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Abstract: We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environ-
ments with vary advective rate. We establish the asymptotic stability of the unique disease-free equi-
librium(DFE) when R0 < 1 and the existence of the endemic equilibrium when R0 > 1. Here R0 is the
basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.
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1. Introduction

In this paper, we are concerned with the following susceptible-infected-susceptible(SIS) model
S t = (dS S x − a′(x)S )x − β(x) S I

S +I + γ(x)I, 0 < x < L, t > 0,
It = (dI Ix − a′(x)I)x + β(x) S I

S +I − γ(x)I, 0 < x < L, t > 0,
dS S x − a′(x)S = dI Ix − a′(x)I = 0, x = 0, L, t > 0,
S (x, 0) = S 0(x), I(x, 0) = I0(x), 0 < x < L.

(1.1)

Here S (x, t) and I(x, t) denote the density of susceptible and infected individuals in a given spatial inter-
val (0, L), dS and dI are positive constants which stand for the diffusion coefficients for the susceptible
and infected populations, a′(x) is a smooth nonnegative function which represents the advection speed
rate, while β(x) and γ(x) represent the rates of disease transmission and recovery at location x, which
are Hölder continuous functions on (0, L). In addition, S 0(x) and I0(x) are continuous and satisfy

(A1) S 0(x) ≥ 0 and I0(x) ≥ 0 for x ∈ (0, L),
∫ L

0
I0(x)dx > 0.

We would like to give the survey of some results on SIS model. In [1], Allen et al. investigated
a discrete SIS model, in [2], they also proposed the SIS model with no advection in a given spatial
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region Ω, where they dealt with the existence, uniqueness and asymptotic behaviors of the endemic
equilibrium as the diffusion rate of the susceptible individuals approaches to zero. Many authors also
considered the SIS reaction–diffusion model, including the global stability of the endemic equilibrium,
the effects of large and small diffusion rates of the susceptible and infected population on the persis-
tence and extinction of the disease, discuss how the disease vanish or spreading in high-risk or low-risk
domain, and so on. For the dynamics and asymptotic profiles of steady states of an epidemic model
in advective environments, we can see[3]. For A SIS reaction-diffusion-advection model in a low-risk
and high-risk domain, we can see [4]. For Dynamics of an SIS reaction-diffusion epidemic model for
disease transmission, we can see[5], For Concentration profile of endemic equilibrium of a reaction-
diffusion-advection SIS epidemic model, we can see [6]. For the varying total population enhances
disease persistence, we can see [7]; For the asymptotic profiles of the positive steady state for an SIS
epidemic reaction-diffusion model, we can see [8]. For the global stability of the steady states of an
SIS epidemic reaction-diffusion model, we can see [9]. For the asymptotic profile of the positive steady
state for an SIS epidemic reaction- diffusion model: effects of epidemic risk and population movement,
we can see [10]; For reaction-diffusion SIS epidemic model in a time-periodic environment, we can
see [11]. For the global dynamics and traveling waves for a periodic and diffusive chemostat model
with two nutrients and one microorganism, we can see [12]. For more information about dynamical
systems in population biology, we also can refer to see [13] and the references therein. Recently, Cui
and Lou studied (1.1) when a′(x) ≡ q for x ∈ [0, L] in [14], that is, it is a constant advection. Besides
establishing the asymptotic stability of the unique disease-free equilibrium(DFE) when R0 < 1 and the
existence of the endemic equilibrium when R0 > 1, they found that the DFE changes its stability at
most once as dI varies from zero to infinity, which is strong contrast with the case of no advection.
Since (1.1) has vary advection, an natural and interesting question is whether we can establish the
similar results on (1.1) to those in the case of no advection or not.

Since the functions a′(x), β(x), γ(x), S 0(x) and I0(x) are continuous in (0, L), by the standard theory
for a system of semilinear parabolic equations, (1.1) is locally wellposedness in (0,Tmax). Notic-
ing (A1), by the maximum principle, S (x, t) and I(x, t) are positive and bounded for x ∈ [0, L] and
t ∈ (0,Tmax). Hence, by the results in [15], Tmax = ∞ and (1.1) posses a unique classical solution
(S (x, t), I(x, t)) for all time.

It is easy to verify that∫ L

0
[S (x, t) + I(x, t)]dx =

∫ L

0
[S (x, 0) + I(x, 0)]dx := N > 0, t > 0. (1.2)

Inspired by [2] and [14], we say that (0, L) is a low-risk domain if
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx and

high-risk domain if
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx.

The corresponding equilibrium system of (1.1) is
(dS S̃ x − a′(x)S̃ )x − β(x) S̃ Ĩ

S̃ +Ĩ + γ(x)Ĩ = 0, 0 < x < L,
(dI Ĩx − a′(x)Ĩ)x + β(x) S̃ Ĩ

S̃ +Ĩ − γ(x)Ĩ = 0, 0 < x < L,
dS S̃ x − a′(x)S̃ = dI Ĩx − a′(x)Ĩ = 0, x = 0, L.

(1.3)

The half trivial solution (S̃ (x), 0) of (1.3) is called a disease-free equilibrium(DFE), while the solution
(S̃ (x), Ĩ(x)) of (1.3) is called endemic equilibrium(EE) if Ĩ(x) > 0 for some x ∈ (0, L).
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We also introduce the following basic reproduction number as those in literatures [2] and [14].
We also can refer to [16] and see the definition and the computation of the basic reproduction ratio
R0 in models for infectious diseases in heterogeneous populations, refer to [17] and see reproduction
numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, see
basic reproduction numbers for reaction-diffusion epidemic models [18].

R0 = sup
ϕ∈H1((0,L)),ϕ,0


∫ L

0
β(x)e

a(x)
dI ϕ2dx

dI

∫ L

0
e

a(x)
dI ϕ2

xdx +
∫ L

0
γ(x)e

a(x)
dI ϕ2dx

 . (1.4)

Our first result is concerned with the qualitative properties for R0.
Theorem 1.1. Let R̂0 be the basic reproduction number when a(x) ≡ 0 which was introduced in

[2]. Then the following conclusions hold.

(1) For any given a′(x) > 0, R0 →
β(L)
γ(L) as dI → 0 and R0 →

∫ L
0 β(x)dx∫ L
0 γ(x)dx

as dI → +∞;

(2) For any given dI > 0, R0 → R̂0 as maxx∈[0,L] a′(x)→ 0 and R0 →
β(L)
γ(L) as minx∈[0,L] a′(x)→ +∞;

(3) If β(x) > (<)γ(x) on [0, L], then R0 > (< 1) for any given dI > 0 and a′(x) > 0.
Our second result deals with the stability of DFE, which will extend those of [2] and [14].
Theorem 1.2. The DFE is unstable if R0 > 1 while it is globally asymptotically stable if R0 < 1.
We will analyze (1.1) under the following assumptions on β(x) and γ(x):
(C1) β(0) − γ(0) < 0 < β(L) − γ(L), i.e., β(x) − γ(x) changes sign from negative to positive,
or
(C2) β(0) − γ(0) > 0 > β(L) − γ(L), i.e., β(x) − γ(x) changes sign from positive to negative.
In the point view of biological,
(C1) all lower-risk sites are located at the upstream and all high-risk sites are at the downstream,
or
(C2) all high-risk sites are distributed at the upstream and lower-risk sites are at the downstream.
To state other results, in convenience, let q = maxx∈[0,L] a′(x) and denote a(x) = qã(x) sometimes in

the sequels.
We can get further properties of R0 when

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx.

Theorem 1.3. Assume that
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx. Denote R0 = R0(dI , q).

(i) If (C1) holds, then the DFE is unstable for any q > minx∈[0,L] a′(x) > 0 and dI > 0;
(ii) If (C2) holds, then there exists a unique curve in dI–q plane

Γ1 = {(dI , ρ1(dI)) : R0(dI , ρ1(dI)) = 1, dI ∈ (0,+∞)}

with the function ρ1 = ρ1(dI) : (0,+∞)→ (0,+∞) satisfying

lim
dI→0+

ρ1(dI) = 0, lim
dI→+∞

ρ1(dI)
dI

= θ1,

and such that for every dI > 0, the DFE is unstable for 0 < minx∈[0,L] a′(x) < q < ρ1(dI) and it is
globally and asymptotically stable for q > minx∈[0,L] a′(x) > ρ1(dI).

Here θ1 is the unique positive solution of∫ L

0
[β(x) − γ(x)]eθ1ã(x)dx = 0.
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Similarly, we can get further properties of R0 when
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx.

Theorem 1.4. Assume that
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx. Let d∗I is the unique positive root of the equation

R̂0 = 1, where R̂0 was introduced in [2].
(1) If (C1) holds, then the DFE is unstable for any q > minx∈[0,L] a′(x) > 0 and dI ∈ (0, d∗I ], while

for dI ∈ (d∗I ,+∞) there exists a unique curve in dI–q plane

Γ2 = {(dI , ρ2(dI)) : R0(dI , ρ2(dI)) = 1, dI ∈ (d∗I ,+∞)}

with the monotone function ρ2 = ρ2(dI) : (d∗I ,+∞)→ (0,+∞) satisfying

lim
dI→d∗I +

ρ2(dI) = 0, lim
dI→+∞

ρ2(dI)
dI

= θ2,

and such that the DFE is unstable for 0 < minx∈[0,L] a′(x) < q < ρ2(dI) and it is globally asymptotically
stable for q > minx∈[0,L] a′(x) > ρ2(dI).

Here θ2 is the unique positive solution of∫ L

0
[β(x) − γ(x)]eθ2ã(x)dx = 0.

(2) If (C2) holds, then for dI ∈ (0, d∗I ), there exists a unique curve in dI − q plane

Γ3 = {(dI , ρ3(dI)) : R0(dI , ρ3(dI)) = 1, dI ∈ (0, d∗I )}

with the function ρ3 = ρ3(dI) : (0, d∗I )→ (0,+∞) satisfying

lim
dI→0+

ρ3(dI) = 0, lim
dI→d∗I−

ρ3(dI) = 0,

and such that the DFE is unstable for 0 < minx∈[0,L] a′(x) < q < ρ3(dI) and it is globally and asymp-
totically stable for q > minx∈[0,L] a′(x) > ρ3(dI), while for dI ∈ (d∗I ,+∞), the DFE is globally and
asymptotically stable for any q > minx∈[0,L] a′(x) > 0.

The following theorem deals with the existence of EE.
Theorem 1.5. Assume that β(x) − γ(x) changes sign once in (0, L). If R0 > 1, then problem (1.3)

possesses at least one EE.
The last theorem will consider the results on (1.1) when β(x) − γ(x) changes sign twice in (0, L).
Theorem 1.6. Assume that β(x) − γ(x) changes sign twice in (0, L).
(1) If

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx and β(L) < γ(L), then there exists some positive constant Λ which is

independent of dI and q such that for every dI > Λ, we can find a positive constant Q which depends
on dI such that R0 > 1 when 0 < minx∈[0,L] a′(x) < q < Q and R0 < 1 when q > Q.

(2) If
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx and β(L) > γ(L), then there exists some positive constant Λ which is

independent of dI and q such that for every dI > Λ one of the following conclusions holds:
(i) R0 > 1 for any q > minx∈[0,L] a′(x) > 0;
(ii) There exists a positive constant Q̂ which is independent of dI and satisfies that R0 > 1 for q , Q̂

and R0 = 1 when q = Q̂;
(iii) There exist two positive constants Q2 > Q1 both depending on dI such that R0 > 1 when

q ∈ (0,Q1) ∪ (Q2,+∞) while R0 < 1 when q ∈ (Q1,Q2).
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(3) If
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx and β(L) > γ(L), then there exists some positive constant Λ > d∗I

which is independent of dI and q such that for every dI > Λ, we can find a positive constant Q which
depends on dI such that R0 < 1 when 0 < minx∈[0,L] a′(x) < q < Q and R0 > 1 when q > Q.

(4) If
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx and β(L) < γ(L), then there exists some positive constant Λ > d∗I

which is independent of dI and q such that for every dI > Λ one of the following conclusions holds:
(iv) R0 < 1 for any q > minx∈[0,L] a′(x) > 0;
(v) There exists a positive constant Q̂ which is independent of dI and satisfies that R0 < 1 for q , Q̂

and R0 = 1 when q = Q̂;
(vi) There exist two positive constants Q2 > Q1 both depending on dI and satisfy that R0 < 1 when

q ∈ (0,Q1) ∪ (Q2,+∞) while R0 > 1 when q ∈ (Q1,Q2).
The rest of this paper is organized as follows. In Section 2, we give the proofs of Theorem 1.1 and

Theorem 1.2. In Section 3, we will prove Theorem 1.3. In Section 4, we will prove Theorem 1.4. In
Section 5, we will prove Theorem 1.5. In Section 6, we will prove Theorem 1.6.

2. Materials and method

2.1. The proofs of Theorem 1.1 and Theorem 1.2

In this section, we first give some qualitative properties of R0, then we deal with the stability
of DFE, and we can finish the proofs of Theorem 1.1 and Theorem 1.2.

By the definition of R0, there exits some positive function Φ(x) ∈ C2([0, L]) such that{
−[dIΦx − a′(x)Φ]x + γ(x)Φ = 1

R0
β(x)Φ, 0 < x < L,

dIΦx(0) − a′(0)Φ(0) = 0, dIΦx(L) − a′(L)Φ(L) = 0.
(2.1)

Letting ϕ(x) = e−
a(x)
dI Φ(x), we have{

−dIϕxx − a′(x)ϕx + γ(x)ϕ = 1
R0
β(x)ϕ, 0 < x < L,

ϕx(0) = 0, ϕx(L) = 0.
(2.2)

Linearizing (1.1) around (Ŝ , 0) and letting ξ̄(x, t) = S (x, t) − Ŝ (x, t), η̄(x, t) = I(x, t), we have{
ξ̄t = (dS ξ̄x − a′(x)ξ̄)x − [β(x) − γ(x)]η̄, 0 < x < L, t > 0,
η̄t = (dI η̄x − a′(x)η̄)x + [β(x) − γ(x)]η̄, 0 < x < L, t > 0.

For the linear system, seeking for the solution which is separation of variables, i.e., ξ̄(x, t) = e−λtξ(x)
and η̄(x, t) = e−λtη(x), we have{

(dS ξx − a′(x)ξ)x − [β(x) − γ(x)]η + λξ = 0, 0 < x < L,
(dIηx − a′(x)η)x + [β(x) − γ(x)]η + λη = 0, 0 < x < L,

(2.3)

subject to boundary conditions{
dS ξx(0) − a′(0)ξ(0) = 0, dS ξx(L) − a′(L)ξ(L) = 0,
dSηx(0) − a′(0)η(0) = 0, dSηx(L) − a′(L)η(L) = 0.

(2.4)
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By the conservation of total population, we need to impose that∫ L

0
[ξ(x) + η(x)]dx = 0. (2.5)

Noticing that the second equation of (2.3) is independent of ξ, letting ζ(x) = e−
a(x)
dI η(x), we only

need to consider the following eigenvalue problem{
dIζxx + a′(x)ζx + [β(x) − γ(x)]ζ(x) + λζ(x) = 0, 0 < x < L,
ζx(0) = ζx(L) = 0.

(2.6)

By the results of [19], all the eigenvalues are real, the smallest eigenvalue λ1(dI , q) is simple, and its
corresponding eigenfunction φ1 can be chosen positive.

We will show a fact below.
Lemma 2.1.1. For any dI and q > minx∈[0,L] a′(x) > 0, λ1(dI , q) < 0 if R0 > 1, λ1(dI , q) = 0 if

R0 = 1 and λ1(dI , q) > 0 if R0 < 1.

Proof. Note that (λ1(dI , q), φ1) satisfies
−dI(φ1)xx − a′(x)(φ1)x + [γ(x) − β(x)]φ1(x) = λ1(dI , q)φ1(x), 0 < x < L,

(φ1)x(0) = (φ1)x(L) = 0.
(2.7)

Multiplying (2.1) by e
a(x)
dI φ1 and (2.7) by e

a(x)
dI Φ, integrating by parts in (0, L), and subtracting the result-

ing equations, we get ∫ L

0
(

1
R0
− 1)β(x)Φ(x)φ1(x)dx =

∫ L

0
λ1(dI , q)Φ(x)φ1(x)dx.

Using the mean value theorem of integrating, we have

(
1
R0
− 1)β(x1)Φ(x1)φ1(x1) = λ1(dI , q)Φ(x2)φ1(x2)

for some 0 ≤ x1 ≤ L and 0 ≤ x2 ≤ L. Using β(x1)Φ(x1)φ1(x1) > 0 and Φ(x2)φ1(x2) > 0, we know that

(
1
R0
− 1) has the same sign of λ1(dI , q),

which implies the conclusions are true. �

Lemma 2.1.2. If dI
q → 0 and dI

q2 → 0, ã′(x) > δ > 0 for some constant δ, then R0 →
β(L)
γ(L) .

Proof. Let w(x) = e−
q
dI

Aã(x)
Φ(x), where Φ(x) is the solution of (2.1), A is a constant which will be

chosen later. It is easy to verify that w satisfies
[ q2A(A−1)

dI
(ã′(x))2 + q(A − 1)ã′′(x) + 1

R0
β(x) − γ(x)]w

= −dIwxx + (1 − 2A)a′(x)wx, 0 < x < L, t > 0,
dIwx(0) = a′(0)(1 − A)w(0), dIwx(L) = a′(L)(1 − A)w(L).

(2.8)
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First we chose A = 1 + C1dI
q2 , where C1 is a positive constant to be chosen later. Then (2.8) becomes

[C1(1 + C1dI
q2 )(ã′(x))2 + q(1 + C1dI

q2 )ã′′(x) + 1
R0
β(x) − γ(x)]w

= −dIwxx − (1 + 2C1dI
q2 )a′(x)wx, 0 < x < L, t > 0,

dIwx(0) = −C1dI
q ã′(0)w(0), dIwx(L) = −C1dI

q ã′(L)w(L).

Assume that w(x∗) = minx∈[0,L] w(x). We will show that x∗ = L below. wx(0) < 0 implies that x∗ , 0. If
x∗ ∈ (0, L), then wxx(x∗) ≥ 0 and wx(x∗) = 0, (2.9) means that

[C1(1 +
C1dI

q2 )(ã′(x∗))2 + q(1 +
C1dI

q2 )ã′′(x∗) +
1
R0
β(x∗) − γ(x∗)] ≤ 0

Taking C1 = Kq with K large enough, we can get a contradiction. Therefore, x∗ = L and w(x) ≥ w(L)
for x ∈ [0, L], which implies that

Φ(x)
Φ(L)

≥ e−
q
dI

(1+
C1dI

q2 )[ã(L)−ã(x)]
. (2.9)

Next, we chose A = 1− C2dI
q2 , where C2 is a positive constant to be chosen later. Then (2.8) becomes

[C2(1 − C2dI
q2 )(ã′(x))2 + q(1 − C2dI

q2 )ã′′(x) + 1
R0
β(x) − γ(x)]w

= −dIwxx − (1 − 2C2dI
q2 )a′(x)wx, 0 < x < L, t > 0,

dIwx(0) = C2dI
q ã′(0)w(0), dIwx(L) = C2dI

q ã′(L)w(L).

Assume that w(x∗) = maxx∈[0,L] w(x). We will show that x∗ = L below. wx(0) > 0 implies that x∗ , 0.
If x∗ ∈ (0, L), then wxx(x∗) ≥ 0 and wx(x∗) = 0, (2.10) means that

[C2(1 −
C2dI

q2 )(ã′(x∗))2 + q(1 −
C2dI

q2 )ã′′(x∗) +
1
R0
β(x∗) − γ(x∗)] ≤ 0

Taking C2 = K′q with K′ large enough, we can get a contradiction. Therefore, x∗ = L and w(x) ≤ w(L)
for x ∈ [0, L], which implies that

Φ(x)
Φ(L)

≤ e−
q
dI

(1−C2dI
q2 )[ã(L)−ã(x)]

. (2.10)

Dividing (2.1) by Φ(L) and integrating the result in (0, L), we have∫ L

0
γ(x)

Φ(x)
Φ(L)

dx =
1
R0

∫ L

0
β(x)

Φ(x)
Φ(L)

dx. (2.11)

Letting y =
q[ã(L)−ã(x)]

dI
, i.e., x = ã−1[ã(L) − dIy

q ], we have

e−(1+
C1dI

q )y
≤

Φ(ã−1[ã(L) − dIy
q ])

Φ(L)
≤ e−(1−C2dI

q )y (2.12)

and ∫ q[ã(L)−ã(0)]
dI

0
γ(ã−1[ã(L) −

dIy
q

])
Φ(ã−1[ã(L) − dIy

q ])

ã′(ã−1[ã(L) − dIy
q ])Φ(L)

dy
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=
1
R0

∫ q[ã(L)−ã(0)]
dI

0
β(ã−1[ã(L) −

dIy
q

])
Φ(ã−1[ã(L) − dIy

q ])

ã′(ã−1[ã(L) − dIy
q ])Φ(L)

dy. (2.13)

Using (2.12), by Lebesgue dominant convergence theorem, then passing to the limit in (2.13), we get

lim
dI/q→0,dI/q2→0

R0 = lim
dI/q→0,dI/q2→0

∫ q[ã(L)−ã(0)]
dI

0 β(ã−1[ã(L) − dIy
q ])

Φ(ã−1[ã(L)− dI y
q ])

ã′(ã−1[ã(L)− dI y
q ])Φ(L)

dy∫ q[ã(L)−ã(0)]
dI

0 γ(ã−1[ã(L) − dIy
q ])

Φ(ã−1[ã(L)− dI y
q ])

ã′(ã−1[ã(L)− dI y
q ])Φ(L)

dy

=

∫ ∞
0

β(L)
ã′(L)e

−ydy∫ ∞
0

γ(L)
ã′(L)e

−ydy
=
β(L)
γ(L)

. (2.14)

�

We have the following corollary.
Corollary 2.1.1. The following statements hold.
(i) Given dI > 0, R0 → R̂0 as q→ 0;
(ii) Given dI > 0, R0 →

β(L)
γ(L) as q→ +∞;

(iii) Given q > 0, R0 →
β(L)
γ(L) as dI → 0;

(iv) Given q > 0, R0 →

∫ L
0 β(x)dx∫ L
0 γ(x)dx

as dI → +∞.

Proof. (i) For any fixed ϕ ∈ H1((0, L)), ϕ , 0, we have

lim
q→0

dI

∫ L

0
e

a(x)
dI ϕ2

xdx +
∫ L

0
γ(x)e

a(x)
dI ϕ2dx∫ L

0
β(x)e

a(x)
dI ϕ2dx

=
dI

∫ L

0
ϕ2

xdx +
∫ L

0
γ(x)ϕ2dx∫ L

0
β(x)ϕ2dx

.

Taking infϕ∈H1((0,L)),ϕ,0 both sides, we have 1
R0
→ 1

R̂0
as q→ 0.

(ii) and (iii) are the direct conclusions of Lemma 2.2.
(iv) By the definition of 1

R0
, for ϕ ≡ 1, we have

1
R0
≤

∫ L

0
γ(x)e

a(x)
dI dx∫ L

0
β(x)e

a(x)
dI dx

≤
maxx∈[0,L] γ(x)
minx∈[0,L] β(x)

,

which implies that 1
R0

is uniformly bounded for dI > 0, passing to a subsequence if necessary, it has a
finite limit 1

R̄0
as dI → ∞.

On the other hand, by the standard elliptic regularity and the Sobolev embedding theorem, Φ is
uniformly bounded for all dI ≥ 1. Dividing both sides of (2.1) by dI and letting dI → +∞, we have
Φxx → 0 for x ∈ (0, L) and Φx(0) → 0, Φx(L) → 0. Consequently, there exists a positive constant Φ̄

such that Φ(x)→ Φ̄ as dI → +∞. Integrating (2.1) by parts over (0, L), we can get

q
dI

∫ L

0
e−

a(x)
dI [dIΦx − a′(x)Φ(x)]dx +

∫ L

0
e−

a(x)
dI γ(x)Φ(x)dx
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=
1
R0

∫ L

0
e−

a(x)
dI β(x)Φ(x)dx.

Letting dI → +∞, we obtain R̄0 =

∫ L
0 β(x)dx∫ L
0 γ(x)dx

. �

Lemma 2.1.3. The following statements hold.
(i) If β(x) > γ(x) on [0, L], then R0 > 1 for any dI > 0 and q > minx∈[0,L] a′(x) > 0;
(i) If β(x) < γ(x) on [0, L], then R0 < 1 for any dI > 0 and q > minx∈[0,L] a′(x) > 0.

Proof. (i) If β(x) > γ(x) on [0, L], by the definition of 1
R0

, for ϕ ≡ 1, we have

1
R0
≤

∫ L

0
γ(x)e

a(x)
dI dx∫ L

0
β(x)e

a(x)
dI dx

< 1,

i.e., R0 > 1.
(ii) Subtracting both sides of (2.2) by β(x)ϕ, multiplying by e

a(x)
dI ϕ, we have

−dIϕxxe
a(x)
dI ϕ − a′(x)ϕxe

a(x)
dI ϕ + [γ(x) − β(x)]e

a(x)
dI ϕ2 = (

1
R0
− 1)β(x)e

a(x)
dI ϕ2.

Integrating it by parts over (0, L), using ϕx(0) = ϕx(L) = 0, we obtain

dI

∫ L

0
e

a(x)
dI (ϕx)2dx +

∫ L

0
[γ(x) − β(x)]e

a(x)
dI ϕ2dx = (

1
R0
− 1)

∫ L

0
β(x)e

a(x)
dI ϕ2dx.

Since β(x) < γ(x) on [0, L], the left side of the above equality is positive, and

(
1
R0
− 1)

∫ L

0
β(x)e

a(x)
dI ϕ2dx > 0,

which implies that R0 < 1. �

Proof. Theorem 1.1 is the direct results of Lemma 2.1.2, Corollary 2.1.1 and Lemma 2.1.3. �

Next we will consider the stability of DFE.
Lemma 2.1.4. The DFE is stable if R0 < 1, while it is unstable if R0 > 1.

Proof. 1. Assume contradictorily the DFE is unstable if R0 < 1. Then we can find (λ, ξ, η) which is a
solution of (2.3)–(2.4) subject to (2.5), with at least one of ξ and η is not identical zero, and<(λ) ≤ 0.
Suppose that η ≡ 0, then ξ . 0 on [0, L]. Using (2.3)–(2.4), we have{

−(dS ξx − a′(x)ξ)x = λξ, 0 < x < L,
dS ξx(0) − a′(0)ξ(0) = 0, dS ξx(L) − a′(L)ξ(L) = 0.

(2.15)

It is easy to see that λ is real and nonnegative, and therefore λ = 0. We find that ξ = ξ0e
q
dI

ã(x), where ξ0

is some constant to be determined later. By (1.2), we impose that
∫ L

0
[ξ(x) + η(x)]dx = 0, ξ0 = 0, i.e.,

ξ ≡ 0 on [0, L]. This is a contradiction. Then we conclude that η ≡ 0 on [0, L]. From (2.6), λ must be
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real and λ ≤ 0. Since λ1(dI , q) is the principal eigenvalue, then λ1(dI , q) ≤ λ ≤ 0. Lemma 2.1 implies
that R0 ≥ 1, which is a contradiction. Then we conclude that if (λ, ξ, η) is a solution of (2.3)–(2.4),
with at least one of ξ and η not identical zero on [0, L], then<(λ) > 0. This proves the linear stability
of the DFE.

2. Suppose that R0 > 1. Since (λ1(dI , q), φ1) is the principal eigen-pair of (2.6), (λ1(dI , q), e
a(x)
dI φ1)

satisfies {
[dI(φ1)x − a′(x)φ1]x + [β(x) − γ(x)]φ1 + λ1(dI , q)φ1 = 0, 0 < x < L,
dI(φ1)x − a′(x)φ1 = 0, x = 0, L.

By the result of Lemma 2.1.1, λ1(dI , q) < 0. On the other hand, (dS ξx − a′(x)ξ)x + λξ = [β(x) − γ(x)]e
a(x)
dI φ1, 0 < x < L,

dS ξx(0) − a′(0)ξ(0) = 0, dS ξx(L) − a′(L)ξ(L) = 0.
(2.16)

There exists a unique solution ξ1 of (2.16). And (2.5) becomes∫ L

0
[ξ1(x) + e

a(x)
dI φ1(x)]dx = 0,

which implies that (2.3)–(2.4) has a solution (λ1(dI , q), ξ1, e
a(x)
dI φ1(x)) satisfying λ1(dI , q) < 0 and

e
a(x)
dI φ1(x) > 0 in (0, L). Therefore, the DFE is linearly unstable.

�

Lemma 2.1.5. If R0 < 1, then (S , I)→ (Ŝ , 0) in C([0, L]) as t → +∞.

Proof. If R0 < 1, letting u(x, t) = Me−λ1(dI ,q)te
a(x)
dI φ1(x), then we have{

ut = [dIux − a′(x)u]x + [β(x) − γ(x)]u, 0 < x < L, t > 0,
dIux(0, t) − a′(0)u(0, t) = 0, dIux(L, t) − a′(L)u(L, t) = 0, t > 0.

Here (λ1(dI , q), φ1) is the principal eigen-pair, λ1(dI , q) > 0 and φ1(x) > 0 on [0, L]. M is large enough
such that I(x, 0) ≤ u(x, 0) for every x ∈ (0, L). Noticing that{

It = [dI Ix − a′(x)I]x + [β(x) − γ(x)]I, 0 < x < L, t > 0,
dIux(0, t) − a′(0)u(0, t) = 0, dIux(L, t) − a′(L)u(L, t) = 0, t > 0.

By the comparison principle, we have I(x, t) ≤ u(x, t) for every x ∈ (0, L) and t ≥ 0. Obviously,
u(x, t)→ 0 for every x ∈ (0, L) as t → ∞, which implies that I(x, t)→ 0 for every x ∈ (0, L) as t → ∞.

Now we will show that S → Ŝ as t → +∞. Since

S t = (dS S x − a′(x)S )x − β(x)
S I

S + I
+ γ(x)I, 0 < x < L, t > 0,

we have
|S t − (dS S x − a′(x)S )x| ≤ (‖β‖∞ + ‖γ‖∞)I ≤ Ce−λ1(dI ,q)t,

for 0 < x < L, t > 0. Noticing that
lim

t→+∞
e−λ1(dI ,q)t → 0
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as t → +∞, we know that there exists a positive function S̃ (x) such that

lim
t→+∞

S (x, t) = S̃ (x),
∫ L

0
S̃ (x)dx = N.

Therefore, limt→+∞ S (x, t) = S̃ (x) = Ŝ (x).
�

Proof. Theorem 1.2 is the direct results of Lemma 2.1.4 and Lemma 2.1.5.
�

2.2. Further properties of R0: β(x) − γ(x) changing sign once

In this section, we will study further properties of R0 in the case of β(x) − γ(x) changing sign
once.

Lemma 2.2.1. Assume that φ1 is a positive eigenfunction corresponding to R0 = 1, β(x) − γ(x)
changes sign once in (0, L). If assumption (C1)(or (C2)) holds, then (φ1)x > 0(or (φ1)x < 0) in (0, L).

Proof. If β(x) − γ(x) changes sign once in (0, L) and assumption (C1) holds, then there exists some
x0 ∈ (0, L) such that β(x) − γ(x) < 0 in (0, x0), β(x0) = γ(x0) and β(x) − γ(x) > 0 in (x0, L).

By the definition of φ1, we have{
−dI(φ1)xx − a′(x)(φ1)x = [β(x) − γ(x)]φ1, 0 < x < L,
(φ1)x(0) = (φ1)x(L) = 0.

(2.17)

Multiplying (2.17) by e
a(x)
dI , we obtain

−dI(e
a(x)
dI (φ1)x)x = [β(x) − γ(x)]e

a(x)
dI φ1.

Under the assumptions on β(x) and γ(x), we can obtain (e
a(x)
dI (φ1)x)x > 0 in (0, x0), (e

a(x)
dI (φ1)x)x = 0 at x0

and (e
a(x)
dI (φ1)x)x < 0 in (x0, L). That is, e

a(x)
dI (φ1)x is strictly increasing in (0, x0) and strictly decreasing

in (x0, L). Noticing that (φ1)x(0) = (φ1)x(L) = 0, we can get e
a(x)
dI (φ1)x > 0 in (0, L). So (φ1)x > 0 in

(0, L).
Similarly, if β(x) − γ(x) changes sign once in (0, L) and assumption (C2) holds, (φ1)x < 0 in (0, L).

We omit the details here. �

Now we prove two general lemmas below.
For any continuous function m(x) on [0, L], define

F(η) =

∫ L

0
ã′(x)eηã(x)m(x)dx, 0 ≤ η < ∞.

Lemma 2.2.2. Assume that m(x) ∈ C1([0, L]) and m(L) > 0(or m(L) < 0). Then there exists some
positive constant M such that F(η) > 0(or F(η) < 0) for any η > M.
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Proof. Since m′(x) and ã′(x) is uniformly bounded independent of η, we have

lim
η→+∞

ηe−ηã(L)F(η) = lim
η→+∞

∫ L

0
ηã′(x)e−η[ã(x)−ã(L)]m(x)dx

= m(L) − lim
η→+∞

(
m(0)eη[ã(0)−ã(L)] +

∫ L

0
m′(x)eη[ã(x)−ã(L)]dx

)
= m(L) − lim

η→+∞

(
m(0)eη[ã(0)−ã(L)] +

∫ L

0
m′(x)eã′(ξ)[x−L]dx

)
= m(L) > 0(< 0).

Therefore, there exists some positive constant M such that F(η) > 0(< 0) for η > M. �

Lemma 2.2.3. Assume that m(x) changes sign once in (0, L). Then
(i) If m(L) > 0 and

∫ L

0
ã′(x)m(x)dx > 0, then F(η) > 0 for any η > 0;

(ii) If m(L) < 0 and
∫ L

0
ã′(x)m(x)dx < 0, then F(η) < 0 for any η > 0;

(iii) If m(L) > 0 and
∫ L

0
ã′(x)m(x)dx < 0, then there exists a unique η1 ∈ (0,+∞) such that F(η1) = 0

and F′(η1) > 0;
(iv) If m(L) < 0 and

∫ L

0
ã′(x)m(x)dx > 0, then there exists a unique η1 ∈ (0,+∞) such that F(η1) = 0

and F′(η1) < 0.

Proof. We only prove part (i) and part (iii). The proofs of part (ii) and part (iv) are similar.
(i) If m(L) > 0 and m(x) changes sign once in (0, L), then there exists x1 ∈ (0, L) such that m(x) < 0

for x ∈ (0, x1) and m(x) > 0 for x ∈ (x1, L). Since ã(x) is increasing, we have m(x)[ã(x) − ã(x1)] > 0
for x ∈ (0, L) and x , x1. And

[e−ã(x1)ηF(η)]′ = e−ã(x1)η[F′(η) − ã(x1)F(η)]

= e−ã(x1)η
∫ L

0
[ã(x) − ã(x1)]m(x)ã′(x)eηã(x)dx > 0, (2.18)

which implies that e−ã(x1)ηF(η) is strictly increasing in η ∈ (0,∞), e−ã(x1)ηF(η) > F(0) =∫ L

0
ã′(x)m(x)dx > 0. Consequently, F(η) > 0 for any η > 0. Here the prime notation denotes dif-

ferentiation by η. Part (i) is proved.
(iii)

∫ L

0
ã′(x)m(x)dx < 0 means that F(0) < 0, while, by the result of Lemma 2.2.2, m(L) > 0 means

that F(η) > 0 for η > M with M large enough. By continuity, there at least exists a positive root for
F(η) = 0. But e−ã(x1)ηF(η) is increasing in η ∈ (0,∞), so F(η) = 0 only has a unique positive root η1.
By (2.18), we have F′(η1) > a(x1)F(η1) = 0. Part (iii) is proved.

�

2.3. The stability of DFE

In this section, we consider the stability of DFE. First we have
Lemma 2.3.1. Assume that β(x) − γ(x) changes sign once in (0, L) and

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx.

(i) If β(x) and γ(x) satisfy (C1), then R0 > 1 for dI > 0 and q > minx∈[0,L] a′(x) > 0;
(ii) If β(x) and γ(x) satisfy (C2), then for every dI > 0, there exists a unique q̄ = q̄(dI) such that

R0 > 1 for 0 < minx∈[0,L] a′(x) < q < q̄, R0 = 1 for q = q̄ and R0 < 1 for q > q̄.
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Proof. (i) Subtracting both sides of (2.2) by β(x)ϕ, multiplying by e
a(x)
dI

ϕ
, we have

[−dIϕxx − a′(x)ϕx]
e

a(x)
dI

ϕ
+ [γ(x) − β(x)]e

a(x)
dI = (

1
R0
− 1)β(x)e

a(x)
dI .

Integrating it by parts over (0, L), using ϕx(0) = ϕx(L) = 0, we obtain

dI

∫ L

0

e
a(x)
dI (ϕx)2

ϕ2 dx +

∫ L

0
[β(x) − γ(x)]e

a(x)
dI dx = (1 −

1
R0

)
∫ L

0
β(x)e

a(x)
dI dx.

Using Lemma 2.2.3(i) with m(x) =
[β(x)−γ(x)]

ã′(x) ,
∫ L

0
[β(x) − γ(x)]e

a(x)
dI dx > 0, and

(1 −
1
R0

)
∫ L

0
β(x)e

a(x)
dI ϕ2dx > 0,

which implies that R0 > 1.
(ii) Differentiating both sides of (2.2) with respect to q, denoting the differentiation with respect to

q by the dot notation, we obtain −dIϕ̇xx − ã′(x)ϕx − ã′(x)ϕ̇x + γ(x)ϕ̇ = − Ṙ0
R2

0
β(x)ϕ + 1

R0
β(x)ϕ̇, 0 < x < L,

ϕ̇x(0) = ϕ̇x(L) = 0.
(2.19)

Multiplying (2.19) by e
a(x)
dI ϕ and integrating the resulting equation in (0, L), we have

dI

∫ L

0
e

a(x)
dI ϕ̇xϕxdx −

∫ L

0
e

a(x)
dI ϕxϕã′(x)dx +

∫ L

0
γ(x)e

a(x)
dI ϕ̇ϕdx

= −
Ṙ0

R2
0

∫ L

0
β(x)e

a(x)
dI ϕ2dx +

1
R0

∫ L

0
β(x)e

a(x)
dI ϕ̇ϕdx. (2.20)

Multiplying (2.2) by e
a(x)
dI ϕ̇ and integrating the resulting equation in (0, L), we get

dI

∫ L

0
e

a(x)
dI ϕ̇xϕxdx +

∫ L

0
γ(x)e

a(x)
dI ϕ̇ϕdx =

1
R0

∫ L

0
β(x)e

a(x)
dI ϕ̇ϕdx. (2.21)

Subtracting (2.20) and (2.21), we obtain

∂R0

∂q
=
R2

0

∫ L

0
e

a(x)
dI ϕxϕã′(x)dx∫ L

0
β(x)e

a(x)
dI ϕ2dx

. (2.22)

By the result of Corollary 2.1.1, we know that

lim
q→∞
R0 =

β(L)
γ(L)

< 1.

Meanwhile, we have
lim
q→0
R0 = R̂0 > 1
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for any dI . Then there must exist at least some q̄ such that R0(q̄) = 1. By Lemma 2.1.1, for any q̄ > 0
satisfying R0(q̄) = 1, (φ1)x < 0 in (0, L). Recalling (2.22), we have

∂R0

∂q̄
=

∫ L

0
e

q̄
dI

ã(x)(φ1)xφ1dx∫ L

0
β(x)e

q̄
dI

ã(x)(φ1)2dx
< 0,

which implies that q̄ is the unique point satisfying R0(q̄) = 1.
�

The following lemma will tell us that there exists a function q = ρ1(dI) such that R0(dI , ρ1(dI)) = 1
and give the asymptotic profile of ρ1(dI) if

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx.

Lemma 2.3.2. Assume that β(x) − γ(x) changes sign once in (0, L),
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, and θ1

is the unique solution of ∫ L

0
[β(x) − γ(x)]eθ1ã(x)dx = 0.

Suppose that β(x) and γ(x) satisfy (C2). Then there exists a function ρ1 : (0,∞) → (0,∞) such that
R0(dI , ρ1(dI)) = 1. And ρ1 satisfies

lim
dI→0

ρ1(dI) = 0, lim
dI→∞

ρ1(dI)
dI

= θ1.

Proof. 1. Let’s first consider the limit of ρ1(dI )
dI

as dI → ∞. Assume that ρ1(dI )
dI
→ ∞ as dI → ∞. Under

the assumption (C2), by Lemma 2.1.4, we have

lim
ρ1(dI )→∞,

ρ1(dI )
dI
→∞

R0(dI , ρ1(dI)) =
β(L)
γ(L)

< 1,

which is a contradiction to R0(dI , ρ1(dI)) = 1.
Next, we will prove that ρ1(dI )

dI
→ θ1 as dI → ∞. Here θ1 is the unique positive root of

∫ L

0
[β(x) −

γ(x)]eθ1ã(x)dx = 0. By the discussions above, we know that ρ1(dI )
dI

is bounded for large dI . Passing to a
subsequence if necessary, we suppose that ρ1(dI )

dI
→ θ∗ for some nonnegative number θ∗ as dI → ∞. Let

ϕ̃ be the unique normalized eigenfunction of the eigenvalue R0(dI , ρ1(dI)) = 1. Then −dI(e
ρ1(dI )

dI
ã(x)
ϕ̃x)x + [γ(x) − β(x)]e

ρ1(dI )
dI

ã(x)
ϕ̃ = 0, 0 < x < L,

ϕ̃x(0) = ϕ̃x(L) = 0.
(2.23)

Integrating (2.23) in (0, L), we get∫ L

0
[β(x) − γ(x)]e

ρ1(dI )
dI

ã(x)
ϕ̃dx = 0. (2.24)

Recalling that, up to a subsequence if necessary, ϕ̃ → 1 in C([0, 1]) as dI → ∞. Letting dI → ∞ in
(2.24), we have ∫ L

0
[β(x) − γ(x)]eθ∗ã(x)dx = 0.
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By Lemma 2.2.3 with m(x) =
[β(x)−γ(x)]

ã′(x) , F(η) has a unique positive root, i.e., θ∗ = θ1.
2. Contradictorily, assume that q = ρ1(dI) → q∗ > 0 or q = ρ1(dI) → ∞ as dI → 0. By Lemma

2.1.4, we know that

lim
ρ1(dI )→q∗, ρ1(dI )

dI
→∞

R0(dI , ρ1(dI)) =
β(L)
γ(L)

< 1

or
lim

ρ1(dI )→∞,
ρ1(dI )

dI
→∞

R0(dI , ρ1(dI)) =
β(L)
γ(L)

< 1,

which is a contradiction to R0(dI , ρ1(dI)) = 1. Therefore, we have limdI→0 ρ1(dI) = 0.
�

To study the properties of R0 when
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, we need the following results which

were stated in [2]:
Proposition 2.3.1. Assume that β(x) − γ(x) changes sign in (0, L).
(i) R̂0 is a monotone decreasing function of dI with R̂0 → max{β(x)/γ(x) : x ∈ [0, L]} as dI → 0

and R̂0 →
∫ L

0
β(x)dx/

∫ L

0
γ(x)dx as dI → +∞;

(ii) R̂0 > 1 for all dI > 0 if
∫ L

0
β(x)dx ≥

∫ L

0
γ(x)dx;

(iii) There exists a threshold value d∗I ∈ (0,+∞) such that R̂0 > 1 for dI < d∗I and R̂0 < 1 for dI > d∗I
if

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx.

Lemma 2.3.3. Assume that β(x)−γ(x) changes sign once in (0, L) and
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx. Then

there exists some constant d∗I > 0 such that d∗I is the unique positive root of the equation R̂0(dI) = 1
and the following statements hold.

1. If β(x) and γ(x) satisfy (C1), then
(i) for dI ∈ (0, d∗I ], R0 > 1 for any q > minx∈[0,L] a′(x) > 0;
(ii) for dI ∈ (d∗I ,∞), there exists a unique q̄ = q̄(dI) such that R0 < 1 for any 0 < minx∈[0,L] a′(x) <

q < q̄ and R0 > 1 for any q > q̄.
2. If β(x) and γ(x) satisfy (C2), then
(iii) for dI ∈ (0, d∗I ], there exists a unique q̄ = q̄(dI) such that R0 > 1 for any 0 < minx∈[0,L] a′(x) <

q < q̄ and R0 < 1 for any q > q̄;
(iv) for dI ∈ (d∗I ,∞), R0 < 1 for any q > minx∈[0,L] a′(x) > 0.

Proof. (i) Noticing that β(x) and γ(x) satisfy (C1), similar to the proof of (ii) in Lemma 2.1.4, we can
prove that there exists a unique q̄ > 0 satisfying R0(q̄) = 1 and R′0(q̄) > 0. Hence, the conclusion is
true for dI ∈ (d∗I ,+∞).

For dI ∈ (0, d∗I ], by the results of Proposition 2.3.1, we have limq→0 R0 = R̂0 ≥ 1. By the results of
Corollary 2.1.1, limq→+∞ R0 = β(L)/γ(L) > 1 under the condition (C1). Hence R0 > 1 for any q > 0.

(ii) The proof of Lemma 2.3.3 under the condition (C2) is similar to that of Lemma 2.1.4, we omit
the details here.

�

Lemma 2.3.4. Assume that β(x) − γ(x) changes sign once in (0, L) and
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx.

Then there exists a constant d∗I > 0 such that d∗I is the unique positive root of the equation R̂0(dI) = 1
and the following statements hold.
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1. If β(x) and γ(x) satisfy (C1), then there exists a function ρ2 : (d∗I ,∞) → (0,∞) such that ρ2 is a
monotone increasing function of dI and R0(dI , ρ2(dI)) = 1. Let θ2 be the unique solution of∫ L

0
[β(x) − γ(x)]eθ2ã(x)dx = 0.

Then

lim
dI→d∗I +

ρ2(dI) = 0, lim
dI→∞

ρ2(dI)
dI

= θ2.

2. If β(x) and γ(x) satisfy (C2), then there exists a function ρ3 : (0, d∗I ) → (0,∞) such that
R0(dI , ρ3(dI)) = 1 and

lim
dI→0+

ρ3(dI) = 0, lim
dI→d∗I−

ρ3(dI)
dI

= 0.

Proof. 1. If we can prove that ρ′2(dI) > 0 for dI ∈ (d∗I ,∞), then ρ2(dI) is a monotone increasing function
of dI . Here the prime notation denotes differentiation by dI . Since R0(dI , ρ2(dI)) = 1, we can get

∂R0

∂q
ρ′2(dI) +

∂R0

∂dI
= 0. (2.25)

By Lemma 2.3.1, ∂R0
∂q > 0 for R0(dI , ρ2(dI)) = 1. So we need to prove that ∂R0

∂dI
< 0.

Differentiating both sides of (2.2) with respect to dI , denoting the differentiation with respect to dI

by the dot notation, we obtain −ϕxx − dIϕ̇xx − a′(x)ϕ̇x + γ(x)ϕ̇ = − Ṙ0
R2

0
β(x)ϕ + 1

R0
β(x)ϕ̇, 0 < x < L,

ϕ̇x(0) = ϕ̇x(L) = 0.
(2.26)

Multiplying (2.26) by e
a(x)
dI ϕ and integrating the resulting equation in (0, L), we obtain

−

∫ L

0
e

a(x)
dI ϕxxϕdx + dI

∫ L

0
e

a(x)
dI ϕ̇xϕxdx +

∫ L

0
γ(x)e

a(x)
dI ϕ̇ϕdx

= −
Ṙ0

R2
0

∫ L

0
β(x)e

a(x)
dI ϕ2dx +

1
R0

∫ L

0
β(x)e

a(x)
dI ϕ̇ϕdx. (2.27)

Multiplying (2.2) by e
a(x)
dI ϕ̇ and integrating the resulting equation in (0, L), we get

dI

∫ L

0
e

a(x)
dI ϕ̇xϕxdx +

∫ L

0
γ(x)e

a(x)
dI ϕ̇ϕdx =

1
R0

∫ L

0
β(x)e

a(x)
dI ϕ̇ϕdx. (2.28)

Subtracting (2.27) and (2.28), we have

∂R0

∂dI
=
R2

0

∫ L

0
e

a(x)
dI ϕxxϕdx∫ L

0
β(x)e

a(x)
dI ϕ2dx

= −
R2

0

∫ L

0
e

a(x)
dI (ϕx)2dx∫ L

0
β(x)e

a(x)
dI ϕ2dx

−
R2

0

∫ L

0
e

a(x)
dI ϕxϕa′(x)dx

dI

∫ L

0
β(x)e

a(x)
dI ϕ2dx

. (2.29)
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By Lemma 2.2.1, for any dI satisfying R0(dI , q) = 1, (φ1)x > 0, we can get

∂R0

∂dI
= −
R2

0

∫ L

0
e

a(x)
dI [(φ1)x]2dx∫ L

0
β(x)e

a(x)
dI φ2

1dx
−
R2

0

∫ L

0
e

a(x)
dI (φ1)xφ1a′(x)dx

dI

∫ L

0
β(x)e

a(x)
dI φ2

1dx
< 0. (2.30)

(2.25) and (2.30) imply that ρ′2(dI) > 0 for dI ∈ (d∗I ,∞).
The proof of limdI→∞

ρ2(dI )
dI

= θ2(θ2 is the unique solution of
∫ L

0
[β(x) − γ(x)]eθ2a(x)dx = 0) is similar

to the proof of Lemma 2.3.2, we omit the details here.
Now we will prove that limdI→d∗I + ρ2(dI) = 0. Assume that there exists q∗ such that q = ρ2(dI)→ q∗

as dI → d∗I +. Then there exists a positive function φ∗(x) ∈ C2([0, L]) such that{
−d∗Iφ

∗
xx − q∗ã′(x)φ∗x + γ(x)φ∗ = β(x)φ∗, 0 < x < L,

φ∗x(0) = φ∗x(L) = 0.
(2.31)

Noticing that d∗I is the unique positive root of R̂0 = 1 and the definition of R̂0 implies q = 0, there
exists a positive function φ̂(x) ∈ C2([0, L]) such that{

−d∗I φ̂xx + γ(x)φ̂ = β(x)φ̂, 0 < x < L,
φ̂x(0) = φ̂x(L) = 0.

(2.32)

Multiplying (2.31) by φ̂, (2.32) by φ∗, subtracting the two resulting equations, then integrating by parts
over (0, L), we get

q∗
∫ L

0
ã′(x)φ∗xφ̂dx = 0.

Since φ∗x is positive(by Lemma 2.2.1), we have q∗ = 0. Therefore, limdI→d∗I + ρ2(dI) = 0.
2. Using the arguments above, similar to the proof of Lemma 2.3.2, we can obtain the conclusions.

�

2.4. The endemic equilibrium

In this section, we will show that: If the disease-free equilibrium is unstable, then we can use
the bifurcation analysis and degree theory to study the existence of endemic equilibrium.

Letting S̃ = e
a(x)
dS S̄ , Ĩ = e

a(x)
dI Ī, we have

dS S̄ xx + a′(x)S̄ x − β(x) e
a(x)
dI S̄ Ī

e
a(x)
dS S̄ +e

a(x)
dI Ī

+ γ(x)e( 1
dI
− 1

dS
)a(x) Ī = 0, 0 < x < L,

dI Īxx + a′(x)Īx + β(x) e
a(x)
dS S̄ Ī

e
a(x)
dS S̄ +e

a(x)
dI Ī
− γ(x)Ī = 0, 0 < x < L,

S̄ x(0) = S̄ x(L) = 0, Īx(0) = Īx(L) = 0,∫ L

0
[e

a(x)
dS S̄ + e

a(x)
dI Ī]dx = N.

(2.33)

Since the structure of the solution set of (2.33) is the same as that of (1.3), we study (2.33) instead of
(1.3). Denote the unique disease-free equilibrium of (2.33) by ( ˆ̄S , 0) = ( N∫ L

0 e
a(x)
dS

, 0). We will consider a

branch of positive solutions of (2.33) bifurcating from the branch of semi-trivial solutions given by

ΓS := {(q, ( ˆ̄S , 0)) : 0 < min
x∈[0,L]

a′(x) < q < ∞}
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through using the local and global bifurcation theorems. For fixed dS , dI > 0, we take q as the
bifurcation parameter. Let

X = {u ∈ W2,p((0, L)) : ux(0) = ux(L) = 0}, Y = Lp((0, L))

for p > 1 and the set of positive solution of (2.33) to be

O = {(q, (S , I)) ∈ R+ × X × X : q > min
x∈[0,L]

a′(x) > 0, S > 0, I > 0, (q, (S , I)) satisfies (2.33)}.

Lemma 2.4.1 Assume that dS , dI > 0 and β(x) − γ(x) changes sign once in (0, L). Then
1. q∗ > 0 is a bifurcation point for the positive solutions of (2.33) from the semi-trivial branch ΓS if

and only if q∗ satisfies R0(dI , q∗) = 1. That is,
(I) If

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, then such q∗ exists uniquely for any dI > 0 if and only if assumption

(C2) holds;
(II)If

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, let d∗I be the unique positive root of R̂0 = 1, then such q∗ exists

uniquely for any dI > 0 if and only if either β(x) and γ(x) satisfy condition (C1) and d > d∗I or they
satisfy condition (C2) and 0 < d < d∗I .

2. There exits some δ > 0 such that all positive solutions of (2.33) near (q∗, ( ˆ̄S , 0))) ∈ R× X × X can
be parameterized as

Γ = {(q(τ), ( ˆ̄S + S̄ 1(τ), Ī1(τ))) : τ ∈ [0, δ)}, (2.34)

where (q(τ), ( ˆ̄S + S̄ 1(τ), I1(τ))) is a smooth curve with respect to τ and satisfies q(0) = q∗, Ŝ 1(0) =

I1(0) = 0.
3. There exists a connected component Σ of Ō satisfying Γ ⊆ Σ, and Σ possesses some properties as

follows.
Case (I) Assume that

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx and (C2) holds. Then there exists some endemic

equilibrium (Ŝ ∗, Î∗) of (2.33) when q = 0 such that for Σ, the projection of Σ to the q-axis satisfies
Pro jqΣ = [0, q∗] and the connected component Σ connects to (0, (Ŝ ∗, Î∗)).

Case (II) Assume that
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx. Then

(i) If (C1) holds and dI > d∗I , then (2.33) has no positive solution for 0 < minx∈[0,L] a′(x) < q < q∗
and for Σ, the projection of Σ to the q-axis satisfies Pro jqΣ = [q∗,∞).

(ii) If (C2) holds and 0 < dI < d∗I , then there exists some endemic equilibrium (Ŝ ∗, Î∗) of (2.33)
when q = 0 such that for Σ, the projection of Σ to the q-axis satisfies Pro jqΣ = [0, q∗] and the connected
component Σ connects to (0, (Ŝ ∗, Î∗)).

Proof. 1. Let F : R+ × X × X → Y × Y × R be the mapping as follows.

F(q, (S̄ , Ī)) =


dS S̄ xx + a′(x)S̄ x − β(x) e

a(x)
dI S̄ Ī

e
a(x)
dS S̄ +e

a(x)
dI Ī

+ γ(x)e( 1
dI
− 1

dS
)a(x) Ī

dI Īxx + a′(x)Īx + β(x) e
a(x)
dS S̄ Ī

e
a(x)
dS S̄ +e

a(x)
dI Ī
− γ(x)Ī∫ L

0
[e

a(x)
dS S̄ + e

a(x)
dI Ī]dx − N


.
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It is to verify that the pair (S̄ , Ī) is a solution of (2.33) if only if F(q, (S̄ , Ī)) = 0. Obviously,
F(q, ( ˆ̄S , 0)) = 0 for any q > minx∈[0,L] a′(x) > 0. The Fréchet derivatives of F at ( ˆ̄S , 0) are given
by

D(S̄ ,Ī)F(q, ( ˆ̄S , 0))
[

Φ

Ψ

]
=


dS Φxx + ã′(x)Φx + [γ(x) − β(x)]e( 1

dI
− 1

dS
)a(x)

Ψ

dIΨxx + ã′(x)Ψx + [β(x) − γ(x)]Ψ∫ L

0
[e

a(x)
dS Φ + e

a(x)
dI Ψ]dx

 ,

Dq,(S̄ ,Ī)F(q, ( ˆ̄S , 0))
[

Φ

Ψ

]
=


ã′(x)Φx + ( a(x)

dI
−

a(x)
dS

)[γ(x) − β(x)]e( 1
dI
− 1

dS
)a(x)

Ψ

ã′(x)Ψx∫ L

0
[a(x)

dS
e

a(x)
dS Φ +

a(x)
dI

e
a(x)
dI Ψ]dx

 ,

D(S̄ ,Ī),(S̄ ,Ī)F(q, ( ˆ̄S , 0))
[

Φ

Ψ

]2

=


2
ˆ̄S
β(x)e2( q

dI
−

q
dS

)ã(x)
Ψ2

− 2
ˆ̄S
β(x)e( 1

dI
− 1

dS
)a(x)

Ψ2

0

 .
If (Φ1,Ψ1) is a nontrivial solution of the following problem

dS Φxx + ã′(x)Φx + [γ(x) − β(x)]e( 1
dI
− 1

dS
)a(x)

Ψ = 0, 0 < x < L,
dIΨxx + ã′(x)Ψx + [β(x) − γ(x)]Ψ = 0, 0 < x < L,
Φx(0) = Φx(L) = Ψx(0) = Ψx(L) = 0,∫ L

0
[e

a(x)
dS Φ + e

a(x)
dI Ψ]dx = 0,

(2.35)

then (q∗, ( ˆ̄S , 0))) is degenerate solution of (2.33). The second equation of (2.33) has a positive solution
Ψ1 only if q = q∗ satisfies R0(dI , q∗) = 1. And Φ1 satisfies

dS (Φ1)xx + ã′(x)(Φ1)x + [γ(x) − β(x)]e( 1
dI
− 1

dS
)a(x)

Ψ1 = 0, 0 < x < L,
(Φ1)x(0) = (Φ1)x(L) = 0,∫ L

0
[e

a(x)
dS Φ1 + e

a(x)
dI Ψ1]dx = 0,

(2.36)

Obviously, Φ1 is uniquely determined by Ψ1 in (2.36). Therefore, q = q∗ is the only possible bifurcation
point along ΓS where positive solutions of (2.33) bifurcates and such q∗ exists if and only if R0 = 1. We
can obtain the necessary and sufficient conditions for the occurrence of bifurcation by Lemma 2.3.1
and Lemma 2.3.3.

2. At (q, (S̄ , Ī)) = (q∗, ( ˆ̄S , 0)), the kernel

Ker(D(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))) = span{(Φ1,Ψ1)},

where (Φ1,Ψ1) is the solution of (2.35) with q = q∗. Up to a multiple of constant, (Φ1,Ψ1) is unique.
And the range of D(S̄ ,Ī)F(q∗, ( ˆ̄S , 0)) is given by

Range(D(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))) = {( f , g, k) ∈ Y × Y × RN :
∫ L

0
gΨ1e

a(x)
dI dx = 0},

and it is co-dimension one. By the result of Lemma 2.1.1, (Ψ1)x keeps one sign in (0, L) and∫ L

0
(Ψ1)xΨ1e

a(x)
dI dx , 0, which implies that

Dq,(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))[(Φ1,Ψ1)] < Range(Dq,(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))).
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Therefore, using the local bifurcation theorem in [20] to F(q, (S̄ , Ī)) at (q∗, ( ˆ̄S , 0)), we know that the set
of positive solutions of (2.33) is a smooth curve

Γ = {(q(τ), ( ˆ̄S + S̄ 1(τ), Ī1(τ))) : τ ∈ [0, δ)}

satisfying q(0) = q∗, S̄ 1(τ) = τ ˆ̄S + o(|τ|) and I1(τ) = o(|τ|). Similar to the procedure in [21] and [22],
(also see [23]), we can compute

q′ = −
< l,D(S̄ ,Ī),(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))[Φ1,Ψ1]2 >

2 < l,Dq,(S̄ ,Ī)F(q∗, ( ˆ̄S , 0))[(Φ1,Ψ1)]
=

∫ L

0
β(x)e( 1

dI
− 1

dS
)a(x)

φ3
1dx

ˆ̄S
∫ L

0
e

a(x)
dI φ1(φ1)xdx

.

Here l is the linear functional on Y × Y × R defined by < l, [ f , g, k] >=
∫ L

0
gΨ1e

a(x)
dI dx.

3. By the global bifurcation theorem in [23] and [24], we can get the existence of the connected
component Σ. Moreover, Σ is either unbounded, or connects to another (q, ( ˆ̄S , 0)), or Σ connects to
another point on the boundary of O.

Case (I) Assume that
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx and (C2) holds. By Lemma 2.2.1 and the proof of part

2, we see that there exits a unique q∗ such that the local bifurcation occurs at (q∗, ( ˆ̄S , 0)) and q′(0) < 0,
which means that the bifurcation direction is subcritical. Therefore, there exists some small δ > 0 such
that (2.33) has a positive solution if q∗−δ < q < q∗. By Lemma 2.1.4, R0 > 1 if q∗−δ < q < q∗ for δ > 0
small enough. By Lemma 2.1.5, (2.33) has no positive solution if R0 < 1, which implies that (2.33) has
no positive solution if q > q∗. Consequently, the projection of Σ to the q-axis Pro jqΣ ⊂ [0, q∗]. And Σ

must be bounded in Ō because the positive solutions are uniformly bounded in L∞ for 0 ≤ q ≤ q∗. So
the third option must happen here. Hence Σ must connect to (0, (S̄ ∗, Ī∗)), so 0 ∈ Pro jqΣ. Here (S̄ ∗, Ī∗)
is the unique endemic equilibrium of (2.33) when q = 0.

Case (II) Assume that
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx.

(i) If (C1) holds and dI > d∗I , by Lemma 2.2.1 and the bifurcation analysis above, there exists unique
bifurcation point q∗ satisfying q′(0) > 0, which means the bifurcation direction is supercritical. Then
there exists some small δ > 0 such that (2.33) has a positive solution if q∗ < q < q∗ + δ. By Lemma
2.3.3, R0 > 1 if q∗ < q < q∗ + δ for some δ > 0 small enough. By Lemma 2.1.5, (2.33) has no positive
solution if R0 < 1, which implies that (2.33) has no positive solution if 0 < q < q∗. So the first option
must happen here. If there exists some finite q∗ > q∗ such that Pro jqΣ = [q∗, q∗), then it contradicts to
the fact that all positive solutions are uniformly bounded in L∞ for q = q∗. Consequently, the projection
of Σ to the q-axis Pro jqΣ = [q∗,∞).

(ii) If (C2) holds and 0 < dI < d∗I , the proof is similar to that of Case (I), we omit the details here.
�

We will give the Leray-Schauder degree argument.
Lemma 2.4.2. For any ε > 0, there exist two constants C and C̄ which depend on dI , ε, ‖β‖∞, ‖γ‖∞

and N such that if R0 , 1, then for any positive solution of (2.33),

C ≤ S̄ (x), Ī(x) ≤ C̄ for any x ∈ [0, L] (2.37)

for any ε ≤ dS ≤
1
ε

and 0 ≤ q ≤ 1
ε
.
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Proof.
∫ L

0
[e

a(x)
dS S̄ + e

a(x)
dI Ī]dx = N means that S̄ (x) and Ī(x) are bounded in L1 space. Using the standard

theory of elliptic equation, it is easy to see that S̄ and Ī have the upper bound C̄ depending on dI , ε,
‖β‖∞, ‖γ‖∞ and N.

Therefore, we just need to prove that S̄ and Ī have lower bounds.
Suppose contradictorily that there exist a sequence of {(dS ,i, qi)}∞i=1 satisfies ε ≤ dS ,i ≤

1
ε

and 0 ≤
qi ≤

1
ε

and R0 , 1, and {(S̄ i(x), Īi(x))}∞i=1 are the corresponding positive solutions of (2.33) satisfying

max
x∈[0,L]

Ii(x)→ 0, as i→ ∞,

and (S̄ i(x), Īi(x)) satisfies

dS ,i(S̄ i)xx + qiã′(x)(S̄ i)x − β(x) e
qi
dI

ã(x)
S̄ i Īi

e
qi

dS ,i
ã(x)

S̄ i+e
qi
dI

ã(x)
Īi

+ γ(x)e( qi
dI
−

qi
dS ,i

)ã(x) Īi = 0, 0 < x < L,

dI(Īi)xx + qiã′(x)(Īi)x + β(x) e
qi

dS ,i
ã(x)

S̄ i Īi

e
qi

dS ,i
ã(x)

S̄ i+e
qi
dI

ã(x)
Īi

− γ(x)Īi = 0, 0 < x < L,

(S̄ i)x(0) = (S̄ i)x(L) = 0, (Īi)x(0) = (Īi)x(L) = 0,∫ L

0
[e

qi
dS ,i

ã(x)S̄ i + e
qi
dI

ã(x) Īi]dx = N.

(2.38)

Up to a subsequence, we assume that dS ,i → dS > 0 and qi → q ≥ 0. Note that ‖Īi‖∞ are uniformly
bounded. Letting ˜̄Ii = Īi

‖Īi‖∞
, we have dI( ˜̄Ii)xx + qiã′(x)( ˜̄Ii)x + β(x) ˜̄Ii

e
qi

dS ,i
ã(x)

S̄ i

e
qi

dS ,i
ã(x)

S̄ i+e
qi
dI

ã(x)
Īi

− γ(x) ˜̄Ii = 0, 0 < x < L,

( ˜̄Ii)x(0) = ( ˜̄Ii)x(L) = 0.

By standard regularity and Sobolev embedding theorem in [25], up to a subsequence, Īi → 0 in
C1([0, L]) and there exists I∗ > 0 such that ˜̄Ii → I∗ in C1([0, L]) and ‖I∗‖∞ = 1. Since Īi → 0 in
C1([0, L]) and

∫ L

0
[e

qi
dS ,i

ã(x)S̄ i + e
qi
dI

ã(x) Īi]dx = N implies that S̄ i is bounded in L1([0, L]), using the equa-

tion of S̄ i, we get S̄ i →
ˆ̄S > 0 in C1([0, L]). Letting i→ ∞ in the equation of Īi, we have{

dI I∗xx + a′(x)I∗x + [β(x) − γ(x)]I∗ = 0, 0 < x < L,
I∗x(0) = I∗x(L) = 0.

(2.39)

Since I∗ > 0, (2.39) means that 0 is the principle eigenvalue, which is a contradiction of the assumption
of R0 , 1 for any dI > 0 and 0 ≤ q ≤ 1

ε
. Therefore, there must exist some positive constant C such that

maxx∈[0,L] I(x) ≥ C. Similar to the argument in [26], by Harnack inequality, we have

max
x∈[0,L]

Ī(x) ≤ C∗ min
x∈[0,L]

Ī(x)

for some constant C∗ depending on dI , ε, ‖β‖∞, ‖γ‖∞ and N, which implies that Ī(x) has uniformly
positive lower bound.

Now we prove that S (x) has a uniform positive lower bound. Let S (x0) = minx∈[0,L] S (x). Using the
minimum principle in [27], we have

β(x0)
e

q
dI

ã(x0)S̄ (x0)

e
q

dS
ã(x0)S̄ (x0) + e

q
dI

ã(x0) Ī(x0)
− γ(x0)e( q

dI
−

q
dS

)ã(x0)
≥ 0.
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Consequently,

β(x0)
S̄ (x0)
Ī(x0)

≥ β(x0)
e

q
dI

ã(x0)S̄ (x0)

e
q

dS
ã(x0)S̄ (x0) + e

q
dI

ã(x0) Ī(x0)
≥ γ(x0)e( q

dI
−

q
dS

)ã(x0)

and

S̄ (x0) ≥
γ(x0)e( q

dI
−

q
dS

)ã(x0) Ī(x0)
β(x0)

Ī(x0) ≥ C min
x∈[0,L]

Ī(x),

which completes the proof. �

Lemma 2.4.3. Assume that β(x) − γ(x) changes sign once in (0, L) and one of the following condi-
tions holds:

(i) dI > 0, q > minx∈[0,L] a′(x) > 0,
∫ L

0
β(x)dx >

∫ L

0
γ(x)dx and (C2) holds;

(ii) 0 < dI < d∗I , q > minx∈[0,L] a′(x) > 0,
∫ L

0
β(x)dx <

∫ L

0
γ(x)dx and (C1) holds.

Then (2.33) has at least an endemic equilibrium.

Proof. Note that we can extend the ranges of f and g properly for any nonnegative pair ( f , g) ∈
C([0, L]) × C([0, L]) such that the function f g

e
τa(x)
dS f +e

τa(x)
dI g

is Lipschitz continuous for f , g ∈ R and

τ ∈ [0, 1]. Therefore we define the following compact operator family from C([0, L]) × C([0, L])
to C([0, L]) ×C([0, L]):

(τdS + (1 − τ)dI)uxx + τa′(x)ux + γ(x)e( τ
dI
− τ

dS
)a(x)v

= β(x) e
f g τa(x)

dI

f e
τa(x)
dS +ge

τa(x)
dI

, 0 < x < L,

dIvxx + τa′(x)vx − γ(x)v = −β(x) f ge
τa(x)
dS

f e
τa(x)
dS +ge

τa(x)
dI

, 0 < x < L,

ux(0) = ux(L) = 0, vx(0) = vx(L) = 0,∫ L

0
[e

τa(x)
τdS +(1−τ)dI u + e

τa(x)
dI v]dx = N.

(2.40)

Since the operator dI
d2

dx2 + τa′(x) d
dx − γ(x) is invertible, then for any τ ∈ [0, 1] and ( f , g) ∈ C([0, L]) ×

C([0, L]), by the second equation of (2.40), v is uniquely determined. Substituting this v into the first
and last equations of (2.40), u is also uniquely determined. Therefore, we can define Gτ( f , g) := (u, v).

Under conditions (i) and (ii), R0,τ > 1 for any τ ∈ [0, 1]. Here

R0,τ = sup
ϕ∈H1((0,L)),ϕ,0


∫ L

0
β(x)e

τa(x)
dI ϕ2dx

dI

∫ L

0
β(x)e

τa(x)
dI ϕ2

xdx +
∫ L

0
γ(x)e

τa(x)
dI ϕ2dx

 .
By the result of Lemma 2.4.2, for any τ ∈ [0, 1], there exist two positive constant C̄ and C depending

on dS , dI , q, ‖β‖∞, ‖γ‖∞ and N such that C ≤ u, v ≤ C̄ for any solution of (2.40).
Let

D = {(u, v) ∈ C([0, L]) ×C([0, L]) :
C
2
≤ u, v ≤ 2C̄}.

Then (S̄ , Ī) , G(τ, (S̄ , Ī)) for any τ ∈ [0, 1] and (S̄ , Ī) ∈ ∂D, which implies that Leray-Schauder
degree deg(I − G(τ, (·, ·)),D, 0) is well defined, and it is independent of τ. Here I is the identity map.
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Moreover, (S̄ , Ī) is a solution of (2.33) if and only if (S̄ , Ī) satisfies (S̄ , Ī) = G(1, (S̄ , Ī)). If (S̄ , Ī) ∈ D
and (I − G(0, (·, ·)))(S̄ , Ī) = 0, then (S̄ , Ī) is a positive solution of

dI S̄ xx − β(x) S̄ Ī
S̄ +Ī + γ(x)Ī = 0, 0 < x < L,

dI Īxx + β(x) S̄ Ī
S̄ +Ī − γ(x)Ī = 0, 0 < x < L,

S̄ x(0) = S̄ x(L) = 0, Īx(0) = Īx(L) = 0,∫ L

0
[S̄ + Ī]dx = N.

(2.41)

By the result of [2], (2.41) has a unique positive solution (S ∗, I∗) satisfying S ∗ + I∗ = N
L if the basic

reproduction number R̂0 > 1. Linearizing (2.41) around (S ∗, I∗), we get
−dIΦxx + β(x) I2

∗

(S ∗+I∗)2 Φ + β(x) S 2
∗

(S ∗+I∗)2 Ψ − γ(x)Ψ = µΦ, 0 < x < L,

−dIΨxx − β(x) S 2
∗

(S ∗+I∗)2 Ψ + γ(x)Ψ − β(x) I2
∗

(S ∗+I∗)2 Φ = µΨ, 0 < x < L,
Φx(0) = Φx(L) = 0, Ψx(0) = Ψx(L) = 0,∫ L

0
[Φ + Ψ]dx = N.

(2.42)

Adding the first two equations of (2.42) and using the boundary condition Φx = Ψx = 0, x = 0, L, we
get

− dI(Φxx + Ψxx) = µ(Φ + Ψ), x ∈ (0, L),
(Φ + Ψ)x = 0, x = 0, L.

Solving it, we have Φ = −Ψ. Substituting this relation into the first equation of (2.42), we obtain

−dIΦxx +

(
2Lβ(x)

N
I∗ + γ(x) − β(x)

)
Φ = µΦ.

Since I∗ is a positive solution of (2.40), we know that −dI
d2

dx2 + 2L
N β(x)I∗ + γ(x) − β(x) is a positive

operator, so µ > 0. Hence the unique positive solution (S ∗, I∗) is linearly stable. Using Leray-Schauder
degree index (see Theorem 1.2.8.1 in [28]), we obtain

deg(I − G(0, (·, ·)),D, 0) = 1.

Consequently, using the homotopy invariance of Leray-Schauder degree, we have

deg(I − G(1, (·, ·)),D, 0) = deg(I − G(0, (·, ·)),D, 0) = 1

for (dI , q) ∈ ΩU
hh∪Ω

U1
lh . By the properties of degree,G(1, (·, ·) has a fixed point in D if (dI , q) ∈ ΩU

hh∪Ω
U1
lh ,

which implies that (2.33) has at least one positive solution.
�

2.5. Properties of R0 when β(x) − γ(x) changes sign twice

In this section, we consider the properties of R0 when β(x) − γ(x) changes sign twice. We also
need the results on the positive roots of F(η) which is defined as

F(η) =

∫ L

0
ã′(x)m(x)eηã(x)dx, 0 ≤ η < ∞,
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for any given continuous function m(x) on [0, L].
Lemma 2.5.1. Assume that there exists 0 < x1 < x2 < L such that m(x1) = m(x2) = 0, i.e., m(x)

change sign twice for x ∈ [0, L]. Then
(i) If m(L) < 0 and

∫ L

0
ã′(x)m(x)dx > 0, then F(η) has a unique positive root η1 for η ∈ (0,+∞)

satisfying F′(η1) < 0;
(ii) If m(L) > 0 and

∫ L

0
ã′(x)m(x)dx < 0, then F(η) has a unique positive root η1 for η ∈ (0,+∞)

satisfying F′(η1) > 0;
(iii) If m(L) > 0 and

∫ L

0
ã′(x)m(x)dx > 0, then F(η) has at most two positive roots for η ∈ (0,+∞);

(iv) If m(L) < 0 and
∫ L

0
ã′(x)m(x)dx < 0, then F(η) has at most two positive roots for η ∈ (0,+∞).

Proof. We only prove part (i) and part (iii). The proofs of part (ii) and part (iv) are similar.
(i). Let G1(η) := e−ã(x2)η[ã(x1)F(η)−F′(η)] and the prime notation denote differentiation with respect

to η. Since m(L) < 0 and m(x) changes sign twice, it is easy to see that m(x) < 0 for x ∈ (0, x1)∪ (x2, L)
and m(x) > 0 for x ∈ (x1, x2). Note that ã(x) is increasing. We know that

m(x)[ã(x) − ã(x1)][ã(x) − ã(x2)] < 0

for x ∈ (0, L) and x , xi(i = 1, 2). As a result, for any η > 0, we have

G′1(η) = −e−ã(x2)η (F′′(η) − [ã(x1) + ã(x2)]F′(η) + ã(x1)ã(x2)F(η)
)

= −

∫ L

0
eη[ã(x)−ã(x2)]ã′(x)m(x)[ã(x) − ã(x1)][ã(x) − ã(x2)]dx > 0,

which implies that G′1(η) is a strictly increasing function for η ∈ (0,∞). By Lemma 2.2.2 and m(L) < 0,
F(η) < 0 for η > M if M is large enough. But F(0) =

∫ L

0
ã′(x)m(x)dx > 0, so there exits at least a

positive root of F(η). Let η1 be the smallest positive one, then F′(η1) ≤ 0.
If F′(η1) = 0, since

F′′(η) − [ã(x1) + ã(x2)]F′(η) + ã(x1)ã(x2)F(η)

=

∫ L

0
eη[ã(x)−ã(x2)]ã′(x)m(x)[ã(x) − ã(x1)][ã(x) − ã(x2)]dx < 0,

then
F′′(η1) − [ã(x1) + ã(x2)]F′(η1) + ã(x1)ã(x2)F(η1) = F′′(η1) < 0.

That is, η1 is a strict local maximum value point of F(η), which is a contradiction. So F′(η1) < 0. Now
we will prove that η1 is the unique positive root of F(η). Assume contradictorily that η2 > η1 is the
first number such that F(η2) = 0. Since F(η1) = 0 and F′(η1) < 0, then F(η) < 0 in (η1, η2), which
implies that F′(η2) ≥ 0. By the definition of G1(η), and noticing that F(η1) = F(η2) = 0, we have
G1(η1) = −ã(x1)eã(x2)η1 F′(η1) > 0 and G1(η2) = −ã(x1)eã(x2)η2 F′(η2) ≤ 0, which is a contradiction to the
fact that G1(η) is strictly increasing.

(iii) By Lemma 2.2.2 and m(L) > 0, we see that F(η) > 0 for η > M if M is large enough. Then
either F(η) > 0 for any η > 0 or F(η) has positive roots in (0,∞). Let G2(η) = e−ã(x2)η[F′(η)−ã(x1)F(η)]
and η1 be the first positive root of F(η) = 0. Similar to the proof of part (i), it is easy to prove that
G2(η) is strictly monotone increasing in (0,+∞) and F′(η1) ≤ 0. We discuss in two cases.
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Case 1: F′(η1) = 0. We will show that η1 is the unique positive root of F(η). Since

F′′(η) − [ã(x1) + ã(x2)]F′(η) + ã(x1)ã(x2)F(η)

=

∫ L

0
eη[ã(x)−ã(x2)]ã′(x)m(x)[ã(x) − ã(x1)][ã(x) − ã(x2)]dx > 0

then F′′(η1) − [ã(x1) + ã(x2)]F′(η1) + ã(x1)ã(x2)F(η1) = F′′(η1) > 0. That is, F(η) attains a strict local
minimum at η1. Now we will prove that η1 is the unique positive root of F(η). Assume contradictorily
that η2 > η1 is the first number such that F(η2) = 0. Since η1 is a strict local minimum value point, we
have F(η) > 0 in (η1, η2), which implies that F′(η2) ≤ 0. By the definition of G2(η), and noticing that
F(η1) = F(η2) = 0, we have G2(η1) = 0 and G2(η2) = ea(x2)η2 F′(η2) ≤ 0, which is a contradiction to the
fact that G2(η) is strictly increasing. So F(η) only has a unique positive root η1 in this case.

Case 2. F′(η1) < 0. Since F(η1) = 0, so F(η) < 0 if η > η1 and η close to η1 enough. By Lemma
3.2 and m(L) > 0, F(η) > 0 for η > M if M is large enough. Therefore, there exists at least a root of
F(η) = 0 in (η1,∞). Assume that η2 is the first root of F(η) = 0 in (η1,∞). Then F(η) < 0 in (η1, η2)
and F′(η2) ≥ 0. If F′(η2) = 0, then

F′′(η2) = F′′(η2) − [ã(x1) + ã(x2)]F′(η2) + ã(x1)ã(x2)F(η2)

=

∫ L

0
eη2[ã(x)−ã(x2)]ã′(x)m(x)[ã(x) − ã(x1)][ã(x) − ã(x2)]dx > 0.

And F(η) attains a strict local minimum at η2, which is a contradiction. Hence F′(η2) > 0.
We need to show that there is no positive root of F(η) =) for η > η2. Assume contradictorily

that there exists η3 > η2 such that F(η3) = 0 and F(η) > 0 in (η2, η3). Then F′(η3) < 0. And
G2(η2) = eã(x2)η2 F′(η2) > 0 and G2(η3) = ea(x2)η3 F′(η3) < 0, which contradicts the fact that G2(η) is
strictly increasing. Therefore we have proved that there exists a unique η2 > η1 such that F(η2) = 0
and F′(η2) > 0.

�

Now we give the proof of Theorem 1.6 below.

Proof. We only prove part(i) and (iii). The proofs of (ii) and (iv) are similar.
Part (i): Similar to the proofs of Lemma 2.3.2 and 2.3.3, it is easy to prove that there exists some

positive constant Λ which is independent of dI and q and for each dI > Λ, there exists some q̃ = q̃(dI)
which satisfies R0(dI , q̃) = 1 and q̃

dI
→ η0 as dI → ∞. Here η0 is the unique positive root of F(η) = 0.

Next, we will prove that
∂R0

∂q
(dI , q̃) < 0

for any q̃ satisfying R0(dI , q̃) = 1 if dI is large enough.
Let ϕ̃ be the unique normalized eigenfunction of the eigenvalue R0(dI , q̃) = 1, i.e., max[0,L] ϕ̃ = 1

and  −dI(e
q̃
dI

ã(x)
ϕ̃x)x + [γ(x) − β(x)]e

q̃
dI

ã(x)
ϕ̃ = 0, 0 < x < L,

ϕ̃x(0) = ϕ̃x(L) = 0.
(2.43)
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By (2.22), we have

∂R0

∂q
(dI , q̃) =

R2
0

∫ L

0
e

q̃
dI

ã(x)
ϕ̃xϕ̃ã′(x)dx∫ L

0
β(x)e

q̃
dI

ã(x)
ϕ̃2dx

. (2.44)

Multiplying (2.43) by
∫ x

0
ϕ̃(s)ds and integrating it over (0, L), we get

dI

∫ L

0
e

q̃
dI

ã(x)
ϕ̃xϕ̃ã′(x)dx +

∫ L

0
[γ(x) − β(x)]e

q̃
dI

ã(x)
ϕ̃(

∫ x

0
ϕ̃(s)ds)dx = 0.

Substitute it into (2.44), we obtain

dI
∂R0

∂q
(dI , q̃) =

∫ L

0
[β(x) − γ(x)]e

q̃
dI

ã(x)
ϕ̃(

∫ x

0
ϕ̃(s)ds)dx∫ L

0
β(x)e

q̃
dI

ã(x)
ϕ̃2dx

.

As dI → ∞, q̃
dI
→ η0 and ϕ̃→ 1, we have

lim
dI→∞

dI
∂R0

∂q
(dI , q̃) =

∫ L

0
x[β(x) − γ(x)]eη0ã(x)dx∫ L

0
β(x)eη0ã(x)dx

.

By Lemma 2.5.1(i), ∫ L

0
x[β(x) − γ(x)]eη0ã(x)dx = F′(η0) < 0.

Hence, there exists some constant Q > 0(dependent on dI) such that R0 > 1 for 0 < q < Q and R0 < 1
for q > Q.

Part (iii). According to the results of Lemma 2.5.1(iii), we divide into three cases to prove it.
Case 1. F(η) > 0 for any η > 0. It is easy to show that there exists some positive constant Λ

independent of dI and q such that R0 > 1 for every dI > Λ and any q > 0.
Case 2. F(η) has a unique positive root η1 for η ∈ (0,+∞) and F′(η1) = 0. Similar to the proof of

part (i), we can prove that there exists some positive constant Λ independent of dI and q such that for
every dI > Λ, there exists some q̃ = q̃(dI) such that R0(dI , q̃) = 1 and q̃

dI
→ η0 as dI → ∞, where η0

is the unique positive root of F(η) = 0. Moreover, ∂R0
∂q (dI , q̃) = 0. Therefore there exists some positive

constant Λ which is independent of dI and q such that for every dI > Λ, there exists a constant Q > 0
dependent on dI satisfying R0 = 1 for q = Q and R0 > 1 for q ∈ (0,Q) ∪ (Q,∞).

Case 3. F(η) has two positive roots η1 and η2(η1 < η2) for η ∈ (0,+∞) and F′(η1) < 0, F′(η2) > 0.
Similar to the discussion of part (i), for each dI > 0, there exist q̃1 = q̃1(dI) and q̃2 = q̃2(dI) such that
R0(dI , q̃i) = 1(i = 1, 2) and q̃1

dI
→ η1, q̃2

dI
→ η2 as dI → ∞. And

∂R0

∂q
(dI , q̃1) < 0,

∂R0

∂q
(dI , q̃2) > 0.

Consequently, there exist two constants Q2 > Q1 > 0 which depend on dI and satisfy that R0 > 1 for
q ∈ (0,Q1) ∪ (Q2,∞), R0 < 1 for q ∈ (Q1,Q2).

�
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3. Results

In this section, we will summarize the main results of this paper.
Theorem 1.1 gives some properties for the basic reproduction number R0 and Theorem 1.2 says

that R0 = 1 is the watershed for judging whether the DFE is stable or not. Theorem 1.3 and Theorem
1.4 deal with the stable and unstable regions of the DFE. Theorem 1.5 establishes the existence of EE.
Theorem 1.6 considers the results on (1.1) when β(x) − γ(x) changes sign twice in (0, L).

4. Discussion

We only establish the results on (1.1) under the assumption of a′(x) > 0 in this paper. However, it is
much more difficult to obtain the results on (1.1) if there exists some x0 ∈ (0, L) satisfying a′(x0) = 0.

5. Conclusion

Biologically, the influence of advection is from the upstream to the downstream, small diffusion or
large advection tends to force the individuals to concentrate at the downstream end. Therefore, the
disease persists for arbitrary advection rate if the habitat is a high-risk domain and the downstream end
is a high-risk site. While the advection transports the individuals to a favorable location and thus it can
help eliminate the disease if the downstream end is a low-risk site. In conclusion, when advection is
strong or the diffusion is small, the disease will be eliminated if the downstream end is a low–risk site,
while the disease will persist if the downstream end is a high–risk site.
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