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Abstract: In this paper, we propose both deterministic and stochastic predator-prey models with
digestion delay, incorporating fear factor and self-defence. For the deterministic model, the existence
and stability of the equilibrium are investigated and the occurrence of Hopf bifurcation is studied. For
the stochastic model, we investigate the existence of a unique global positive solution of the model
and analyze the asymptotic behavior of the global solution around the equilibriums of the deterministic
model. Finally, numerical simulations are carried out to verify our analytical results, which indicate
that the intensity of white noise, fear factor and self-defence have a significant relationship with the
dynamics of the predator-prey model and expand the theoretical analyses.

Keywords: predator-prey; digestion delay; fear factor; self-defence; Hopf bifurcation; asymptotic
behaviors

1. Introduction

Predator-prey dynamics model is one of the most important topics in mathematical ecology
research, which is universal and significant. Since the early model proposed by Lotka [1] and
Volterra [2], the studies of predator-prey interactions have attracted rapidly increasing attention.
Generally, a predator-prey model can be described by a system of ordinary differential equations as
follows: 

dx(t)
dt

= f1(x(t)) − p(x(t), y(t))y(t),

dy(t)
dt

= f2(y(t)) + cp(x(t), y(t))y(t),
(1.1)

where x(t) and y(t) are the population size of the prey and predator at time t, respectively. f1(x(t)) is
the growth rate of prey population; f2(y(t)) is the growth rate of predator population. c is a positive
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constant (c < 1 due to the biological significance) which represents the coefficient in converting prey
into a new predator. p(x(t), y(t)) represents the functional response, i.e., how predator consumes the
prey species. Vast and rich studies [3–7] have been done by taking different kinds of functional
responses into consideration to investigate the effect of direct predation. However, in the real world,
the presence of predators also has indirect effects on the prey population. The outcomes of recent
theoretical studies and experimental shreds of evidence [8–11] have unveiled that the indirect impact
of predator on prey species sometimes becomes more crucial in altering the dynamics of ecosystems.
The threat of predation alone is enough to reduce the growth, survival and fecundity of prey, which is
arbitrated through an alternation of prey’s behavioural, morphological or psychological trait [12, 13].
For instance, the sounds of predator will induce continuous fear on birds which compels them to leave
their primary nest and move to a safer zone. This kind of behavior leads to serious damage to the birth
rate of the new offspring inevitably. Frequent changes in habitat will not only affect the basic
reproduction of the individuals but also cause a serious impact on the survival of adults [8]. In 2009,
Sheriff et al. [14] reported that when pregnant snowshoe hares were exposed to a trained dog
(predator), the birth of cubs was significantly reduced. In addition, Zanette et al. [15] performed an
experiment on song sparrows and the outcome exhibited that the quantity of posterity of the song
sparrows was decreased by 40% due to fear induced by predators. Shreds of evidence suggest that the
indirect impact of predator should not be ignored when analyzing the dynamics of prey-predator
interaction. In this context, Wang et al. [16] were the first to establish an ordinary differential equation
model including the fear effect. Through their work, we know that the level of fear would not affect
the dynamic of the system if the predator consumes the prey according to linear functional response,
while for the model with Holling type II functional response, the level of fear affected predator-prey
interactions in several ways. Subsequently, they proposed a predator-prey model with the cost of fear
and adaptive avoidance of predators in [17]. Inspired by their research, Sasmal [18] investigated a
model with fear effect and Allee effect where the prey is taken as infected. Sha et al. [19] and
Hossain [20] focused on eco-epidemiological models with fear effect. Few other works have been
found in this direction, such as discrete [21], delayed [22] and diffusive [23, 24] models.

Recently, Wang and Zou [25] investigated a model with the benefits of the anti-predation response
and digestion time which is necessary for biomass transfer from prey to predator after predation. The
chance of the prey being vulnerable by predators was thought to be decreased for the presence of
anti-predation response, which makes the model more in line with the actual situation. Obviously,
such anti-predation responses are beneficial to the survival of the prey. In addition, it is worth noting
that in reality, predation comes with risks. The prey will resist when it encounters a predator instead
of just escaping. For example, leopards run the risk of being stabbed by the hard spines on the back
and tail of the porcupine when preying on the porcupine. Once stabbed, the leopard may die due to
wound infection or unable to prey. The death of the predator caused by self-defense of the prey can be
regarded as the predation of the predator by the prey, which will reduce the growth of the predator
population. The reduction is the cost of predation and it may exist whether the predation is successful
or not. Noting that this kind of passive predation does not need time to digest and will not affect the
next predation, the linear function response is suitable. What needs to be pointed out is that
self-defence is different from conservative and protective behaviour and group defence, as it is the
fight for survival after the failure of avoidance strategy. By fighting against the predator, the chance of
being predated will obviously be decreased, which will benefit the prey population. Moreover, the
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prey’s self-defence will definitely consume its energy and this will clearly affect the production rate
and death rate of the prey. To avoid making the system too complicated, we only consider the cost of
the prey’s self-defence for the predator. Hence, we get the following model with fear factor, digestion
delay and self-defence:

dx(t)
dt

= x(t)(
r

1 + c2ky(t)
− d1 − ax(t) −

py(t)
1 + qx(t)

1
1 + c1k

),

dy(t)
dt

=
c

1 + c1k
px(t − τ)y(t − τ)

1 + qx(t − τ)
− hy(t)2 − d2y(t) − θx(t)y(t).

(1.2)

where x(t) and y(t) have the same meaning as the system (1.1). τ ≥ 0 is the average time needed for
biomass transfer after predation from prey to predator. All the parameters are positive constants: r
represents the intrinsic growth rate of the prey; di (i = 1, 2) represent the death rate; a and h donate
the intra-specific competition of the prey and predator, respectively; k represents the level of fear; ci

(i = 1, 2) represent the decreasing rate of reproduction and predation, respectively; c is the biomass
transform efficiency constant and θ represents the level of self-defence. From the realistic point of view,
system (1.2) extend model (3.24) in [25] by considering the self-defence of prey and intra-specific of
predator. Therefore, for the dynamics of the deterministic model, we will focus on both of these
parameters in addition to the fear factor.

On the other hand, parameters involved in the system always fluctuate around some average values
since the environmental fluctuations, such as temperature, humidity, rainfall and so on. In view of this,
many researchers [26–29] have introduced stochastic environmental perturbations into deterministic
models. Since the death rate di (i = 1, 2) are most vulnerable by the environmental fluctuations and
most influential in determining the dynamics of the system, we will focus on the effects of perturbations
on these parameters. In this paper, we perturb −d1 and −d2 by

−d1 → −d1 + σ1Ḃ1(t), −d2 → −d2 + σ2Ḃ2(t),

where B1(t) and B2(t) are standard Brownian motion with B1(0) = B2(0) = 0, σ2
1 and σ2

2 are the
intensity of white noise. Whereupon, we obtain the following stochastic model:

dx(t) = x(t)(
r

1 + c2ky(t)
− d1 − ax(t) −

py(t)
1 + qx(t)

1
1 + c1k

)dt + σ1x(t)dB1(t),

dy(t) = (
c

1 + c1k
px(t − τ)y(t − τ)

1 + qx(t − τ)
− hy(t)2 − d2y(t) − θx(t)y(t))dt + σ2y(t)dB2(t).

(1.3)

System (1.3) satisfies the initial conditions

x(ς) = φ1(ς), y(ς) = φ2(ς), ς ∈ [−τ, 0], (1.4)

where φ1(ς) and φ2(ς) are both nonnegative continuous functions on [−τ, 0]. In addition, we suppose
that φi(0) > 0 (i = 1, 2) for biological meaning. Throughout this paper, unless otherwise specified,
let (Ω,F , {Ft}t≥0, P) denote a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is right continuous and F0 contains all P-null sets).

The framework of the paper is arranged as follows. In Section 2, we analyze the existence and
stability of the equilibrium points and the existence of Hopf bifurcations of system (1.2). In Section
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3, we investigate the dynamic behavior of system (1.3), including the existence and uniqueness of the
global positive solution and asymptotic property of system (1.3) around the equilibrium points of the
corresponding deterministic system (1.2). Several numerical simulations are introduced to support our
theoretical results in Section 4. Finally, we give a brief discussion and summarize the main results in
Section 5.

2. Dynamics of the deterministic model

Obviously, system (1.2) has the following three possible non-negative equilibrium points: (i)
The trivial equilibrium E0 = (0, 0), which always exists; (ii) The predator-free equilibrium E1 =

( r−d1
a , 0), which exists when r − d1 > 0, matching biological meaning; (iii) The positive (coexistence)

equilibrium E∗ = (x∗, y∗), where y∗ =
cp

h(1+c1k)
x∗

1+qx∗ −
θ
h x∗ − d2

h and x∗ is the positive solution of equation
Ax5 + Bx4 + Cx3 + Dx2 + Ex + F = 0, where
A =

ac2kθq3

h ,

B = (2aq + d1q2) c2kqθ
h − aq2(q + c2kψ2) +

c2kq2θ2ψ1
h2 ,

C =
c2kqθ

h (a + 2d1q) − (2aq + d1q2)(q + c2kψ2) − aq2(1 − c2bd2
h ) − q2θ+2c2kqθ

h ψ1ψ2 + q3r,
D =

c2kqd1θ

h − (q + c2kψ2)(a + 2d1q) + (qθ(2c2kd2−h)
h2 + (q + c2kψ2)ψ2)ψ1 + c2kd2

h + 3q3r − 1,
E = (1 − c2kd2

h )(ψ1ψ2 − a − 2dq) − (q + c2kψ2)( d2ψ1
h + d1) + 3qr,

F = −(1 − c2kd2
h )(d1 + d2

h ψ1) + r,
ψ1 =

p
1+c1k , ψ2 =

cψ1−d2q−θ
h .

One can see that A > 0, but the sign of B,C,D, E and F is hard to confirm. By Descartes’ Rule of
Signs [30], we have the following existence criterion of the positive root of the equation in view of the
sign of the coefficient.
(I)The equation has exactly one positive root if
(i) B > 0, C > 0, D > 0, E > 0, F < 0;
(ii) B > 0, C > 0, D > 0, E < 0, F < 0;
(iii) B > 0, C > 0, D < 0, E < 0, F < 0;
(iv) B > 0, C < 0, D < 0, E < 0, F < 0;
(v) B < 0, C < 0, D < 0, E < 0, F < 0.
(II)The equation has at least one positive root if
(i) B > 0, C > 0, D < 0, E > 0, F < 0;
(ii) B > 0, C < 0, D < 0, E > 0, F < 0;
(iii) B < 0, C > 0, D < 0, E > 0, F < 0.
(III)The equation has an even number of positive roots, including none , for the rest of conditions.

Next, we study the local stability for each of the equilibrium points. The linearized form of system
(1.2) at an equilibrium (x̄, ȳ) is as follows:{

dx(t) = J11x(t) + J12y(t),
dy(t) = J21x(t) + J22y(t) + K21x(t − τ) + K22y(t − τ).

(2.1)

where

J11 =
r

1 + c2kȳ
− d1 − 2ax̄ −

pȳ
(1 + c1k)(1 + qx̄)2 , J12 = −

rc2kx̄
(1 + c2kȳ)2 −

px̄
(1 + c1k)(1 + qx̄)

,
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J21 = −θȳ, J22 = −2hȳ − d2 − θx̄,K21 =
cpȳ

(1 + c1k)(1 + qx̄)2 ,K22 =
cpx̄

(1 + c1k)(1 + qx̄)
.

We can derive the characteristic equation corresponding to system (2.1) as

λ2 − (J11 + J22)λ + J11J22 − J12J21 − (K22λ − J11K22 + J12K21)e−λτ = 0. (2.2)

Theorem 2.1. The trivial equilibrium E0 is locally asymptotically stable if r < d1 and unstable if
r > d1. When r > d1, the predator-free equilibrium E1 is locally asymptotically stable if cp

1+c1k <
ad2

r−d1
+

θq(r−d1)
a + d2q + θ, otherwise is unstable.

Proof. At E0 = (0, 0), J11 = r − d1, J22 = −d2, J12 = J21 = K21 = K22 = 0. The eigenvalues are
λ1 = r − d1 and λ2 = −d2. Hence, E0 is locally asymptotically stable if r < d1 and unstable if r > d1.

When r > d1, the predator-free equilibrium E1 exists, at which the characteristic equation becomes

(λ − J11)(λ − J22 − K22e−λτ) = 0.

Noting that at E1, J11 = d1 − r < 0, the stability of E1 is determined by equation

F(λ) = λ − J22 − K22e−λτ = 0.

Since K22 > 0, F′(λ) = 1 + K22τe−λτ > 0. Considering that lim
λ→−∞

F(λ) = −∞, the equation has a
negative root if

F(0) = −J22 − K22 > 0. (2.3)

Calculation shows that Eq (2.3) is equivalent to

cp
1 + c1k

<
ad2

r − d1
+
θq(r − d1)

a
+ d2q + θ. (2.4)

The proof is complete.

Remark 2.1. When θ = 0, (2.4) reduces to d2(1 + c1k) > (cp − d2q(1 + c1k)) r−d1
a , which is consistent

with the conclusion obtained in [25]. Equation (2.4) indicates that the stability of the predator-free
equilibrium E1 is related to the value of θ. Unfortunately, as previously analyzed, the presence of
h and θ makes the conditions for the existence of the positive equilibrium less intuitive. Numerical
simulations in Section 4 shows that when E1 loss its stability, the positive equilibrium will exist.

We assume that the positive equilibrium E∗ of system (1.2) exists, whose characteristic equation is
Eq (2.2). When τ = 0, Eq (2.2) reduces to

λ2 − (J11 + J22 + K22)λ + J11J22 + J11K22 − J12J21 − J12K21 = 0 (2.5)

The roots of Eq (2.5) are

λ± =
J11 + J22 + K22 ±

√
∆1

2
,

where
∆1 = (J11 + J22 + K22)2 − 4(J11J22 + J11K22 − J12J21 − J12K21).
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Noting that at E∗, J22 + K22 = −hy∗ < 0, we will consider the following hypotheses:
(H1): J11J22 + J11K22 − J12J21 − J12K21 < 0;
(H2): J11J22 + J11K22 − J12J21 − J12K21 > 0 and J11 < hy∗;
(H3): J11J22 + J11K22 − J12J21 − J12K21 > 0 and J11 > hy∗;
(H4): J11J22 − J11K22 − J12J21 + J12K21 > 0;
(H5): J11J22 − J11K22 − J12J21 + J12K21 < 0.

Lemma 2.1. Assume that the positive equilibrium E∗ of system (1.2) exists.
(1) If (H1) holds, λ− < 0 and λ+ > 0, which indicates that the positive equilibrium E∗ is unstable.
(2) If (H2) is satisfied, Eq (2.5) only has roots with negative real parts, which indicates that the positive
equilibrium E∗ is locally asymptotically stable.
(3) If (H3) is satisfied, Eq (2.5) possesses roots with positive real parts, which indicates that the positive
equilibrium E∗ is unstable.

Now, we check whether the roots of Eq (2.2) will cross the pure imaginary axis as τ increases.
When τ , 0, plugging λ = ωi (ω > 0) into Eq (2.2) to obtain the critical value where Hopf bifurcation
occurs. Separating the real and imaginary parts, we obtain{

−ω2 + J11J22 − J12J21 = ωK22 sin(ωτ) + (J12K21 − J11K22) cos(ωτ),
−(J11 + J22)ω = ωK22 cos(ωτ) − (J12K21 − J11K22) sin(ωτ).

(2.6)

By trigonometric identity, we obtain

ω4 + (J2
11 + J2

22 − K2
22 + 2J12J21)ω2 + (J11J22 − J12J21)2 − (J12K21 − J11K22)2 = 0. (2.7)

Recalling that J22 + K22 < 0, J2
11 + J2

22 − K2
22 + 2J12J21 > 0. Equation (2.7) has no positive root when

(J11J22 + J11K22 − J12J21 − J12K21)(J11J22 − J12J21 + J12K21 − J11K22) > 0. (2.8)

Hence no root of Eq (2.2) will cross the pure imaginary axis for all τ ≥ 0, that is, the stability of the
positive equilibrium E∗ will not change as τ increases.

Lemma 2.2. Assume that the positive equilibrium E∗ of system (1.2) exists.
(1) If (H1) and (H5) hold, the positive equilibrium E∗ is unstable for all τ > 0.
(2) If (H2) and (H4) are satisfied, the positive equilibrium E∗ is locally asymptotically stable for all
τ > 0.
(3) If (H3) and (H4) are satisfied, the positive equilibrium E∗ is unstable for all τ > 0.

If Eq (2.8) is reversed, Eq (2.7) has a unique positive root

ω0 =

√
−(J2

11 + J2
22 − K2

22 + 2J12J21) +
√

∆2

2
,

where
∆2 = (J2

11 + J2
22 − K2

22 + 2J12J21)2 − 4((J11J22 − J12J21)2 − (J12K21 − J11K22)2).
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Then we obtain a sequence of τn corresponding to ω0:

τn =
1
ω0

arccos
(−ω2

0 + J11J22 − J12J21)(J12K21 − J11K22) − ω2
0K22(J11 + J22)

ω2
0K2

22 + (J12K21 − J11K22)2

+
2nπ
ω0

, n = 0, 1, 2 · · · .
(2.9)

Hence we obtain possible value for τ at which Hopf bifurcation may occur. When τ = τ0, ±iω0 is a
pair of pure imaginary roots of Eq (2.2). For the sake of confirming whether Hopf bifurcation occurs
at the first critical value τ = τ0, the transversal condition needs to be verified. Differentiating Eq (2.2)
with respect to τ gives (

dλ
dτ

)−1

=
2λ − J11 − J22 − e−λτK22

e−λτλ(−K22λ + J11K22 − J12K21)
−
τ

λ
.

Therefore, at τ = τ0, we have

sgn
(
d<(λ)

dτ

∣∣∣∣∣
τ=τ0

)
= sgn

(
<

d(λ)
dτ

∣∣∣∣∣
τ=τ0

)
= sgn

< (
d(λ)
dτ

∣∣∣∣∣
τ=τ0

)−1
= sgn

(
<

(
2λ − J11 − J22 − e−λτK22

e−λτλ(−K22λ + J11K22 − J12K21)
−
τ

λ

) ∣∣∣∣∣
λ=iω0

)
= sgn

(
k1 cos(ω0τ) + k2 sin(ω0τ) − ω0K2

22

ω0(ω2
0K2

22 + (J11K22 − J12K21)2)

)
.

where k1 = ω0(J11K22 − J22K22 − 2J12K21) and k2 = −2ω2
0K22 − (J11 + J22)(J11K22 − J12K21). Besides,

Eq (2.6) gives

cos(ω0τ) =
(−ω2

0 + J11J22 − J12J21)(J12K21 − J11K22) − ω2
0K22(J11 + J22)

ω2
0K2

22 + (J12K21 − J11K22)2
,

sin(ω0τ) =
ω0K22(−ω2

0 + J11J22 − J12J21) + ω0(J11 + J22)(J12K21 − J11K22)

ω2
0K2

22 + (J12K21 − J11K22)2
.

Consequently,

<

(
d(λ)
dτ

∣∣∣∣∣
τ=τ0

)−1

=
J2

11 + J2
22 − K2

22 + 2J12J21 + 2ω2
0

ω2
0K2

22 + (J11K22 − J12K21)2
> 0.

The proof about the transversal condition is complete and a Hopf bifurcation exists when τ = τ0.
It is worth noting that Eq (2.7) has a unique positive root and <

(
d(λ)/dτ|τ=τ0

)−1 > 0 under the
premise of (J11J22 + J11K22 − J12J21 − J12K21)(J11J22 − J12J21 + J12K21 − J11K22) < 0. By the insightful
work of Cooke and Grossman [31], one can see that (i) The unstable positive equilibrium of system
(1.2) never becomes stable; (ii) If the positive equilibrium is stable for τ = 0, it becomes unstable
at τ0 and remains so as τ is increased; (iii) Only crossing of the imaginary axis from left to right is
possible as τ increases. Therefore, any roots on the right half plane will remain on the right plane and
the stability of the positive equilibrium can only be lost but not regained. Then, we obtain the lemma
as follows.
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Lemma 2.3. Assume that the positive equilibrium E∗ of system (1.2) exists.
(1) If (H1) and (H4) hold, the positive equilibrium E∗ is unstable for all τ > 0.
(2) If (H2) and (H5) are satisfied, the positive equilibrium E∗ is locally asymptotically stable for 0 <

τ < τ0 and unstable for τ > τ0 .
(3) If (H3) and (H5) are satisfied, the positive equilibrium E∗ is unstable for all τ > 0.

In summary, we obtain the following theorem.

Theorem 2.2. Assume that the positive equilibrium E∗ of system (1.2) exists and
(I) If (H1) as well either (H4) or (H5) hold, the positive equilibrium E∗ is unstable for all τ > 0.
(II)-(i) If (H2) and (H4) are satisfied, the positive equilibrium E∗ is locally asymptotically stable for
all τ > 0;
(II)-(ii) If (H2) and (H5) are satisfied, the positive equilibrium E∗ is locally asymptotically stable for
0 < τ < τ0 and unstable for τ > τ0. The system (1.2) undergoes a Hopf bifurcation arround E∗ at
τ = τ0.
(III) If (H3) as well either (H4) or (H5) hold, the positive equilibrium E∗ is unstable for all τ > 0.

Remark 2.2. When h = 0 and θ = 0, J11J22 + J11K22 − J12J21 − J12K21 = −J12K21 > 0, then hypothesis
(H1) will never hold, which will simplify Theorem 2.2. Furthermore, Eq (2.8) reduces to 2d2J11J12K21−

J2
12K2

21 > 0, which happens to be Eq (3.40) in [25]. Hence, Theorem 3.4 in [25] is a special case of
Theorem 2.2 under conditions h = 0 and θ = 0. The formula of hypotheses indicates that both the
value of h and θ will affect the stability of the positive equilibrium E∗. We shall numerically investigate
the impact of them in Section 4.

3. Dynamics of stochastic model

In this section, we mainly study the dynamics of the stochastic system (1.3). We first prove that
there exists a unique global positive solution of model system (1.3) with any given positive initial value.
Then, we investigate the asymptotic property of the stochastic system (1.3) around the equilibriums of
its corresponding deterministic system (1.2).

3.1. Existence and uniqueness of the global positive solution

The following result is related to the existence and uniqueness of the global positive solution, which
is a prerequisite for researching the long term behavior of system (1.3).

Theorem 3.1. For any given initial value Eq (1.4), system (1.3) has a unique global positive solution
(x(t), y(t)) for t ≥ −τ. Furthermore, the solution will remain in R2

+ with probability one, namely
(x(t), y(t)) ∈ R2

+ for all t ≥ −τ almost surely.

Proof. Note that the coefficients of system (1.3) are locally Lipschitz continuous and for any given
initial value Eq (1.4), there exists a unique local solution (x(t), y(t)) on t ∈ [−τ, τe), where τe is the
explosion time [32]. In order to demonstrate that this solution is global, it’s sufficient to prove that
τe = ∞ a.s.. Let k0 ≥ 0 be a sufficiently large constant for every component of (x(0), y(0)) all lying
within the interval [ 1

k0
, k0] × [ 1

k0
, k0]. For each integer k ≥ k0, we define the stopping time as follows:

τk = inf{t ∈ [−τ, τe) : min{x(t), y(t)} ≤
1
k

or max{x(t), y(t)} ≥ k}.
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Throughout this paper, we set inf ∅ = ∞(as usual ∅ denotes the empty set). Clearly, τk is increasing as
k → ∞. Set τ∞ = lim

k→∞
τk, hence τ∞ ≤ τe a.s.. To complete the proof, we only need to show that τ∞ = ∞

a.s.. If this statement is false, there is a pair of constants T > 0 and ε ∈ (0, 1) such that P{τk ≤ T } ≥ ε
for any k ≥ k0.

We define a C2−function V : R2
+ → R+ as follows:

V(x, y) = x − 1 − lnx + y − 1 − lny +
cp

1 + c1k

∫ t

t−τ

x(s)y(s)
1 + qx(s)

ds.

Applying Itô formula yields

dV = LVdt + σ1(x − 1)dB1(t) + σ2(y − 1)dB2(t),

where

LV =(x − 1)(
r

1 + c2ky
− d1 − ax −

py
1 + qx

1
1 + c1k

) − (y − 1)(hy + d2 + θx)

+ (1 −
1
y

)(
cp

1 + c1k
x(t − τ)y(t − τ)
1 + qx(t − τ)

) +
cp

1 + c1k
(

xy
1 + qx

−
x(t − τ)y(t − τ)
1 + qx(t − τ)

) +
σ2

1

2
+
σ2

2

2

≤x(
r

1 + c2ky
− d1 − ax −

py
1 + qx

1
1 + c1k

) − (
r

1 + c2ky
− d1 − ax −

py
1 + qx

1
1 + c1k

)

− y(hy + d2 + θx) + (hy + d2 + θx) +
cp

1 + c1k
xy

1 + qx
+
σ2

1

2
+
σ2

2

2

≤ − ax2 + (r − d1 + a + θ)x − hy2 + (
(1 + c)p
1 + c1k

− d2 + h)y + d1 + d2 +
σ2

1

2
+
σ2

2

2

≤
(r − d1 + a + θ)2

4a
+

( (1+c)p
1+c1k − d2 + h)2

4h
+ d1 + d2 +

σ2
1

2
+
σ2

2

2
:=K > 0,

where K is a positive number, the remainder of the proof follows that in Li et al. [33], here, we omit
it. The proof is complete.

3.2. Asymptotic Property

Due to the interference of stochastic noise, system (1.3) does not exist any equilibriums. However,
we are interested in whether system (1.3) has stability and what is the influence of white noise. In this
subsection, we discuss the asymptotic behaviors of system (1.3) around the predator-free equilibrium
and the positive equilibrium of the corresponding deterministic system (1.2).

Definition 3.1. Let (x(t), y(t)) be a solution of model (1.3) with initial value (1.4). Ē = (x̄, ȳ) is an
equilibrium point of the corresponding deterministic system (1.2). If there exists a constant K̄ > 0 such
that

lim sup
t→∞

1
t

E
∫ t

0
[(x − x̄)2 + (y − ȳ)2] ≤ K̄,

then we say that the solution of system (1.3) will be swinging near the equilibrium Ē = (x̄, ȳ).
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Next, we study the asymptotic property of system (1.3) around the predator-free equilibrium E1 =

( r−d1
a , 0) when r − d1 > 0 and the positive equilibrium, respectvely.

Theorem 3.2. Let (x(t), y(t)) be a solution of model (1.3) with initial value (1.4). If the condition
r − d1 > σ

2
1 holds, then

lim sup
t→∞

1
t

E
∫ t

0
((x(s) − x0)2 + y(s)2)ds ≤

n
m
,

where

x0 =
r − d1

a
,m = min{

ca
2(r − d1)

(r − d1 − σ
2
1), h}, n = crx0 +

3
4

cσ2
1x0 +

ac2 px3
0

d2(1 + c1k)
.

Proof. Define the function
V = ω1V1 + ω2V2 + V3 + ω3V4,

with
V1 =

(x−x0)2

2 ,

V2 = x − x0 − x0ln x
x0
,

V3 = y +
cp

1+c1k

∫ t

t−τ
x(s)y(s)
1+qx(s)ds,

V4 = cx + y(t + τ) + d2

∫ t+τ

t
y(s)ds.

where ωi(i=1,2,3) are positive constants to be determined later.
Applying Itô formula yields:

For

V1 =
(x − x0)2

2
,

dV1 = LV1dt + σ1x(x − x0)dB1(t),

where

LV1 =(x − x0)(
rx

1 + c2ky
− d1x − ax2 −

pxy
1 + qx

1
1 + c1k

) +
1
2
σ2

1x2

=(
r

1 + c2ky
− d1 − ax0)(x − x0)2 −

c2krx0

1 + c2ky
y(x − x0) −

pxy
1 + qx

1
1 + c1k

(x − x0) +
1
2
σ2

1x2

≤(r − d1 − ax0)(x − x0)2 −
p

1 + c1k
y(x − x0) + x0y

1 + qx
(x − x0) +

c2krx2
0

1 + c2ky
y +

1
2
σ2

1x2

≤ −
p

1 + c1k
x0

1 + qx
y(x − x0) + rx2

0 +
1
2
σ2

1x2.

Using the inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we have

LV1 ≤σ
2
1(x − x0)2 −

p
1 + c1k

x0

1 + qx
y(x − x0) + rx2

0 + σ2
1x2

0.

For
V2 = x − x0 − x0ln

x
x0
,

dV2 = LV2dt + (x − x0)σ1dB1(t),
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where

LV2 =(x − x0)(
r

1 + c2ky
− d1 − ax −

py
1 + qx

1
1 + c1k

) +
1
2
σ2

1x0

=(x − x0)(
r

1 + c2ky
− r − a(x − x0) −

py
1 + qx

1
1 + c1k

) +
1
2
σ2

1x0

≤ − a(x − x0)2 −
c2kr

1 + c2ky
y(x − x0) −

py
1 + qx

1
1 + c1k

(x − x0) +
1
2
σ2

1x0

≤ − a(x − x0)2 +
c2krx0

1 + c2ky
y −

py
1 + qx

1
1 + c1k

(x − x0) +
1
2
σ2

1x0

≤ − a(x − x0)2 −
py

1 + qx
1

1 + c1k
(x − x0) + rx0 +

1
2
σ2

1x0.

For

V3 = y +
cp

1 + c1k

∫ t

t−τ

x(s)y(s)
1 + qx(s)

ds.

dV3 = LV3dt + σ2ydB2(t),

where
LV3 =

c
1 + c1k

pxy
1 + qx

− hy2 − d2y − θxy

=
c

1 + c1k
py(x − x0)

1 + qx
+

c
1 + c1k

px0y
1 + qx

− hy2 − d2y − θxy

≤ − hy2 +
c

1 + c1k
py(x − x0)

1 + qx
+

cpx0

1 + c1k
y.

For

V4 = cx + y(t + τ) + d2

∫ t+τ

t
y(s)ds,

dV4 = LV3dt + cσ1xdB1(t) + σ2y(t + τ)dB2(t),

where

LV4 =c(
rx

1 + c2ky
− d1x − ax2 −

pxy
1 + qx

1
1 + c1k

) +
c

1 + c1k
pxy

1 + qx
− hy2(t + τ)

− d2y(t + τ) − θx(t + τ)y(t + τ) + d2y(t + τ) − d2y

≤cx(r − d1 − ax) − d2y

≤ − d2y − ac(x − x0)2 − acx0(x − x0)
≤ − d2y + acx2

0.

Therefore, we have

LV ≤(ω1σ
2
1 − ω2a)(x − x0)2 − hy2 + (−ω1

p
1 + c1k

x0

1 + qx
− ω2

p
1 + qx

1
1 + c1k

+
c

1 + c1k
p

1 + qx
)y(x − x0) + (

cpx0

1 + c1k
− ω3d2)y + ω1(rx2

0 + σ2
1x2

0)

+ ω2(rx0 +
1
2
σ2

1x0) + ω3acx2
0.
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Choosing ω1 = c
2x0

, ω2 = c
2 , ω3 =

cpx0
d2(1+c1k) , one can see that

LV ≤ −
ca

2(r − d1)
(r − d1 − σ

2
1)(x − x0)2 − hy2 + crx0 +

3
4

cσ2
1x0 +

ac2 px3
0

d2(1 + c1k)
. (3.1)

Integrating both sides of Eq (3.1) from 0 to t and taking the expectation yield

EV(t) − EV(0) ≤ −
ca

2(r − d1)
(r − d1 − σ

2
1)E

∫ t

0
(x(s) − x0)2ds − hE

∫ t

0
y(s)2ds + nt,

where

n = crx0 +
3
4

cσ2
1x0 +

ac2 px3
0

d2(1 + c1k)
.

Divide both sides by t and take the limit superior, and then we obtain

lim sup
t→∞

1
t

E
∫ t

0
((x(s) − x0)2 + y(s)2)ds ≤

n
m
,

where
m = min{

ca
2(r − d1)

(r − d1 − σ
2
1), h},

This completes the proof.

Remark 3.1. From Theorem 3.2, one can see that the solution of system (1.3) will be swinging near
the predator-free equilibrium under certain conditions. In addition, the value of σ2

2 has no effect on
the swing intensity, but the swing intensity and σ2

1 are positively correlated.

Theorem 3.3. Let (x(t), y(t)) be a solution of system (1.3) with initial value (1.4). If the following
conditions are satisfied:

σ2
1 < d1 +

ax∗

2
+

a
q
− r, σ2

2 < d2 + hy∗,

then

lim sup
t→∞

1
t

E
∫ t

0

(
(x(s) − x∗)2 + (y(s) − y∗)2

)
ds ≤

N
M
,

where
M = min{ω1(d1 +

ax∗

2
+

a
q
− r − σ2

1), ω4(d2 + hy∗ − σ2
2)},

N = ω1(
rx∗2

1 + c2ky∗
+

rx∗

q(1 + c2ky∗)
+ σ2

1x∗2 +
σ2

1x∗

2q
) + ω2

r2

a
+

1
2
σ2

2y∗ + ω4(σ2
2y∗2 +

3cp
2q(1 + c1k)

y∗2),

ω1 =
c2 p2

ax∗h(1 + c1k)2(1 + qx∗)2 , ω4 =
hq(1 + c1k)

3cp
,

ω3 =
1
d2

(
2ω1 px∗

q(1 + c1k)
+

cp
q(1 + c1k)

+ θx∗ + ω4θx∗y∗),

ω2 =
1
r

(ω1(
c2krx∗y∗

1 + c2ky∗
+

2py∗

q(1 + c1k)
+

c2kry∗

q(1 + c2ky∗)
) + ω3cr +

cp
1 + c1k

y∗

1 + qx∗
+ θy∗ + ω4θy∗

2).
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Proof. Recalling that E∗ = (x∗, y∗) is the positive equilibrium of system (1.2), we have


r

1 + c2ky∗
− d1 − ax∗ −

py∗

1 + qx∗
1

1 + c1k
= 0,

c
1 + c1k

px∗y∗

1 + qx∗
− hy∗2 − d2y∗ − θx∗y∗ = 0.

(3.2)

Define

V1 =
(x − x∗)2

2
.

An application of Itô formula implies

dV1 = LV1dt + σ1x(x − x∗)dB1(t),

where

LV1 =(x − x∗)(
rx

1 + c2ky
− d1x − ax2 −

pxy
1 + qx

1
1 + c1k

) +
1
2
σ2

1x2

≤(
r

1 + c2ky
− d1 − ax∗)(x − x∗)2 −

c2kr
1 + c2ky∗

x∗

1 + c2ky
(x − x∗)(y − y∗)

−
1

1 + c1k
(x − x∗)(

pxy
1 + qx

−
px∗y∗

1 + qx∗
) +

1
2
σ2

1x2

≤(r − d1 − ax∗)(x − x∗)2 −
c2kr

1 + c2ky∗
x∗

1 + c2ky
(x − x∗)(y − y∗)

−
p

1 + c1k
(

y∗

1 + qx∗
(x − x∗)2

1 + qx
+

x
1 + qx

(x − x∗)(y − y∗)) +
1
2
σ2

1x2

≤(r − d1 − ax∗ −
py∗

(1 + c1k)(1 + qx∗)(1 + qx)
)(x − x∗)2

+ (
c2krx∗y∗

1 + c2ky∗
+

py∗

q(1 + c1k)
)x +

px∗

q(1 + c1k)
y +

rx∗2

1 + c2ky∗
+

1
2
σ2

1x2.

Using the inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we have

LV1 ≤(r − d1 − ax∗ −
py∗

(1 + c1k)(1 + qx∗)(1 + qx)
+ σ2

1)(x − x∗)2

+ (
c2krx∗y∗

1 + c2ky∗
+

py∗

q(1 + c1k)
)x +

px∗

q(1 + c1k)
y +

rx∗2

1 + c2ky∗
+ σ2

1x∗2.

Set

V2 = x − x∗ − ln
x
x∗
,

dV2 = LV2dt + σ1(x − x∗)dB1(t),
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where

LV2 =(x − x∗)(
r

1 + c2ky
− d1 − ax −

py
1 + qx

1
1 + c1k

) +
1
2
σ2

1x∗

= − a(x − x∗)2 −
c2kr

1 + c2ky∗
(x − x∗)(y − y∗)

1 + c2ky
+

pqy∗

(1 + c1k)(1 + qx∗)
(x − x∗)2

1 + qx

−
p

1 + c1k
(x − x∗)(y − y∗)

1 + qx
+

1
2
σ2

1x∗

≤(−a +
pqy∗

(1 + c1k)(1 + qx∗)(1 + qx)
)(x − x∗)2 + (

c2kry∗

1 + c2ky∗
+

py∗

(1 + c1k)
)x

+
px∗

(1 + c1k)
y +

rx∗

1 + c2ky∗
+

1
2
σ2

1x∗.

Define

V3 = x,

dV3 = LV3dt + σ1xdB2(t),

where

LV3 = − ax2 − d1x +
rx

1 + c2ky
−

1
1 + c1k

pxy
1 + qx

≤rx − ax2 ≤ −rx +
r2

a
,

where the inequality a(x − r
a )2 ≥ 0 is applied.

Define

V4 = cx + y(t + τ) + d2

∫ t+τ

t
y(s)ds,

dV4 = LV4dt + cσ1xdB1(t) + σ2y(t + τ)dB2(t),

where

LV4 =c(
rx

1 + c2ky
− d1x − ax2 −

pxy
1 + qx

1
1 + c1k

) +
c

1 + c1k
pxy

1 + qx
− hy2(t + τ)

− d2y(t + τ) − θx(t + τ)y(t + τ) + d2y(t + τ) − d2y

≤crx − d2y.

Define

V5 = y − y∗ − y∗ln
y
y∗
,

dV5 = LV5dt + σ2(y − y∗)dB2(t),
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where

LV5 =
y − y∗

y
(

c
1 + c1k

px(t − τ)y(t − τ)
1 + qx(t − τ)

− hy2 − d2y − θxy) +
1
2
σ2

2y∗

=(y − y∗)(
c

1 + c1k
px(t − τ)y(t − τ)
y(1 + qx(t − τ))

− hy − d2 − θx) +
1
2
σ2

2y∗

=(y − y∗)(
cp

1 + c1k
(

x(t − τ)y(t − τ)
y(1 + qx(t − τ))

−
x∗

1 + qx∗
) − h(y − y∗) − θ(x − x∗)) +

1
2
σ2

2y∗

=
cp

1 + c1k
(

x(t − τ)y(t − τ)
y(1 + qx(t − τ))

−
x(t − τ)
1 + qx∗

+
x(t − τ) − x∗

1 + qx∗
)(y − y∗) − h(y − y∗)2

− θ(x − x∗)(y − y∗) +
1
2
σ2

2y∗

=
cpx(t − τ)

1 + c1k
(

y(t − τ)
y(1 + qx(t − τ))

−
1

1 + qx∗
)(y − y∗) − h(y − y∗)2

+
cp

(1 + c1k)(1 + qx∗)
(x(t − τ) − x∗)(y − y∗) − θ(x − x∗)(y − y∗) +

1
2
σ2

2y∗

≤
cpx(t − τ)

1 + c1k
(

y(t − τ)
1 + qx(t − τ)

+
y∗

1 + qx∗
) +

cp
(1 + c1k)(1 + qx∗)

(x(t − τ) − x∗)(y − y∗)

− h(y − y∗)2 − θ(x − x∗)(y − y∗) +
1
2
σ2

2y∗

≤
cp

1 + c1k
y∗

1 + qx∗
x(t − τ) +

cp
q(1 + c1k)

y(t − τ) +
cp

(1 + c1k)(1 + qx∗)
(x(t − τ) − x∗)(y − y∗)

− h(y − y∗)2 − θ(x − x∗)(y − y∗) +
1
2
σ2

2y∗.

Moreover, define

V6 =V6 +
cp

1 + c1k
y∗

1 + qx∗

∫ t

t−τ
x(s)ds +

cp
q(1 + c1k)

∫ t

t−τ
y(s)ds

+
c2 p2

2h(1 + c1k)2(1 + qx∗)2

∫ t

t−τ
(x(s) − x∗)2ds,

LV6 ≤
cp

1 + c1k
y∗

1 + qx∗
x +

cp
q(1 + c1k)

y +
c2 p2

2h(1 + c1k)2(1 + qx∗)2 (x − x∗)2 +
h
2

(y − y∗)2

− h(y − y∗)2 − θ(x − x∗)(y − y∗) +
1
2
σ2

2y∗

≤ −
h
2

(y − y∗)2 +
c2 p2

2h(1 + c1k)2(1 + qx∗)2 (x − x∗)2 + (
cp

1 + c1k
y∗

1 + qx∗
+ θy∗)x

+ (
cp

q(1 + c1k)
+ θx∗)y +

1
2
σ2

2y∗.

Define

V7 =
(y − y∗)2

2
,

dV7 = LV7dt + σ2x(x − x∗)dB2(t),
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where

LV7 =(y − y∗)(
c

1 + c1k
px(t − τ)y(t − τ)

1 + qx(t − τ)
− hy2 − d2y − θxy) +

1
2
σ2

2y2

≤
cp

1 + c1k
(y − y∗)(

x(t − τ)y(t − τ)
1 + qx(t − τ)

−
x∗y∗

1 + qx∗
) − hy∗(y − y∗)2 − d2(y − y∗)2

− θ(y − y∗)(y∗(x − x∗) + x(y − y∗)) +
1
2
σ2

2y2

≤
cp

1 + c1k
(y − y∗)(

x(t − τ)y(t − τ)
1 + qx(t − τ)

−
x∗y∗

1 + qx∗
) + (−d2 − hy∗ + σ2

2)(y − y∗)2

+ θy∗2x + θx∗y∗y + σ2
2y∗2.

Additionally, define

V8 =V8 +
q
2

cp
1 + c1k

∫ t

t−τ
(

x(s)y(s)
1 + qx(s)

−
x∗y∗

1 + qx∗
)2ds,

LV8 ≤
cp

1 + c1k
(

1
2q

(y − y∗)2 +
q
2

(
xy

1 + qx
−

x∗y∗

1 + qx∗
)2) + (−d2 − hy∗ + σ2

2)(y − y∗)2

+ θy∗2x + θx∗y∗y + σ2
2y∗2

≤
cp

1 + c1k
(

1
2q

(y − y∗)2 +
q
2

((
xy

1 + qx
)2 + (

x∗y∗

1 + qx∗
)2) + (−d2 − hy∗ + σ2

2)(y − y∗)2

+ θy∗2x + θx∗y∗y + σ2
2y∗2

≤
cp

1 + c1k
(

1
2q

(y − y∗)2 +
1

2q
y2 +

q
2

(
x∗y∗

1 + qx∗
)2) + (−d2 − hy∗ + σ2

2)(y − y∗)2

+ θy∗2x + θx∗y∗y + σ2
2y∗2

≤
cp

1 + c1k
((

1
2q

+
1
q

)(y − y∗)2 +
3

2q
y∗2) + (−d2 − hy∗ + σ2

2)(y − y∗)2

+ θy∗2x + θx∗y∗y + σ2
2y∗2

=
3cp

2q(1 + c1k)
(y − y∗)2 + (−d2 − hy∗ + σ2

2)(y − y∗)2 + θy∗2x + θx∗y∗y

+ σ2
2y∗2 +

3cp
2q(1 + c1k)

y∗2.

Construct the function

Ṽ = ω1(V1 +
1
q

V2) + ω2V3 + ω3V4 + V6 + ω4V8,

where ωi(i = 1, · · · , 4) are positive constants to be determined as follows.
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Therefore, we have

LṼ ≤(ω1(r − d1 − ax∗ −
a
q

+ σ2
1) +

c2 p2

2h(1 + c1k)2(1 + qx∗)2 )(x − x∗)2

+ (−
h
2

+ ω4
3cp

2q(1 + c1k)
+ ω4(−d2 − hy∗ + σ2

2))(y − y∗)2

+ (ω1(
c2krx∗y∗

1 + c2ky∗
+

2py∗

q(1 + c1k)
+

c2kry∗

q(1 + c2ky∗)
) + ω3cr + (

cp
1 + c1k

y∗

1 + qx∗
+ θy∗)

+ ω4θy∗
2
− ω2r)x + (ω1

2px∗

q(1 + c1k)
+

cp
q(1 + c1k)

+ θx∗ + ω4θx∗y∗ − ω3d2)y

+ ω1(
rx∗2

1 + c2ky∗
+

rx∗

q(1 + c2ky∗)
+ σ2

1x∗2 +
σ2

1x∗

2q
) + ω2

r2

a
+

1
2
σ2

2y∗

+ ω4(σ2
2y∗2 +

3cp
2q(1 + c1k)

y∗2).

Choosing ω1 =
c2 p2

ax∗h(1+c1k)2(1+qx∗)2 , ω4 =
hq(1+c1k)

3cp , ω3 = 1
d2

( 2ω1 px∗

q(1+c1k) +
cp

q(1+c1k) + θx∗ + ω4θx∗y∗), ω2 =

1
r (ω1( c2kx∗y∗

1+c2ky∗ +
2py∗

q(1+c1k) +
c2kry∗

q(1+c2ky∗) ) + ω3cr +
cp

1+c1k
y∗

1+qx∗ + θy∗ + ω4θy∗2), then

LṼ ≤ω1(r − d1 −
ax∗

2
−

a
q

+ σ2
1)(x − x∗)2 + ω4(−d2 − hy∗ + σ2

2)(y − y∗)2

+ ω1(
rx∗2

1 + c2ky∗
+

rx∗

q(1 + c2ky∗)
+ σ2

1x∗2 +
σ2

1x∗

2q
) + ω2

r2

a
+

1
2
σ2

2y∗

+ ω4(σ2
2y∗2 +

3cp
2q(1 + c1k)

y∗2).

Integrating both sides from 0 to t and taking the expectation yield

EṼ(t) − EṼ(0) ≤ − ω1E
∫ t

0
(d1 +

ax∗

2
+

a
q
− r − σ2

1)(x(s) − x∗)2ds

− ω4E
∫ t

0
(d2 + hy∗ − σ2

2)(y(s) − y∗)2ds + Nt,

where

N = ω1(
rx∗2

1 + c2ky∗
+

rx∗

q(1 + c2ky∗)
+ σ2

1x∗2 +
σ2

1x∗

2q
) + ω2

r2

a
+

1
2
σ2

2y∗ + ω4(σ2
2y∗2 +

3cp
2q(1 + c1k)

y∗2).

Divide both sides by t and take the limit superior, and then we obtain

lim sup
t→∞

1
t

E
∫ t

0

(
(x(s) − x∗)2 + (y(s) − y∗)2

)
ds ≤

N
M
, (3.3)

where
M = min{ω1(d1 +

ax∗

2
+

a
q
− r − σ2

1), ω4(d2 + hy∗ − σ2
2)}.

This completes the proof.

Remark 3.2. From Theorem 3.3, one can see that the solution of system (1.3) will be swinging near
the positive equilibrium under certain conditions. In addiction, there is a positive correlation between
the swing intensity and the intensity of environmental noise.
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4. Numerical simulations

In this section, we carry out some numerical simulations to illustrate the main analytic results
obtained in Sections 2 and 3, respectively. We will focus on the impacts of the response level of fear
k, the self-defense level θ and digestion delay τ on the dynamic of bio-system.

Firstly, we consider the initial value (x(0), y(0)) = (0.2, 0.1) with parameter values, which are fixed
unless other specified:

r = 0.03, d1 = 0.01, d2 = 0.04, a = 0.01, c = 0.5,
c1 = 0.1, c2 = 0.1, p = 0.5, q = 0.6, h = 0.01, τ = 1.

(4.1)

Notice that from Eq (2.4), we can obtain the threshold for θ and k in comparison with a formula
composed of other parameters for the stability of the predator-free equilibrium E1. Simplifying Eq
(2.4) gives θ∗ = a

a+q(r−d1) (
cp

1+c1k −
ad2

r−d1
− d2q) and k∗ = 1

c1
( acp(r−d1)

a2d2+θq(r−d1)2+a(d2q+θ)(r−d1) − 1). Then, Theorem
2.1 can be simply expressed as: when θ > θ∗ and k > k∗, the predator-free equilibrium E1 is locally
asymptotically stable. Besides, for the sake of convenience, we denote J11J22 + J11K22− J12J21− J12K21

and J11J22 − J12J21 + J12K21 − J11K22 as Φ1 and Φ2, respectively. Choosing θ = 0.01, we obtain
k∗ = 27.8788. By Theorem 2.1, when k = 30 > k∗, the predator-free equilibrium E1 is locally
asymptotically stable (as demonstrated in Figure 1(a)). For k = 20 < k∗, the predator-free equilibrium
E1 is unstable, but numerical calculation gives that Φ1 = 2.35×10−4, J11 = −0.0068 < hy∗ = 6.65×10−4

and Φ2 = 2.67×10−4 (Theorem 2.2-(II)-(i)), and hence, E∗ = (0.9392, 0.0065) is locally asymptotically
stable for all τ > 0, as demonstrated in Figure 1(b). Furthermore, when k = 30 and θ decreases to
θ = 0.005 < θ∗ = 0.0084, the predator-free equilibrium E1 is unstable, while Φ1 = 1.14 × 10−4,
J11 = −0.0126 < hy∗ = 4.12 × 10−4 and Φ2 = 0.0011 (Theorem 2.2-(II)-(i)), which indicates that
E∗ = (1.3895, 0.0412) is locally asymptotically stable for all τ > 0 (as demonstrated in Figure 1(c)),
as well. The comparison of the three pictures in Figure 1 can verify Remark 2.1, that is, when E1 is
unstable, the positive equilibrium exists.
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(b) θ = 0.01, k = 20
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(c) θ = 0.005, k = 30

Figure 1. Population dynamics of system (1.2).
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(a) θ = 0.01, k = 10, τ = 1
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(b) θ = 0.01, k = 10, τ = 10

Figure 2. Population dynamics of system (1.2). (a) τ = 1 < τ0 = 5.7998, the positive
equilibrium is stable. (b) τ = 10 > τ0 = 5.7998, there occurs a periodic solution.

The numerical simulations presented above indicate that the response level of fear k and the self-
defense level θ have important impacts on the survival of the population, especially on predator. When
the coexistence equilibrium E∗ exists, taking θ = 0.01 and k = 20 for instance, the stability of E∗

will still be affected the response level and the self-defense level. By fixing θ = 0.01 and decreasing
k to k = 10, we obtain Φ1 = 4.71 × 10−4, J11 = −0.0017 < hy∗ = 6.87 × 10−4 and Φ2 = −4.55 ×
10−4, corresponding to Theorem 2.2-(II)-(ii). In this case, the stability of positive equilibrium E∗ =

(0.4634, 0.0687) is related to the value of τ0. Further calculations reveal that τ0 = 5.7998. The numeric
solutions are shown in Figure 2, for τ < τ0 and τ > τ0, respectively in (a) and (b); and the case of
Figure 2(b) plotted in the x − y plane is given in Figure 4(a). Analogously, we fix k = 20 and change
θ to θ = 1 × 10−4. Computations give Φ1 = 3.64 × 10−4, J11 = −0.0043 < hy∗ = 7.69 × 10−4 and
Φ2 = −9.15 × 10−6, meaning that stability of positive equilibrium E∗ = (0.6942, 0.0769) depends
on the value of delay τ (Theorem 2.2-(II)-(ii)). We compute to obtain τ0 = 227.4388 by (2.9). The
numeric solutions are illustrated in Figure 3, for τ < τ0 and τ > τ0, respectively in (a) and (b); and the
case of Figure 3(b) plotted in the x − y plane is given in Figure 4(b).

In order to show the role of τ on results more intuitively, we choose θ = 0.01 and k = 10, and
consider the set of values 0.1, 2, 8, 15, and 30 (as demonstrated in Figure 5). The results indicate that
when τ > τ0 = 5.7998, the solution of system (1.2) shows more oscillating behaviors and the positive
equilibrium is unstable. However, once the parameter is reduced to less than the threshold, the system
solution will quickly converge to the equilibrium point, which verifies Theorem 2.2-(II)-(ii)) very well.

To explore the impact of self-defence on the dynamics of system (1.2) and to compare with the
results obtained in [25], we choose the same parameter values as in [25]: h = 0, k = 1, d2 = 0.05,
c = 0.4, c1 = 1, c2 = 1 and τ = 120, and consider the set of values 0, 0.01, 0.03, 0.036, and 0.04 (as
demonstrated in Figure 6). The curve of θ = 0 is in line with that in [25] and a periodic solution occurs.
While as θ increases, the oscillation amplitude of both the prey and the predator gradually decreases
and the equilibrium tends to stable eventually. Hence the level of self-defence acts as a stabilizing
factor in system (1.2) (Remark 2.2).
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(a) θ = 1 × 10−4, k = 20, τ = 1
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(b) θ = 1 × 10−4, k = 20, τ = 230

Figure 3. Population dynamics of system (1.2). (a) τ = 1 < τ0 = 227.4388, the positive
equilibrium is stable. (b) τ = 230 > τ0 = 227.4388, there occurs a periodic solution.
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(b) θ = 1 × 10−4, k = 20, τ = 230

Figure 4. The periodic orbit of system (1.2) in x − y plane.

Furthermore, Theorem 2.2 demonstrates that when Φ1 > 0 and J11 > hy∗, the positive equilibrium
E∗ of system (1.2) is unstable for all τ > 0. We set a = 0.05, q = 0.8, θ = 0.01 and k = 2 to ensure
that the prerequisites are established and the numeric solutions are demonstrated in Figure 7. In such a
case, the solutions are periodic and as τ increases, the amplitude of the oscillation (periodic solution)
increases.
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Figure 5. Dynamics for system (1.2) by taking different values of parameter τ.
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Figure 6. Dynamics for system (1.2) by taking different values of parameter θ.

For the stochastic model, we shall adopt Milstein’s Higher Order Method mentioned in [29] to
verify our theoretical results. The corresponding discretization equations are

xk+1 = xk + (
rxk

1 + c2kyk
− d1xk − ax2

k −
pxkyk

1 + qxk

1
1 + c1k

)∆t + σ1xk

√
∆tξk +

σ2
1

2
xk(ξ2

k − 1)∆t,

yk+1 = yk + (
c

1 + c1k
pxk−ηyk−η

1 + qxk−η
− hy2

k − d2yk − θxkyk)∆t + σ2yk

√
∆t%k +

σ2
2

2
yk(%2

k − 1)∆t,

where the time increment ∆t > 0, η is the integer part of τ
∆t −1, ξk and %k(k = 1, 2, ..., n) are independent

Gaussian random variables that follow the standard normal distribution N(0, 1).
In Figure 8, we consider the initial value (x(0), y(0)) = (0.2, 0.1) with related parameter values:

θ = 0.01, k = 30, σi = 0.01(i = 1, 2) and other parameters are given in Eq (4.1). In this case,
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r − d1 = 0.02 > σ2
1 = 1 × 10−4, which means the condition in Theorem 3.2 is satisfied. Hence, all

positive solutions of system (1.3) will fluctuate around the predator-free equilibrium. As clearly shown
in Figure 8, the curve of the stochastic model goes around E1 = (2, 0), which supports Theorem 3.2.
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(b) k = 2, τ = 5
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(c) k = 2, τ = 20

Figure 7. By setting a = 0.005, q = 0.8, θ = 0.01 and k = 2, then, Φ1 = 6.26 × 10−4 and
J11 = 0.0018 > hy∗ = 5.31 × 10−4. (a) Solutions approach to a periodic solution for τ = 0.
(b) and (c) Periodic behaviors are preserved for τ > 0 and the amplitude increases with the
increase of τ.
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Figure 8. Trajectories of stochastic system (1.3) and its corresponding deterministic system
(1.2).

Besides, we take the parameters in Figure 1(b) and σi = 0.01(i = 1, 2). In this situation, the
conditions in Theorem 3.3 are satisfied:

d1 +
ax∗

a
+

a
q
− r = 0.0014 > σ2

1 = 1 × 10−4, d2 + hy∗ = 0.0407 > σ2
2 = 1 × 10−4

x∗ = 0.9392, y∗ = 0.0665, ω1 = 17.0136, ω2 = 107.8429, ω3 = 169.2887, ω4 = 0.032.
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Figure 9. Trajectories of stochastic system (1.3) and its corresponding deterministic system
(1.2).

According to Theorem 3.3, all positive solutions of system (1.3) will fluctuate around the positive
equilibrium of system (1.2). Figure 9 illustrates that the curve of the stochastic model goes around
E∗ = (0.9392, 0.0665), which validates the analytical result.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
re

y

1
=0.01

1
=0.05

1
=0.2

Deterministic

0 1000 2000 3000 4000 5000 6000 7000 8000

Time

0

0.05

0.1

0.15

0.2

0.25

P
re

d
a
to

r

1
=0.01

1
=0.05

1
=0.2

Deterministic

Figure 10. Trajectories of stochastic system (1.3) and its corresponding deterministic system
(1.2) with σ1 = 0.01, 0.05, 0.2 and σ2 = 0.01.

Theorem 3.2 indicates that when the intensities of stochastic perturbation are less than a certain
value, the solution of system (1.3) will go around the solution of system (1.2). We are also interested
in what happens if the intensities of external disturbance exceed this threshold. So under the condition
that θ = 0.01 and k = 20 and other parameters are given in Eq (4.1), we choose the different intensities
of white noise σ1 = 0.01, 0.05, 0.2 (with σ2 = 0.01 fixed) and σ2 = 0.01, 0.05, 0.2 (with σ1 = 0.01
fixed) to explore their influence on the dynamic of system (1.3). The simulation results are observed
in Figures 10 and 11. The trajectories of σi = 0.01, 0.05 (i = 1, 2) demonstrate that the small noise
will not change the stability of the equilibrium of system (1.2), but the amplitudes of both prey and
predator increase with the increase of the intensities of white noise. If the environmental fluctuations
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Figure 11. Trajectories of stochastic system (1.3) and its corresponding deterministic system
(1.2) with σ2 = 0.01, 0.05, 0.2 and σ1 = 0.01.

keep increasing, the population affected will go to extinction (such as σi = 0.2 (i = 1, 2)), which
can be observed clearly from Figures 10(a) and Figure 11(b). Notice that Theorem 2.2 claims the co-
existence of predator and prey. This discrepancy highlights the impact of stochastic fluctuations on the
predator-prey model. What’s more, the numerical simulations also verify a basic fact that the survival
of predator is based on the survival of the prey while the prey can persist in the absence of the predator.
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Figure 12. Trajectories of prey with θ = 0.001, 0.01, 0.05 and k = 1, 10, 20, respectively.

Ultimately, we focus on the impacts of the response level k and the self-defense level θ on the prey,
respectively. As stated at the beginning of the paper, we firmly believe that the scale of prey must have
a significant relationship with anti-predation response and self-defence. Here, under the condition
that σi = 0.01 (i = 1, 2) and other factors are given in Eq (4.1), we choose different response level
k = 1, 10, 20 (with θ = 0.01 fixed) and self-defense level θ = 0.001, 0.01, 0.05 (with k = 20 fixed).
As is clearly demonstrated in Figure 12, both the response level and the self-defense level exert far-
reaching influence on the scale of prey. With the increase of the self-defense ability and anti-predator
consciousness, the population of prey will gradually increase and trend to the predator-free equilibrium,
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which has two implications: (i) High-level self-defense will prevent the predator from being preyed on
by the predator, otherwise the predator will eventually become extinct; (ii) Compared with the negative
effects, the benefits of high-level response are more significant. One of the possible reasons is that the
increase in escaped prey compensates for the decline in newborns. These are consistent with what we
know: predators prefer safer and more efficient predation.

5. Conclusions

This paper is mainly related to a deterministic predator-prey model with fear factor and
self-defence, considering the existence of digestion delay, and its corresponding stochastic model.
Rather than simply considering the negative impact of the fear effect, we take the benefits of
anti-predation behavior and resistance into consideration. Both avoidance and resistance of prey along
with digestion delay all affect the stability of the equilibrium point of the deterministic system and
may lead to Hopf bifurcation. In addition, as researchers have not paid much attention to the
corresponding stochastic model, we mainly investigate the asymptotic behavior around the solution of
the deterministic model. In contrast with existing results, our research shows that the level of fear
alone is not enough to completely determine the dynamics of the predator-prey model. The level of
self-defence acts as a stabilizing factor, as well. The results obtained can be applied to keep the
coexistence of biological populations and maintain ecological balance. Furthermore, numerical
results support and expand our analyses, indicating that: (i) The introduction of disturbance of noise
may drift the coexistence equilibrium to the predator-free equilibrium; (ii) Small noise will not
change the stability of the equilibrium of system (1.3) and the amplitude of the population is
positively correlated with the intensity of withe noise; (iii) Large environmental fluctuations will lead
to the extinction of predator and prey; (iv) The scale of prey has a significant relationship with both
anti-predation behavior and self-defence, so is predator.

In addition to the conclusions that have been reached, there are some possible extensions of our
work. As mentioned before, we are of great interest in the impact of self-defence on the prey
population. A replacement of 1

1+c1k (respectively, r
1+c2ky(t) ) by g(k, θ) (respectively, f (k, θ, y(t))) which

is decreasing in both k and θ may be a meaningful attempt. Furthermore, as pointed out in Xiao and
Chen [34], stage structure has a significant influence in the stability of periodic orbits. The probability
of self-defense is different when the prey encounters immature or mature predators. Moreover, Lan et
al. [35] proposed a model with psychological effects and impulsive toxicants in polluted
environments. These models are more complex but realistic. We can consider models with factors
mentioned above for further investigations.
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