2,R

∗
2), (3.1)

with

S ∗1 =
Λ

µ
, I∗1 = 0,Q∗1 = 0,R∗1 = 0, S ∗2 =

ε + µ + α1 + γ1

β
, I∗2 =

Λ

ε + µ + α1 + γ1
−
µ

β
,

Q∗2 =
ε

α2 + γ2 + µ
(

Λ

ε + µ + α1 + γ1
−
µ

β
),R∗2 =

1
µ

(γ1 +
εγ2

α2 + γ2 + µ
)(

Λ

ε + µ + α1 + γ1
−
µ

β
).

(3.2)

Transferring the equilibria Ek(k = 1, 2) to the origin, we make w = S + S ∗k, x = I + I∗k , y = Q + Q∗k,
z = R + R∗k. We can obtain S = w − S ∗k, I = x − I∗k , Q = y − Q∗k and R = z − R∗k. Substituting these
equations into the model (2.1), we use S , I, Q and R to represent w, x, y and z. We obtain the following
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model: 
S ′(t) = −µS (t) − βS (t)I(t) − βS ∗kI(t) − βS (t)I∗k ,
I′(t) = βS (t)I(t) + βS ∗kI(t) + βS (t)I∗k − εI(t-τ) − µI(t) − α1I(t) − γ1I(t),
Q′(t) = εI(t-τ) − γ2Q(t) − α2Q(t) − µQ(t),
R′(t) = γ1I(t) + γ2Q(t) − µR(t), k = 1, 2.

(3.3)

In this subsection, we first demonstrate the stability of the equilibrium E1 = (S ∗1, I
∗
1,Q

∗
1,R

∗
1) =

(Λ
µ
, 0, 0, 0). We obtain the characteristics equation of the linearized system of Eq. (3.3) at the equilib-

rium E1 as follows:

(λ+µ)2(λ + µ + α2 + γ2)(λ + µ + α1 + γ1 − βS ∗1 + εe−λτ) = 0. (3.4)

When τ = 0, Eq. (3.4) becomes:

(λ+µ)2(λ + µ + α2 + γ2)(λ + µ + α1 + γ1 − βS ∗1 + ε) = 0. (3.5)

We show the following assumption:
(H1) βS ∗1 − (ε + µ + α1 + γ1) < 0.

Under (H1), the four roots of Eq. (3.5) have negative real parts due to µ > 0, α1 > 0, γ1 > 0, and the
equilibrium E1 is locally asymptotically stable when τ = 0.

Similarly, for the stability of the other equilibrium E2 = (S ∗2, I
∗
2,Q

∗
2,R

∗
2), we obtain the characteristic

equation of the linearized system of Eq. (3.3) at the equilibrium E2 as follows:

(λ+µ)(λ + µ + α2 + γ2)[(λ − ε + εe−λτ)(λ + µ + βI∗2) + β2S ∗2I∗2] = 0. (3.6)

When τ = 0, Eq. (3.6) becomes:

(λ+µ)(λ + µ + α2 + γ2)[λ2 + λ(µ + βI∗2) + β2S ∗2I∗2] = 0. (3.7)

If (H1) is not satisfied, the four roots of Eq. (3.7) have negative real parts due to µ > 0, α2 > 0, γ2 > 0,
and the equilibrium E2 of system (2.1) is locally asymptotically stable when τ = 0.

We can find that E1 is the disease-free equilibrium, and E2 is the endemic equilibrium. We calculate
the basic reproduction number R0, which is the number of suspected individuals who are infected by
the same infectious individual and can estimate the infectiousness of an infectious disease. According
to the system (2.1), we can obtain the new infections matrix F and the transition matrixV.

F =


0

βS (t)I(t)
0
0

 ,V =


−Λ + µS (t) + βS (t)I(t)

εI(t) + µI(t) + α1I(t) + γ1I(t)
−εI(t) + γ2Q(t) + α2Q(t) + µQ(t)
−γ1I(t) − γ2Q(t) + µR(t)

 .
Then, we make F0 represent the derivative of F at E1 and V0 represent the derivative ofV at E1:

F0 =


0 0 0 0
0 βS ∗1 0 0
0 0 0 0
0 0 0 0

 ,V0 =


µ βS ∗1 0 0
0 ε + µ + α1 + γ1 0 0
0 −ε γ2 + α2 + µ 0
0 −γ1 −γ2 µ

 .
Mathematical Biosciences and Engineering Volume 18, Issue 5, 5505–5524.
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The inverse of V0 is:

V−1
0 =


1
µ

−βS ∗1
µ(ε+µ+α1+γ1) 0 0

0 1
ε+µ+α1+γ1

0 0
0 ε

(ε+µ+α1+γ1)(γ2+α2+µ)
1

γ2+α2+µ
0

0 1
µ
[ γ1
ε+µ+α1+γ1

+
εγ2

(ε+µ+α1+γ1)(γ2+α2+µ) ]
γ2

µ(γ2+α2+µ)
1
µ
.

 .
And we can obtain:

F0V−1
0 =


0 0 0 0
0 βS ∗1

ε+µ+α1+γ1
0 0

0 0 0 0
0 0 0 0

 .
The maximum eigenvalue of F0V−1

0 is R0:

R0 = ρ(F0V−1
0 ) =

βS ∗1
ε + µ + α1 + γ1

.

We compare R0 with (H1), and we find that if R0 < 1, the inequality of (H1) exists constantly, and
if R0 > 1, (H1) is not satisfied. This represents if R0 < 1, the disease-free equilibrium E1 is locally
asymptotically stable when τ = 0 and if R0 > 1, the endemic equilibrium E2 is locally asymptotically
stable when τ = 0.

3.2. Existence of Hopf bifurcation

For equilibrium E1, when τ > 0, let λ = iω0 (ω0 > 0) be a root of the following equation:

λ + µ + α1 + γ1 − βS ∗1 + εe−λτ = 0. (3.8)

Substituting λ = iω0 into Eq. (3.8) and separating the real and imaginary parts, we haveω0 = ε sin(ω0τ),
βS ∗1 − (µ + α1 + γ1) = ε cos(ω0τ).

(3.9)

Thus, we obtain: 
Q1 , sin(ω0τ) =

ω0

ε
,

P1 , cos(ω0τ) =
βS ∗1 − (µ + α1 + γ1)

ε
.

(3.10)

Adding the square of two equations (3.9), we can obtain

ω2
0 = ε2 − [βS ∗1 − (µ + α1 + γ1)]2. (3.11)

Thus, ω0 =

√
ε2 − [βS ∗1 − (µ + α1 + γ1)]2 when ε2 − [βS ∗1 − (µ + α1 + γ1)]2 ≥ 0, and substituting it

into Eq. (3.10). Since ω0 > 0 and ε ≥ 0, we can obtain Q1 > 0 and obtain:

τ
( j)
1 =

1
ω0

[arccos(P1) + 2 jπ],Q1 ≥ 0, (3.12)
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where Q1, P1 are given in Eq. (3.10), j = 0, 1, 2 · · · .
Let λ(τ) = α(τ) + iω(τ) be the root of Eq. (3.8) satisfying α(τ( j)

1 ) = 0, ω(τ( j)
1 ) = ω0, j = 0, 1, 2 · · · .

Then, we have the transversality conditions

Re(
dλ
dτ

)
−1

∣∣∣∣∣∣
λ=iω0,τ=τ

( j)
1

=
1
ε2 > 0, j = 0, 1, 2 · · · .

Thus, the system (2.1) undergoes a Hopf bifurcation at equilibrium E1 of system (2.1) when τ =

τ
( j)
1 , j = 0, 1, 2, · · · .

For the other equilibrium E2, when τ > 0, let λ = iω (ω > 0) be the root of the following equation:

(λ − ε + εe−λτ)(λ + µ + βI∗2) + β2S ∗2I∗2 = 0. (3.13)

Substituting it into the equation and separating the real and imaginary parts, we haveω2 + µε + εβI*
2 − β

2S ∗2I∗2 = (ωε) sin(ωτ) + (µε + βεI∗2) cos(ωτ),
µω − εω + βωI∗2 = (−ωε) cos(ωτ) + (µε + βεI∗2) sin(ωτ).

(3.14)

Equation (3.14) can be presented as:
Q2 , sin(ωτ) =

(ω2 + ε(βI∗2 + µ) − β2S ∗2I∗2)ω − (ε − (βI∗2 + µ))(βI∗2 + µ)ω

ε[ω2 + (βI∗2 + µ)2]
,

P2 , cos(ωτ) =
(ω2 + ε(βI∗2 + µ) − β2S ∗2I∗2)(βI∗2 + µ) + (ε − (βI∗2 + µ))ω2

ε[ω2 + (βI∗2 + µ)2]
.

(3.15)

Adding the square of two equations Eq. (3.14), let z = ω2, and

h(z) = z2 + c1z + c0 = 0, (3.16)

where c1 = (βI∗2 + µ)2 − 2β2S ∗2I∗2, c0 = (β2S ∗2I∗2)2
− 2β2S ∗2I∗2(βI∗2 + µ)ε.

Therefore, we have the following assumption:
(H2) c2

1 − 4c0 > 0, c1 < 0, c0 > 0.
(H3) c0 < 0.
If (H2) holds, then Eq. (3.16) has two positive roots, z1 and z2 (z1 < z2). If (H3) holds, then Eq.

(3.16) has only one positive root z3. Without loss of generality, substituting ωk =
√

zk (k = 1, 2, 3) into
Eq. (3.15), we obtain:

τ
( j)
2,k =

{ 1
ωk

[arccos(P2,k) + 2 jπ], Q2,k ≥ 0,
1
ωk

[2π − arccos(P2,k) + 2 jπ], Q2,k < 0, j = 0, 1, 2 · · · ,
(3.17)

where Q2, P2 are given in Eq. (3.15) and Q2,k = Q2|ω=ωk ,τ=τ
( j)
2,k
, P2,k = P2|ω=ωk ,τ=τ

( j)
2,k
, k = 1, 2, 3.

Note that since Q1 = ω0
ε

is always nonnegative, we can obtain τ( j)
1 directly. However, whether Q2 is

positive depends on the parameters of Eq. (3.15), and we need to obtain τ( j)
2,k, ( j = 1, 2, 3) according to

the value of Q2.
Furthermore, let λ(τ) = α(τ) + iωk(τ) be the root of Eq. (3.17) satisfying α(τ( j)

2,k) = 0, ω(τ( j)
2,k) =

ωk (k = 1, 2, 3; j = 0, 1, 2 . . .).

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5505–5524.
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If (H2) or (H3) holds and zk = ω2
k(k = 1, 2, 3), then we can deduce Re( dτ

dλ )
∣∣∣
τ=τ

( j)
2,k

:

Re(
dτ
dλ

)
∣∣∣∣∣
τ=τ

( j)
2,k

=
ωk

2[(βI∗2 + µ)2 − 2β2S ∗2I∗2]

ε2[ωk
2 + (βI∗2 + µ)2]

=
ωk

2h′(zk)
ε2[ωk

2 + (βI∗2 + µ)2]
, 0, k = 1, 2, 3.

There is a Hopf bifurcation at equilibrium E2 of system (2.1) when τ = τ
( j)
2,k, j = 0, 1, 2 · · · .

Then, we present a stability theorem of system (2.1)’s equilibria E1, E2 and the existence of Hopf
bifurcation.

Theorem 3.1. We consider the model (2.1):
(1) If (H1) holds, the equilibrium E1 of the model (2.2) undergoes a Hopf bifurcation when τ =

τ
( j)
1 , j = 0, 1, 2 · · · , and we obtain the following. When τ ∈ [0, τ(0)

1 ), the equilibrium E1 is locally
asymptotically stable. When τ ∈ [τ(0)

1 ,+∞), the equilibrium E1 is locally asymptotically unstable.
(2) Under the condition that (H1) is not satisfied, and if (H2) or (H3) holds, the equilibrium E2 of

the model (2.1) undergoes a Hopf bifurcation when τ = τ
( j)
2,k(k = 1, 2, 3), and we obtain the following.

(a) If (H2) holds, h(z) has two positive roots, z1 and z2; then we assume z1 < z2, and we obtain
h′(z1) < 0, h′(z2) > 0. Then, ∃ m ∈ N, which can make 0 < τ(0)

2,2 < τ(0)
2,1 < τ(1)

2,2 < τ(1)
2,1 < · · · < τ(m−1)

2,1 <

τ(m)
2,2 < τ

(m+1)
2,2 . When τ ∈ [0, τ(0)

2,2) ∪
m⋃

l=1
(τ(l−1)

2,1 , τ(l)
2,2), the equilibrium of the model is locally asymptotically

stable. When τ ∈
m−1⋃
l=0

(τ(l)
2,2, τ

(l)
2,1) ∪ (τ(m)

2,2 ,+∞), the equilibrium is locally asymptotically unstable.

(b) If (H3) holds, h(z) has only one positive root z3, when τ ∈ [0, τ(0)
2,3), the equilibrium E2 is locally

asymptotically stable. When τ ∈ (τ(0)
2,3,+∞), the equilibrium E2 is unstable.

4. Normal form of Hopf bifurcation

Without loss of generality, we denote the critical value τ = τ∗ when the characteristic Eq. (3.4) and
Eq. (3.6) have eigenvalue λ = iω∗k, k = 1, 2, at which system (2.1) undergoes a Hopf bifurcation at
equilibrium Ek = (S ∗k, I

∗
k ,Q

∗
k,R

∗
k), k = 1, 2.

First, we transform the equilibrium to the origin; then, we use the multiple time scales method, and
system (2.1) can be written as

Ẋ(t) = AX(t) + BX(t − τ) + F(X(t), X(t − τ)), (4.1)

where X(t) = (Ŝ k(t), Îk(t), Q̂k(t), R̂k(t))T,X(t − τ) = (Ŝ k(t − τ), Îk(t − τ), Q̂k(t − τ), R̂k(t − τ))T,

A =


−µ − βI∗k −βS ∗k 0 0
βI∗k βS ∗k − (µ + α1 + γ1) 0 0
0 0 −(γ2 + α2 + µ) 0
0 γ1 γ2 −µ

 , B =


0 0 0 0
0 −ε 0 0
0 ε 0 0
0 0 0 0

 ,

F(X(t), X(t − τ)) =


FS

FI

FQ

FR

 =


Λ − µS ∗k − βS kIk − βS ∗kI∗k

βS kIk + βS ∗kI∗k − (ε + µ + α1 + γ1)I∗k
εI∗k − (µ + α2 + γ2)Q∗k
γ1I∗k + γ2Q∗k − µR∗k

 .
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We make ˜̇X(t) = AX(t) + BX(t − τ) the linear system of system (4.1). We assume that hk(k = 1, 2)
is the eigenvector of the eigenvalue λ=iω∗k(k = 1, 2) of the linear system and that h∗k is the eigenvector
of the eigenvalue λ= − iω∗k of the linear system. We make Ĩ the unit matrix, and hk satisfies (λ̃I − A −
Be−λτ)hk = 0, where λ = iω∗k, and h∗k satisfies (λ̃I − A − Be−λτ)Thk

∗ = 0, where λ = −iω∗k. Additionally,〈
h∗k, hk

〉
= h∗k

T
hk = 1, and we can obtain

hk = (hk1, hk2, hk3, hk4)T = (
−βS ∗k

λ + µ + βI∗k
, 1,

εe−λτ

λ + µ + α2 + γ2
,
γ1

λ + µ
+

γ2εe−λτ

(λ + µ)(λ + µ + α2 + γ2)
)T,

hk
∗ = (h∗k1, h

∗
k2, h

∗
k3, h

∗
k4)T = dk(

βI∗k
λ + µ + βI∗k

, 1, 0, 0)T,

(4.2)

where dk = ( −β2S ∗k I∗k
(µ+βI∗k )2+ω∗k

2 + 1)
−1
, k = 1, 2.

We use the multiple time scale method to deduce the normal form of the Hopf bifurcation and
assume the solution to Eq. (4.1) is

X(t) = X(T0,T1,T2, · · · ) =

∞∑
k=1

εkXk(T0,T1,T2, · · ·), (4.3)

where X(T0,T1,T2, · · · ) = [S (T0,T1,T2, · · · ), I(T0,T1,T2, · · · ),Q(T0,T1,T2, · · · ),R(T0,T1,T2, · · · )]T,
Xk(T0,T1,T2, · · · ) = [S k(T0,T1,T2, · · · ), Ik(T0,T1,T2, · · · ),Qk(T0,T1,T2, · · · ),Rk(T0,T1,T2, · · · )]T, k =

1, 2, Ti = ε it, i = 0, 1, 2, · · · and Ti is the scaling transform in the time direction.
The derivative with respect to t is

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · ,

where Di = ∂
∂Ti
, i = 0, 1, 2, · · · .

Note that X j = (S j, I j,Q j,R j)T = X j(T0,T1,T2, · · · ), X j,τc = (S j,τc , I j,τc ,Q j,τc ,R j,τc)
T = X j(T0 −

τc,T1,T2, · · · ), j = 1, 2, · · · .
Then, we can obtain

�

X(t) = εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D1X2 + ε3D0X3 + · · · . (4.4)

We consider that τ is the bifurcation parameter, and we set τ = τc + ετε, where τc = τ
( j)
k (k = 1, 2) is

the critical value of the Hopf bifurcation, τε is the perturbation parameter, and ε is the dimensionless
parameter.

Using Taylor series expansion of X(t − τ), we obtain that

X(t − τ) = εX1,τc + ε2X2,τc + ε3X3,τc − ε
2τεD0X1,τc − ε

3τεD0X2,τc − ε
2τcD1X1,τc

− ε3τεD1X1,τc − ε
3τcD2X1,τc − ε

3τcD1X2,τc + · · · ,
(4.5)

where X j,τc = X j(T0 − τc,T1,T2, · · · ), j = 1, 2, · · · .
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Then, substituting the solution with the multiple scales Eqs. (4.3)-(4.5) into Eq. (4.1) and balancing
the coefficients of εn(n = 1, 2, 3), we obtain a set-ordered linear differential equation:


D0S k1 + (µ + βI∗k )S k1 + βS ∗kIk1 = 0,
D0Ik1 − βI∗k S k1 + (µ + α1 + γ1)Ik1 − βS ∗kIk1 + εIk1,τc = 0,
D0Qk1 + (µ + α2 + γ2)Qk1 − εQk1,τc=0,
D0Rk1 − γ1Ik1 − γ2Qk1+µRk1=0, k = 1, 2.

(4.6)

Since ±iω∗k(k = 1, 2) are the eigenvalues of the characteristic Eq. (4.1), the solution to Eq. (4.6) can
be expressed in the form of Eq. (4.7):

X1(T1,T2,T3, · · · ) = G1(T1,T2,T3, · · · )eiω∗kT0hk + Ḡ1(T1,T2,T3, · · · )e−iω∗kT0 h̄k, k = 1, 2. (4.7)

where G1 and Ḡ1 represent the coordinates on the center manifold, and the linear part of the center
manifold can be presented as equation (4.7).

Next, for the ε2-order terms, we can obtain the following equations:



D0S k2 + (µ + βI∗k )S k2 + βS ∗kIk2 = −D1S k1 − βS k1Ik1,

D0Ik2 − βI∗k S k2 + (µ + α1 + γ1)Ik2 − βS ∗kIk2 + εIk2,τc = ετεD0Ik1,τc + ετcD1Ik1,τc

− D1Ik1 + βS k1Ik1,

D0Qk2 + (µ + α2 + γ2)Qk2 − εQk2,τc = −ετεD0Qk1,τc − ετcD1Qk1,τc − D1Qk1,

D0Rk2 − γ1Ik2 − γ2Qk2+µRk2 = −D1Rk1, k = 1, 2.

(4.8)

We substitute Eq. (4.7) into the right expression of Eq. (4.8), and the coefficients before eiω∗kT0 are
denoted by the vector m1. According to the solvability condition

〈
h∗k,m1

〉
= 0, we can solve ∂G

∂T1
as

follows:

∂G1

∂T1
= MkτεG1, (4.9)

where Mk = εe−iω∗kτc[βI∗k (iω∗k+µ+βI∗k )

(µ+βI∗k )2+ω∗k
2

βS ∗k
iω∗k+µ+βI∗k

+ 1 − ετce−iω∗kτc]
−1
, k = 1, 2.

We assume:

S k2 = fk1eiω∗kT0G1 + f̄k1 e−iω∗kT0Ḡ1 + gk1e2iω∗kT0G1
2 + ḡk1e−2iω∗kT0Ḡ2

1 + lk1G1Ḡ1,

Ik2 = fk2eiω∗kT0G1 + f̄k2 e−iω∗kT0Ḡ1 + gk2e2iω∗kT0G1
2 + ḡk2e−2iω∗kT0Ḡ2

1 + lk2G1Ḡ1,

Qk2 = fk3eiω∗kT0G1 + f̄k3 e−iω∗kT0Ḡ1 + gk3e2iω∗kT0G1
2 + ḡk3e−2iω∗kT0Ḡ2

1 + lk3G1Ḡ1,

Rk2 = fk2eiω∗kT0G1 + f̄k4 e−iω∗kT0Ḡ1 + gk4e2iω∗kT0G1
2 + ḡk4e−2iω∗kT0Ḡ2

1 + lk4G1Ḡ1.

(4.10)
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Substituting Eq. (4.10) into Eq. (4.8), we obtain:

fk1 =U−1τε(iω∗k + µ + α2 + γ2 − εe−iω∗kτc)[( − Mkhk1)(iω∗k + µ + α1 + γ1 − βS *
k+εe−iω∗kτc)

− βS *
k(iω∗kεe−iω∗kτchk2 + ετcMkhk2 − Mkhk2)](iω∗k + µ),

fk2 =U−1τε(iω∗k + µ + α2 + γ2 − εe−iω∗kτc)[(iω∗k + µ + βI∗k )(iω∗kεe−iω∗kτchk2 + ετcMkhk2

− Mkhk2) + βI*
k ( − Mkhk1)](iω∗k + µ),

fk3 =τε(iω∗k + µ)[(iω∗k + µ + βI∗k )(iω∗k + µ + α1 + γ1 − βS *
k+εe−iω∗kτc)(iω∗k + µ + α2 − εe−iω∗kτc

+ γ2) + β2S *
k I∗k (iω∗k + µ + α2 + γ2 − εe−iω∗kτc)]U−1,

fk4 =τε{(iω∗k + µ + βI∗k )[( − Mkhk4)(iω∗k + µ + α1 + γ1 − βS *
k+εe−iω∗kτc)(iω∗k + µ − εe−iω∗kτc

+ α2 + γ2) + γ1(iω∗kεe−iω∗kτchk2 + ετcMkhk2 − Mkhk2)(iω∗k + µ + α2 + γ2 − εe−iω∗kτc)

+ γ2(iω∗k + µ + α1 + γ1 − βS ∗k+εe−iω∗kτc)( − Mkhk3 − ετεMke−iω∗kτchk3 − iω∗kεe−iω∗kτchk3)]

+ βI∗k [βS ∗k(iω∗k + µ + α2 + γ2 − εe−iω∗kτc)(−Mkhk4) + γ1(iω∗kεe−iω∗kτchk2 + ετcMkhk2

− Mkhk2)(iω∗k + µ + α2 + γ2 − εe−iω∗kτc) + γ2βS ∗k( − Mkhk3 − iω∗kεMke−iω∗kτchk3

− εe−iω∗kτchk3)]}U−1,

gk1 =(2iω∗k + µ)(2iω∗k + µ + α2 + γ2 − εe−2iω∗kτc)[( − βhk1hk2)(2iω∗k + µ + α1 + γ1+εe−2iω∗kτc

− βS *
k) + β2S *

khk1hk2]V−1,

gk2 =(2iω∗k + µ)(2iω∗k + µ + α2 + γ2 − εe−2iω∗kτc)[βhk1hk2(2iω∗k + µ + βI*
k ) − β2I*

k hk1hk2]V−1,

gk3 =0,

gk4 =(2iω∗k + µ + α2 + γ2 − εe−2iω∗kτc)[(2iω∗k + µ + βI*
k )(βhk1h̄k2 + βhk2h̄k1) + βI*

k (−βhk1h̄k2

− βhk2h̄k1)]γ1V -1,

lk1 =µ(µ + α2 + γ2 − ε)[( − βhk1h̄k2 − βhk2h̄k1)(µ + α1 + γ1 − βS *
k+ε)+βS *

k(βhk1h̄k2

+ βhk2h̄k1)]W−1,

lk2 =W−1µ(µ + α2 + γ2 − ε)[(βhk1h̄k2 + βhk2h̄k1)(µ + βI*
k )+βI*

k ( − βhk1h̄k2 − βhk2h̄k1)],
lk3 =0,
lk4 =(µ + α2 + γ2 − ε)γ1[(βhk1h̄k2 + βhk2h̄k1)(µ + βI*

k )+βI*
k ( − βhk1h̄k2 − βhk2h̄k1)]W−1,

U =(iω∗k + µ)(iω∗k + µ + α2 + γ2 − εe−iω∗kτc)[(iω∗k + µ + βI∗k )(iω∗k + µ + α1 + γ1 − βS *
k

+εe−iω∗kτc)+β2S *
k I∗k],

V =(2iω∗k + µ)(2iω∗k + µ + α2 + γ2 − εe−2iω∗kτc)[(2iω∗k + µ + βI∗k )(2iω∗k + µ + α1 + γ1 − βS *
k

+εe−2iω∗kτc) + β2S *
k I∗k],

W =µ(µ + α2 + γ2 − ε)[(µ + βI∗k )(µ + α1 + γ1 − βS *
k+ε)+β2S *

k I∗k], k = 1, 2.

(4.11)

Next, balancing the ε3-order terms, we can obtain equations as follows:
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D0S 3 + (µ + βI∗k )S 3 + βS ∗kI3 = −D2S 1 − D1S 2 − βS 2I1 − βS 1I2,

D0I3 − βI∗k S 3 + (µ + α1 + γ1)I3 − βS ∗kI3 + εI3,τc = −D2I1 − D1I2 + βS 2I1 + βS 1I2

+ ε[τε(D0I2,τc − D1I1,τc) − τc(D2I1,τc + D1I2,τc)],
D0Q3 + (µ + α2 + γ2)Q3 − εQ3,τc = −ε(τεD0Q2,τc − τεD1Q1,τc − τcD2Q1,τc − τcD1Q2,τc)

− D2Q1 − D1Q2 ,

D0R3 − γ1I3 − γ2Q3+µR3 = −D2R1 − D1R2 , k = 1, 2.

(4.12)

Substituting Eq. (4.7) and Eq. (4.10) into the right expression of Eq. (4.12), and the coefficients before
eiωkT0 are denoted by the vector m2. According to the solvability condition

〈
h∗1,m2

〉
= 0 and note that

τ2
ε is small enough for small unfolding parameter τε, we ignore the term τ2

εG1. Then, we have:

∂G1

∂T2
=HkχkG2

1Ḡ1, (4.13)

where

Hk =
1

βI∗k (µ+βI∗k−iω∗k)

(µ+βI∗k )2+ω∗k
2 hk1 + hk2 + ετce−iω∗kτchk2

,

χk = −
βI∗k (µ + βI∗k − iω∗k)

(µ + βI∗k )2 + ω∗k
2
βgk1h̄k2 −

βI∗k (µ + βI∗k − iω∗k)

(µ + βI∗k )2 + ω∗k
2
βgk2h̄k2 + βgk1h̄k2 + βgk2h̄k2, k = 1, 2,

where gk are given in Eq. (4.11) and hk are given in Eq. (4.2).
Let G1 7→ (G1/ε), and we can obtain the normal form of Hopf bifurcation of system (2.1) as:

�

G1 = MkτεG1 + HkχkG2
−

G1, (4.14)

where Mk is given in Eq. (4.9), and Hk, χk are given in Eq. (4.13).
Let G = reiθ∗k (k = 1, 2) and substitute it into Eq. (4.14), and we can obtain the normal form of Hopf

bifurcation in polar coordinates: { �
r = Re(Mk)τεr + Re(Hkχk)r3,
�

θ∗k = Im(Mk)τε + Im(Hkχk)r2,
(4.15)

where Mk is given in Eq. (4.9), and Hk, χk are given in Eq. (4.13) (k = 1, 2).
According to the normal form of bifurcation in polar coordinates, there is a theorem as follows:

Theorem 4.1. For system (4.15), if Re(Mk)τε
Re(Hkχk) < 0(k = 1, 2) holds, then system (2.1) exists periodic

solutions near equilibrium Ek:
(1) If Re(Mk)τε < 0, the bifurcating periodic solutions are unstable.
(2) If Re(Mk)τε > 0, the bifurcating periodic solutions are locally asymptotically stable.
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5. Numerical simulations

In this section, according to the natural mortality in China and the data presented in ref. [32], we
choose Λ = 100, µ = 0.00713, ε = 0.8, γ1 = 0.1, γ2 = 0.1, α1 = 0.025, α2 = 0.025, β = 0.00001.
According to Eq. (3.2), we obtain S ∗1 = Λ

µ
= 14025, I∗1 = 0,Q∗1 = 0,R∗1 = 0, S ∗2 = 93213, I∗2 =

−605.719,Q∗2 = −3667.4,R∗2 = −59932. Obviously, assumption (H1) holds and equilibrium E1 is
locally asymptotically stable when τ = 0. However, the equilibrium E2 is unstable for I∗2 < 0.

Remark 2: If I∗2 < 0, the number of infected individuals is less than zero, which is inconsistent
with the facts. Additionally, according to our theoretical analysis, when I∗2 < 0, the equilibrium E2 is
unstable, which is consistent with the facts.

Substituting these parameter values into Eqs. (3.10)-(3.12), by using MATLAB, we can obtain
ω0 = 0.8000,Q1 = 0.0102, P1 = 0.9999, τ(0)

1 = 1.9509.

Thus, the equilibrium E1 is locally asymptotically stable when τ ∈ [0, τ(0)
1 ), and Hopf bifurcation

occurs near the equilibrium E1 when τ = τ(0)
1 . According to Eq. (4.9) and Eq. (4.13), we obtain

Re(M1) < 0, Re(H1χ1) > 0. The bifurcating periodic solution is unstable due to Theorem 4.1. We
find that if the time delay from infection to isolation is over the critical value, the epidemic will not be
controlled under a stable situation, and the epidemic situation will be more severe.

When τ = 0, we choose the initial value (1500, 1000, 100, 200), and the solution corresponding to a
locally asymptotically stable equilibrium is shown in Figure 2. Thus, when τ = 0, once the individuals
are infected, they will be quarantined and they will not infect others, and the epidemic situation can be
controlled into a stable situation.
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Figure 2. When τ = 0, the equilibrium E1 of system (2.1) is locally asymptotically stable.

When τ = 1.5 ∈ (0, τ(0)
1 ), we choose initial values (1, 500, 1, 000, 100, 200), and the equilibrium E1

of system (2.1) is locally asymptotically stable. See Figure 3.
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Figure 3. When τ = 1.5, the equilibrium E1 of system (2.1) is locally asymptotically stable.

When τ = 2 ∈ (τ(0)
1 ,+∞), we choose the initial values (1, 500, 1, 000, 100, 200), and the equilibrium

E1 is unstable, as shown in Figure 4. This means that if τ is larger than the critical value τ(0)
1 , the

epidemic situation cannot be controlled into a stable state.
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Figure 4. When τ = 2, the equilibrium E1 of system (2.1) is unstable.

According to Figures 2-4, we find that the time delay from infection to isolation has a great influence
on the epidemic situation in E1, and with the increasing time delay, the epidemic situation will become
increasingly severe.

According to the natural mortality in China and the data presented in ref. [32], we choose another
group of parameters, namely, Λ = 200, µ = 0.00713, ε = 0.8, γ1 = 0.05, γ2 = 0.05, α1 = 0.025, α2 =

0.025, β = 0.0001. According to Eq. (3.2), we obtain S ∗1 = 28, 050, I∗1 = 0,Q∗1 = 0,R∗1 = 0, S ∗2 =

8, 821.300, I∗2 = 155.424,Q∗2 = 1, 513.9,R∗2 = 11, 703. We can find that assumption (H1) does not hold
and the equilibrium E1 is unstable. However, the equilibrium E2 is locally asymptotically stable when
τ = 0.

Substituting these parameter values into Eq. (3.16), we can obtain c1 = −0.0269, c2 = −0.00030938,
and Eq. (3.16) has only one positive root, z1 = 0.0356. According to Eq. (3.15)and Eq. (3.17), we can
obtain ω2 = 0.1887,Q2 = 0.9892, P1 = 0.1463, τ(0)

2,3 = 0.7782 by using MATLAB.
Thus, the equilibrium E2 is locally asymptotically stable for τ ∈ [0, τ(0)

2,3), and Hopf bifurcation
occurs near the equilibrium E2 when τ = τ(0)

2,3. According to Eq. (4.9) and Eq. (4.13), we obtain
Re(M1) > 0,Re(H1χ1) > 0. Thus, Re(M1)τε < 0, the bifurcation solution is unstable. In E2, the
epidemic situation cannot be controlled under a stable situation.
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When τ = 0, we choose the initial values (1, 000, 50, 2, 000, 1, 000), and the solution corresponding
to a locally asymptotically stable equilibrium is shown in Figure 5.
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Figure 5. When τ = 0, the equilibrium E2 of system (2.1) is locally asymptotically stable.

When τ = 0.5 ∈ (0, τ(0)
2,3), we choose the initial value (1, 000, 50, 2, 000, 1, 000), and the equilibrium

E2 of system (2.1) is locally asymptotically stable. See Figure 6.
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Figure 6. When τ = 0.5, the equilibrium E2 of system (2.1) is locally asymptotically stable.

When τ ∈ (τ(0)
2,3,+∞), τ(0)

2,3 = 0.7782, the equilibrium E2 is unstable. We choose τ = 0.8 > τ(0)
2,3 =

0.7782 and the initial value (1, 000, 50, 2, 000, 1, 000). See Figure 7.
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Figure 7. When τ = 0.8, the equilibrium E2 of system (2.1) is unstable.

According to numerical simulations, we can find that the smaller τ is, the better the control effect
is. The results of the numerical simulation are consistent with this fact. Then, we provide some
explanations for the above results.

Remark 3: For the two groups of parameter values that are Λ = 100, µ = 0.00713, ε = 0.8, γ1 =

0.1, γ2 = 0.1, α1 = 0.025, α2 = 0.025, β = 0.00001 and Λ = 200, µ = 0.00713, ε = 0.8, γ1 = 0.05, γ2 =

0.05, α1 = 0.025, α2 = 0.025, β = 0.0001, we have the following conclusions.
For the first group of parameter values, we can control τ < 1.9509, and the epidemic situation can

gradually become stable. However, if τ > 1.9509, the epidemic cannot be controlled into a stable
situation. This means that if we can make the time delay from infection to isolation within 1.9509, we
can make the number of infected individuals gradually tend to zero, and the epidemic situation will be
controllable. However, if we cannot make the time delay from infection to isolation within 1.9509, the
epidemic situation will be uncontrollable.

For the second group of parameter values, we can control τ < 0.7782, and the epidemic situation
can be gradually stable. If τ > 0.7782, the epidemic cannot be controlled into a stable situation.
This means that if we can make the time delay from infection to isolation within 0.7782, we can
make the number of infected individuals gradually tend to stabilize, and the epidemic situation will be
controllable. However, if we cannot make the time delay from infection to isolation within 0.7782, the
epidemic situation will be uncontrollable.

Remark 4: According to our theoretical analysis, with the increase in τ, the epidemic situation
will be increasingly severe, and COVID-19 will further threaten the health of humans. To control the
epidemic situation, we need to take some measures to shorten the time from infection to isolation. In
addition, for epidemic situations in different areas, we can deduce the corresponding parameter values
and use the model we constructed to obtain the stability determination and the strategies to control
epidemic situations.

Our work is reproducible. For different regions, we can calculate the different critical time delays
by changing variables such as the transmission rate from S to I, the transmission rate from I to Q
and the transmission rate from I to R. We can obtain the critical time delay based on Eqs. (3.10)-
(3.12) and Eqs. (3.15)-(3.17). Then, according to Theorem 3.1, we know that the equilibria are locally
asymptotically stable if the time delay is within the critical time delay. Finally, we can obtain the
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normal form of Hopf bifurcation by using the multiple time scales method and determine whether the
epidemic situation can be controlled into a stable situation based on Theorem 4.1. The time delay
from infection to isolation is the most important variable in our model. We calculate the critical time
delay based on the parameter values. We choose parameter values according to the natural mortality in
China and the data presented in ref. [32]. Then, we change the value of the time delay from infection
to isolation, and we know that the equilibria are locally asymptotically stable if the time delay is within
the critical time delay through numerical simulations.

6. Conclusion

In this paper, we constructed a DDE according to the characteristics of the COVID-19 epidemic
phenomenon based on the S IQR model. We considered the existence and stability of equilibria in
the above delayed S IQR model. We also analyzed the existence and dynamic properties of Hopf
bifurcation associated with both equilibria. We chose two groups of parameter values according to the
natural mortality in China and the data presented in ref. [32]. Numerical simulations were carried out
to verify the analytical results.

According to the results of numerical simulations, the epidemic solution would be more severe with
increasing the time delay from infection to isolation. In addition, we predicted the stability of epidemic
solutions in different areas and provided effective strategies to control the epidemic.
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