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Abstract: In this study, a novel asymmetric image encryption scheme based on the 

Rivest-Shamir-Adleman (RSA) algorithm and Arnold transformation is proposed. First, the 

asymmetric public key RSA algorithm is used to generate the initial values for a quantum logistic 

map. Second, the parameters of the Arnold map are calculated. Then, Arnold scrambling operation is 

performed on the plain image to achieve the rough hiding of image information. Third, each row and 

each column of the image are taken as different units respectively and then exclusive-OR (XOR) 

diffusion is applied. Finally, the generated keystream is used to perform an end-to-start cyclic 

modulo diffusion operation for all rows and columns to produce the final cipher image. In addition, 

the keystream is related to the plain image, which can enhance the ability to resist chosen plaintext 

attack and known plaintext attack. The test results also show that the proposed encryption algorithm 

has strong plain sensitivity and key sensitivity. 

Keywords: Quantum logistic map; Arnold map; image encryption; end-to-start cyclic modulo 

diffusion 

 

1. Introduction 

With rapid development of the Internet, information technology, and digital communications, the 

status of multimedia data transmission is increasing in modern society. Image is an important 

information carrier in human life to display or describe directly the objective phenomena. In recent 

years, owing to leakages of digital image information, serious consequences have occurred. Thus, 

image encryption protection has become particularly important. Traditional encryption algorithms 
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store and encrypt data as a one-dimensional string. As to images, due to the large amount of data, the 

calculation of encryption schemes is complicated, and the high correlation between the adjacent 

pixels requires a sufficient long keystream for a high security level. Therefore, a new encryption 

algorithm needs to be proposed for the secure communication of images. 

A chaotic system refers to a deterministic system with seemingly random irregular movements, 

and its behavior is uncertain, unrepeatable, and unpredictable. Chaotic system is sensitive to initial 

conditions, and exhibits pseudorandom, ergodicity, and aperiodicity [1]. The combination of an 

image encryption algorithm and a chaotic system can effectively improve security and anti-cracking 

ability. Therefore, chaotic systems have been widely used in image encryption algorithms since they 

were proposed. For example, in [2], an algorithm with one-time-keys was proposed to resist 

brute-force attack. Albahrani et al. [3] designed a block method based image encryption with a cross 

map as a kind of chaotic map. To improve the robustness against common attacks, Yu et al. [4] 

proposed a new image encryption algorithm based on a short-time fractional Fourier transform (FrFT) 

and a hyperchaotic system. The diffusion operation and feedback system were designed to improve 

the anti-interference ability. Moreover, the use of the hyperchaotic system increases the key space 

and enhances sensitivity to all keys. In [5], a color image encryption algorithm was proposed by 

using a hyperchaotic system, of which can compress and encrypt an image according to the 

requirements of the reconstructed image quality. To hide efficiently the pixel distribution for the 

plain image, DNA based method was employed in [6] with the help of DNA random encoding rules. 

A generalized chaotic map and operation of fractional-order edge dection were applied into image 

encryption algorithm [7]. Besides of time domain encryption, Borujeni and Eshghi [8] suggested a 

hybrid domain based image encryption scheme including both frequency and time domains. Hybrid 

chaotic systems [9,10] were also be designed and applied for color image encryption Liu et al. [11] 

designed a new pathological image encryption scheme to ensure the secure transmission of 

pathological images in a telemedicine system. To effectively resist the plaintext attacks, Feng et al. [12] 

combined the discrete logarithm with a memristor-based chaotic system and proposed an image 

reconstruction encryption algorithm. The finite multiplication group used in this study has up to 128 

generators, which can expand the key space and enhance the ability of the image encryption 

algorithm in resisting plaintext attacks. To compress multiple images into a small amount of data for 

the convenience of image transmission, Huang et al. [13] presented a nonlinear optical image 

encryption scheme that can encrypt images in both spatial and frequency domains, in which phase 

truncation and bitwise exclusive-OR (XOR) operation improve the robustness of the multi-image 

encryption scheme. In [14], a simple and efficient image encryption scheme was designed based on 

multiple piece-wise linear chaotic map systems. Rotational permutation operations and block 

diffusion operations were implemented to reach good encryption effect. Wang and Gao [15] studied 

the application of matrix semi-tensor product theory in a new chaotic image encryption with a 

Boolean network, scrambling, and diffusion. A new method of global pixel diffusion [16] by 

chaotic sequences was proposed for image encryption with a high security. In [17], a 

three-dimensional bit-level based image encryption algorithm was presented. Both the Rubik’s cube 

method and the bit-level encryption principle were taken to realize scrambling operation. Some other 

image encryption algorithms [18–20] also show good performance by different hyeer-chaotic system, 

coupled map, and 2D chaotic map. 

Arnold transformation is a common image pixel scrambling algorithm used to reduce the high 

correlation between pixels. Based on Arnold transformation and singular value decomposition (SVD) 
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in the fractional Hartley domain, a new phase image encryption scheme was proposed in [21]. Liu et 

al. [22] suggested a color image encryption algorithm using Arnold transformation and color mixing 

operation in the discrete cosine transform (DCT) domain. Arnold transformation was used to 

scramble the pixels of the three channels in color image, and the DCT was used to change the pixel 

values in the entire spatial distribution. Sui and Gao [23] proposed a color image encryption scheme 

using Gyrator transform and Arnold transformation, which has two security levels to protect image 

content. In the encryption and decryption processes, the rotation angle of the gyrator, number of 

iterations in Arnold transformation, parameters of the chaotic mapping, and generated accompanying 

phase function were all treated as the secret keys, thereby improving the security of the system. In [24], 

an optical color image encryption technique based on Arnold transformation and interferometry was 

proposed. Color image was decomposed into three channels R, G, B, and then each channel was 

encrypted into two random phase masks using Arnold transformation and interference method. 

Chen [25] used Arnold transformation to perturb the matrix pixels by encoding a single parameter, to 

form an image similar to color noise and to reduce the key space for storage and transmission 

applications. Wang et al. [26] suggested a fast algorithm for image encryption by parallel computing, 

in which parallelism of diffusion is designed to implement fast operation. 

According to the classification of cryptosystems, cryptography can be divided into symmetric 

cryptography [27–30] and asymmetric (public key) cryptography [31–36]. In an asymmetric 

encryption algorithm, different keys are used for encrypting and decrypting, thereby realizing the 

nonlinearity of the algorithm, higher security, and convenient implementation of digital signature and 

verification. In [33], a scalable method of asymmetric image compression and encryption was 

proposed based on a discrete wavelet transform (DWT) and nonlinear operations in the cylindrical 

diffraction domain. DWT reduces the amount of data and is more conducive to data transmission. To 

enhance an encryption scheme with a larger key space than traditional cryptographic systems in the 

FT and FrFT fields, Ren et al. [37] designed an asymmetric image encryption scheme using a 

phase-truncated discrete multi-parameter FrFT. After a pixel scrambling and a random-phase mask, 

the asymmetric ciphertext with stable white noise was obtained through phase truncation. 

In order to reduce the redundancy of image transmission, compression was also considered in 

image encryption. For example, Chai et al. [38] proposed a visually meaningful cipher image 

encryption by using technology of compressive sensing. Chaotic system, kronecker product, and 

singular value decomposition were all combined to produce the measurement matrix. In [39], a new 

chaotic color image encryption scheme was presented by multi-embedding strategy and compressive 

sensing. Each channel of R, G, and B were compressed to obtain measurements. Although there are 

many new image encryption algorithms have been published, some of them still have defects, for 

example, (i) The keystream is generated only dependent on the secret keys; (ⅱ) It is hard to ensure 

the secure management of keys. In view of this, this paper combines quantum logistic map, Arnold 

transformation, and diffusion technology together with RSA to design an asymmetric encryption 

scheme, aiming to carry out high security, strong anti-attack and more suitable for network 

transmission. The innovations of this paper are: 1) Extract the text information of the plain image to 

be plain message. 2) Generate the cipher message by RSA and produce the initial conditions for 

quantum system by a new mathematical model. 3) Update the initial conditions by the text 

information of the plain image to enhance the plaintext dependence. 4) Build an end-to-start cyclic 

modulo diffusion operation.  

The rest of this article is organized as follows. Section 2 briefly introduces the public key RSA 
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algorithm, Arnold transformation, and quantum logistic map. Section 3 gives the image encryption 

and decryption processes. Section 4 displays some experimental results. Section 5 discusses the 

various analytical tests of the encryption results. Section 6 presents the conclusions of this study. 

2. Preparatory knowledges 

2.1. RSA encryption algorithm 

The public key RSA cryptosystem was proposed in 1978 by Rivest, Shamir, and Adleman. RSA 

encryption algorithm is an asymmetric encryption structure, which can complete the decryption 

operation without directly passing the keys. This method ensures security and avoids the risk of keys 

being cracked, which typically happens when keys are transmitted directly. In the whole encryption 

process, the key and algorithm are independently separated. Therefore, the key can be distributed 

more effectively. The specific description of the RSA algorithm is as follows: 

Step 1: Randomly and secretly choose two large prime numbers p  and q . 

Step 2: Compute n p q  , ( ) ( 1)( 1)n p q    ，where ( )n  is the Euler function of n . 

Step 3: Randomly select e  in range 1 ( )e n  , satisfying gcd( , ( )) 1e n  , where e  and

( )n  are prime numbers. 

Step 4: Calculate the decryption key d , where 1mod( ( ))e d n  . 

Step 5: Open integers n  and e , and keep d  in secret. 

Step 6: Encrypt plaintext m  to be ciphertext c  by modec m n . 

Step 7: Decrypt ciphertext c  to be plaintext m  by moddm c n . 

2.2. Quantum logistic map 

Logistic map is a classical mathematical model used to study the behaviors of complex systems, 

such as dynamic systems, fractals, and chaos. In physics, if a physical quantity has the smallest 

indivisible basic unit, then this physical quantity is quantized, and the smallest unit is called a 

quantum. The quantum state is introduced into the chaotic system to form a quantum logistic map. 

The coupling of the system and harmonic oscillator path will produce a quantum logistic map with 

quantum correction. Akhshani et al. [40] applied quantum logistic map for image encryption, and its 

quantum logistic map is defined as, 

2
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where   and r  represent the dissipation parameter and adjustable parameter, respectively, and 
*

nx , *

nz  are the conjugate complex numbers of nx  and nz , respectively. When one sets 3.99r   

and 6  , the quantum logistic map shows higher chaotic characteristics [40]. So, in this study, 

3.99r   and 7   are set with all initial parameters be real numbers. As pointed by [40]: classical 

nonlinear chaotic systems are famous because of their exponential sensitivity to each initial condition. 

However, the linearity of quantum mechanics not only shows such sensitivity to each initial 

condition, and also the Heisenberg uncertainty principle (HUP) prevents us from talking about initial 

conditions in quantum mechanics. Therefore, for this interesting property, quantum logistic map can 
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also be used in cryptography, for example image encryption. In view of these good characteristics of 

quantum logistic map, many image encryption algorithms [41–43] based on it have been proposed. 

2.3. Arnold transformation 

Arnold transformation is a scrambling operation that can randomly change the pixel position for 

an image, which is also called a cat map. By rearranging the pixels in a digital image matrix, the 

originally meaningful image will become a meaningless image. Arnold transformation is defined as 

follows: 

1
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By replacing the matrix of above Arnold transformation, a generalized Arnold transformation 

can be obtained, which is defined as 
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where ,a b  and N  are positive integers, ( , )n nx y  are the coordinates of the pixel in the original 

image, and 1 1( , )n nx y   are the coordinate positions after transformation. Arnold transformation is a 

reversible mapping, and its corresponding inverse transformation is defined as 
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Arnold transformation is reversible, and it is easy to be implemented. Therefore, this study combines 

Arnold transformation with the quantum logistic system and other technologies to design a new 

image encryption scheme. 

3. The proposed image encryption scheme 

3.1. Image encryption process 

This study integrates the quantum logistic map, the RSA algorithm, the Arnold transformation, 

and the diffusion operation to realize a new asymmetric image encryption scheme. The framework of 

the proposed image encryption scheme is shown in Figure 1. The detail encryption steps are as 

follows: 

Step 1: Select large prime numbers p  and q , and calculate public key e  and private key d . 

Step 2: Read plain image P  with size M N . 

Step 3: Extract the text information of the image, i.e.,
1 1

( , )
M N

i j
R P i j

 
  , for public 

information. 

Step 4: Select three plain parameters ( 1,2,3)ia i   and encrypt them with the public key to 
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obtain the public parameters mode

i ic a n . 

Step 5: Calculate the initial values:
0 1 1 1 1 2 1( ) / ( )x c a k c k a   ,

0 2 2 1 2 2 2( ) / ( )y c a k c k a   ,

0 3 3 1 3 2 3( ) / ( )z c a k c k a   , where 
1 23, 5k k  . 

Step 6: Update the initial values:
0 0 1mod( ,1)x x R   , 

0 0 1mod( ,1)y y R   ,
0 0 1mod( ,1)z z R   , 

where 
1 ( 1) / (255 1)R R M N     . 

Step 7: The updated initial values are substituted into quantum logistic map. After discarding 

the first 500 values of the sequence, the chaotic sequences , ,x y z  are obtained. 

Step 8: Process the sequences as, 

14

14

14

mod( ( (1: ) 10 ),256)

mod( ( (1: ) 10 ),256)

mod( ( 10 ),256)

X fix x M

Y fix y N

Z fix z

  


 


 

                      (5) 

Step 9: Perform Arnold scrambling operation on the plain image P  to obtain the scrambled 

image A . The values of ma，mb ， and mc  in the Arnold map are calculated as 

mod( ( ), ) 1ma sum X mc                               (6) 

mod( ( ), ) 1mb sum Y mc                               (7) 

where mod( ( ), ) 1mc sum Z R  . 

Step 10: For the image A , perform XOR diffusion operation by row for it to obtain image B  

as,  

i i iB A X                                     (8) 

where 1,2, ,i M . 

Step 11: Perform diffusion under modulo operation by row again to obtain image C  as,  

1mod( ,256)i i i iC B Z C                              (9) 

where 1,2, ,i M .
0C is a constant. 

Step 12: Connect the last row of image C  with the first row of C  and perform diffusion 

under modulo operation for rows again to obtain image D  as, 

1 1 1mod( ,256)MD C Z C                              (10) 

1mod( ,256)i i i iD C Z D                               (11) 

where 2,3, ,i M . 

Step 13: The column direction is similar to the row direction. For image D , take the column as 

a unit and perform the XOR diffusion operation on the corresponding component of each column 

and Y  to obtain image E  as, 

j j jE D Y                                   (12) 

where 1,2, ,j N . 

Step 14: Perform modulo diffusion to each column to obtain image F  as, 

1mod( ,256)j j j jF E Z F                              (13) 
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where 1,2, ,j N . 
0F  is a constant. 

Step 15: Connect the last column of the image F  with the first column of F  and perform 

modulo diffusion in the column direction again to obtain the cipher image G  as, 

1 1 1mod( ,256)NG F Z F                               (14) 

1mod( ,256)j j j jG F Z G                               (15) 

where 2,3, ,j N . 

 

Figure 1. Flow of the proposed image encryption algorithm. 

3.2. Image decryption process 

The receiver has a cipher image G , public parameters 1 2 3, , , ,c c c r  , and R , and private key

( , )d n . Figure 2 is the decryption flowchart of the proposed algorithm. The specific steps of 

decryption are as follows: 

Step 1: Use the private key ( , )d n  to decrypt the public parameters modd

i ia c n . 

Step 2: Read the cipher image G  with size M N . 

Step 3: Calculate the initial value 0 1 1 1 1( ) / (3 5 )x c a c a   , 0 2 2 2 2( ) / (3 5 )y c a c a   ,

0 3 3 3 3( ) / (3 5 )z c a c a   . 

Step 4: Update the initial values 0 0 1mod( ,1)x x R   , 0 0 1mod( ,1)y y R   , 0 0 1mod( ,1)z z R   , 

where 1 ( 1) / (255 1)R R M N     . 

Step 5: By iterating quantum logistic map, and discarding the first 500 values of the sequence, 

obtain the chaotic sequence , ,x y z   . 

Step 6: Use Eq (5) to process the sequence and get , ,X Y Z   . 

Step 7: Calculate the two control parameters ma  and mb  of the Arnold map using Eqs (6) 

and (7). 
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Step 8: Use images G  and Z   to perform the inverse modulo operation of the corresponding 

columns to derive image F   as, 

1mod( ,256)j j j jF G G Z
                              (16) 

1 1 1mod( ,256)NF G Z F                               (17) 

where 2,3, ,j N . 

Step 9: Use image F   to perform the inverse modulo operation of the corresponding columns 

to derive image E  as, 

1mod( ,256)j j j jE F F Z
                              (18) 

where 1,2, ,j N . 
0F  is a constant. 

Step 10: Use images E  and Y   to perform the XOR diffusion operation of the 

corresponding column to derive image D  as, 

j j jD E Y                                    (19) 

where 1,2, ,j N
 
 

Step 11:
 
The row direction is similar to the column direction. Use Z   to perform the inverse 

modulo diffusion operation in the row direction, and then use X   to perform the XOR diffusion of 

the corresponding rows to derive image A . 

Step 12: According to the parameter values ma  and mb , use Eq (4) to perform the inverse 

operation of the Arnold map and obtain the plain image P . 

 

Figure 2. Flow of the proposed image decryption algorithm. 

4. Experimental tests 

Grayscale and color images (some from the USC-SIPI database) are taken for testing. Windows 
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10 operating system is used with an AMD Ryzen 7 1700 8-core processor and 8 GB memory, and the 

simulations are performed on MATLAB R2017b. Table 1 shows the values of each parameter in our 

test. Among them, 1 2 3, , , ,a a a q p  and d  are the private keys, as well as 1 2, , , ,e r c c  and 3c  are 

the public keys. Figures 3 and 4 present the test images and their corresponding cipher images, 

respectively. So, no useful information about the plain image can be seen from these cipher images. 

Figure 5 shows the corresponding correct decrypted images. So, the proposed cryptographic scheme 

can be applied to both grayscale and color images. Table 2 shows the time required to encrypt images 

of different sizes. As we see that our scheme can be implemented by a fast way. 

Table 1. Values of parameters in our experiment. 

Parameter Value Parameter Value 

q  1733 2a  15 

p  1697 3a  20 

e  163 r  3.99 

1a  7   7 

d
 

2,757,259 1c  2,855,219 

2c
 164,340 3c  128,682 

                 

(a)                              (b)                               (c) 

                 

(d)                                (e)                                (f) 

Figure 3. Plain images in grayscale: (a) Goldhill, (b) Sailboat, (c) Peppers; Cipher 

images in color: (d) Sun, (e) Baboon, (f) Peppers. 
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(a)                               (b)                               (c) 

                 

(d)                              (e)                               (f) 

Figure 4. Cipher images for grayscale: (a) Goldhill, (b) Sailboat, (c) Peppers; Cipher 

images for color: (d) Sun, (e) Baboon, (f) Peppers. 

                  

(a)                               (b)                                (c) 

                  

(d)                                (e)                                (f) 

Figure 5. Correct decrypted images for grayscale: (a) Goldhill, (b) Sailboat, (c) Peppers; 

Correct decrypted images for color: (d) Sun, (e) Baboon, (f) Peppers. 
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Table 2. Encryption time for different sizes (s). 

Image size Initial value generation Confusion-diffusion encryption Total time 

256 × 256 0.014931 0.337695 0.394836 

512 × 512 0.059334 0.699589 0.735226 

5. Security analysis 

5.1. Histogram analysis 

Histogram analysis [44,45] shows how pixels are distributed in an image by plotting the number 

of observations for each brightness level. The frequency distribution of pixel values implies the 

statistical correlation between the plain images and the cipher images. A good image encryption 

system should have the ability to hide correlations; that is, the frequency distribution of the cipher on 

the pixel value is uniform, and the attacker cannot infer the plain information from it. To verify the 

uniformity of the pixel distribution of the proposed encryption algorithm, Figure 6 (a)–(c) and (d)–(f) 

show the histograms of the grayscale and encrypted images, respectively. Figure 7 is the histogram 

of the Baboon color image with three channels. To further evaluate the uniformity of the histogram, 

the statistical chi-square test was also performed, which is defined as, 

2255
2

0

( )L L

L L

o e

e





                                       (20) 

where L  is the intensity level, Lo  and Le  are the observation reference and expected reference of 

the L  gray level in the cipher image, respectively. The results of evaluating the uniformity of cipher 

images based on the chi-square values are shown in Table 3. Table 4 shows the chi-square 

comparison results. The smaller the chi-square value, the more uniform the pixel distribution and the 

higher the security. The histogram of the cipher image is evenly distributed, and the chi-square value 

is much smaller than the value of the plain image, which effectively improves resistivity against 

statistical attacks. 

Table 3. Chi-square values of test images. 

Image Plain-image Cipher-image Results 

Goldhill 161621.1816 279.9395 Pass 

Sailboat 179772.6055 240.8535 Pass 

Peppers (Grayscale) 138836.1738 287.2168 Pass 

Sun 319180.5827 273.1582 Pass 

Baboon 101863.4615 266.8301 Pass 

Peppers (Color) 340999.4414 246.8555 Pass 
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(a)                           (b)                           (c) 

      

(d)                            (e)                          (f) 

Figure 6. Histogram of the plain images: (a) Goldhill, (b) Sailboat, (c) Peppers. 

Histogram of the cipher images: (d) Goldhill, (e) Sailboat, (f) Peppers. 

         

(a)                           (b)                            (c) 

         

(d)                           (e)                             (f) 

Figure 7. Histogram of the plain image Baboon: (a) R, (b) G, (c) B; Histogram of the 

cipher image Baboon: (d) R, (e) G, (f) B. 
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Table 4. Chi-square comparisons. 

Reference 
Baboon 

R G B 

This Paper 227.05 214.01 254.08 

Ref. [46] 287.56 227.89 259.78 

       

(a)                              (b)                             (c) 

       

(d)                               (e)                              (f) 

Figure 8. Correlation of the plain image sailboat: (a) horizontal direction, (b) vertical 

direction, (c) diagonal direction. Correlation of the cipher image sailboat: (d) horizontal 

direction, (e) vertical direction, (f) diagonal direction. 

5.2. Correlation coefficient 

Another measurement of statistical analyses is correlation [47–50]. For a natural digital image, 

there is a strong correlation between adjacent pixels in the horizontal, vertical, and diagonal 

directions. The lower correlation of adjacent pixels in a cipher image, the better performance of an 

encryption algorithm. A good cryptographic scheme should eliminate this correlation in a 

quantitative way to ensure security. The correlation coefficient is defined as 

cov( , )

( ) ( )
x y

x y
R

D x D y
 

 


 
                                  (21) 
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where 
x yR    represents the correlation coefficient, x  and y  are the gray values of two adjacent 

pixels, and N  is the total logarithm. Figure 8 shows the correlation of three directions of the 

grayscale image sailboat. Tables 5 and 6 show the correlation coefficient values of the test images. 

Table 7 shows the correlation coefficient comparisons of Baboon. The data in the tables show that 

the correlation coefficient of the plain images is close to 1, which means that the correlation 

coefficient between adjacent pixels is very strong. By using the proposed scheme, the values become 

close to 0, which means that our scheme can eliminate the strong correlation. 

Table 5. Correlation coefficient tests for grayscale images. 

Image 
Plain-image Cipher-image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Goldhill 0.9752 0.9708 0.9524 -0.0151 0.0209 0.0078 

Sailboat 0.9721 0.9743 0.9602 0.0154 0.0106 0.0075 

Peppers 0.9833 0.9796 0.9684 0.0139 0.0054 0.0153 

Table 6. Correlation coefficients tests for color images. 

Image Direction 
Plain-image Cipher-image 

R G B R G B 

Sun 

Horizontal 0.9561 0.9504 0.9584 0.0049 -0.0041 0.0025 

Vertical 0.9553 0.9473 0.9569 0.0018 0.0102 0.0110 

Diagonal 0.9338 0.9258 0.9359 -0.0181 0.0029 -0.0087 

Peppers 

Horizontal 0.9660 0.9811 0.9661 0.0092 -0.0054 0.0103 

Vertical 0.9656 0.9822 0.9669 0.0059 0.0140 0.0118 

Diagonal 0.9584 0.9630 0.9489 -0.0093 0.0030 0.0092 

 

Baboon 

Horizontal 0.8620 0.7559 0.8838 -0.0033 0.0228 -0.0047 

Vertical 0.9230 0.8658 0.9104 0.0046 0.0063 -0.0045 

Diagonal 0.8536 0.7359 0.8428 0.0140 0.0050 0.0104 

5.3. Information encryption 

In information theory, entropy is an important index to measure the degree of randomness of a 

message. Ideally, each pixel of an 8-bit cipher image has a theory entropy value of 8. The higher the 
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information entropy value, the more uniform of gray value distribution and the more random of an 

image. The calculation formula of information entropy is, 

20
( ) ( ) log ( )

N

i ii
H x p x p x


                            (25) 

where ( )ip x  is the probability of the occurrence of 
ix , and N  is the total number of 

ix . Tables 8 

and 9 show the information entropy tests for different images. These results tell us that the 

information entropy values of the cipher image are very close to 8, indicating that the encryption 

scheme has strong randomness. 

Table 7. Comparison of correlation coefficients of cipher image Peppers. 

Method Direction 
Cipher-image 

R G B 

 

Ref. [49] 

Horizontal -0.0174 -0.0048 0.0086 

Vertical -0.0021 -0.0020 0.0727 

Diagonal 0.0182 -0.0096 -0.0073 

 

Ours 

Horizontal 0.0092 -0.0054 0.0103 

Vertical 0.0059 0.0140 0.0118 

Diagonal -0.0093 0.0030 0.0092 

Table 8. Entropy test of grayscale images. 

Image Goldhill Sailboat Peppers 

Plain-image 7.47778 7.48452 7.57148 

Cipher-image 7.99923 7.99934 7.99921 

Table 9. Entropy test of color images. 

Image 
Baboon 

Peppers 

Peppers 

R G B R G B 

Plain-image 7.70667 7.47443 7.75222 7.338832 7.496255 7.05831 

Cipher-image 7.999377 7.99941 7.99927 7.99934 7.99924 7.99932 

5.4. Local information encryption 

Usually, an image has high data redundancy; therefore, its pixels have a high correlation with 

neighboring pixels. For a secure cipher image, the pixel values should be evenly distributed to 

achieve high randomness and high security. Local information entropy is another qualitative criterion 

for evaluating the randomness of an image, which is defined as, 
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                               (26) 

where 
iS  represents the optional k  groups of pixels in the image, and TB  represents the number 

of pixels in 
iS . The local information entropy values of the grayscale and color images are tested 

and shown in Tables 10 and 11, respectively. Based on these results, it can be seen that the local 

information entropy of the cipher image has surpassed 7.95, indicating that the distribution of pixel 

values inside the image is very uniform and random. 

Table 10. Local information entropy of grayscale images. 

Image Goldhill Sailboat Peppers 

Plain-local 6.48739 6.47318 6.55437 

Cipher-local 7.95391 7.95486 7.95317 

Table 11. Local information entropy of color images. 

Image 
Baboon 

Peppers 

Peppers 

R G B R G B 

Plain-local 6.75219 7.04211 7.00261 6.35622 6.45065 6.30729 

Cipher-local 7.95617 7.95727 7.95342 

 

7.95686 7.95521 7.95294 

5.5. Differential attack analysis 

The ideal property of a good encryption method should be sensitive to any small change in the 

plain image. That is, when the plain image has a small change in any pixel, the difference of the 

cipher image is analyzed to evaluate the diffusion performance of the encryption algorithm and 

should have the ability to resist differential attacks. The number of pixel change rate (NPCR) and 

unified average changing intensity (UACI) are two standards used for testing. The formulas are, 

1 2

1 2

0 ( , ) ( , )
( , )

1 ( , ) ( , )

if C i j C i j
D i j

if C i j C i j


 



，  

，  
                        (27) 

1 2
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M N

i j

D i j
NPCR C C

M N 

 


                       (28) 

1 2
1 2

1 1

| ( , ) ( , ) |
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255

M N

i j

C i j C i j
UACI C C

M N 


 

 
                (29) 

where 
1C  is one cipher image, 

2C  is another cipher image with one pixel in the same plain image 

changes. The theory values for NPCR and UACI are 99.6093 and 33.4635% respectively. Tables 12 

and 13 present the average values of NPCR and UACI for grayscale and color images, respectively. 
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Table 14 lists the comparisons by testing image Lena. All these test results show that the proposed 

asymmetric image encryption scheme has the ability to resist differential attacks. 

Table 12. NPCR and UACI for grayscale images. 

Image NPCR UACI 

Goldhill 99.6124 33.4522 

Sailboat 99.6129 33.4302 

Peppers 99.6086 33.4398 

Table 13. NPCR and UACI for color images. 

Image 
Sun Baboon 

Peppers 

Peppers 

R G B R G B R G B 

NPCR 99.6134 99.6107 99.5951 99.6089 99.5975 99.6017 99.6010 99.6126 99.6092 

UACI 33.4784 33.4314 33.4631 33.4457 33.4622 33.4176 33.4744 33.4806 33.4139 

Table 14. Comparisons of NPCR and UACI for image Lena. 

Method NPCR UACI Image size 

Ours 99.6136 33.4643 512 × 512 

Ours 99.6078 33.3123 256 × 256 

Ref. [44] 99.7904 33.4970 512 × 512 

Ref. [45] 99.6033 28.6797 512 × 512 

Ref. [46] 99.5911 33.4208 256 × 256 

5.6. Key sensitivity analysis 

An extremely high key sensitivity can guarantee the security of an encryption system against the 

brute force attacks. To evaluate the sensitivity of keys, the 512 512  image Sailboat is used as an 

example for testing. Figure 9 shows the key sensitivity analysis results. Moreover, Figure 9(d) shows 

that even if a small key change occurs, the cipher image experiences a big difference. These test 

results show that only the correct key can decrypt the image, and the image encryption algorithm is 

highly sensitive to the keys and has the ability to resist brute force attacks. 

5.7. Comparisons 

The asymmetric image encryption algorithm proposed in this paper is suitable for grayscale and 

color images. Taking color image as an example, Table 15 shows the information entropy 

comparisons with other image encryption algorithms. The values in the table express that the 

information entropy result of the proposed scheme in this paper is closer to 8, indicating that the gray 

value distribution in the proposed asymmetric encryption scheme is more uniform and random than 
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that of other algorithms. 

          

(a)                  (b)                     (c)                     (d) 

         

(e)                     (f)                       (g) 

Figure 9. Key sensitivity test: (a) plain image; (b) cipher image; (c) cipher image with 

key 14

0 10x  ; (d) difference of (b)-(c); (e) decrypted image using the keys of (c) for (b); 

(f) decrypted image using the keys of (b) for (c); (g) decrypted image with the correct key. 

Table 15. Comparison among different schemes. 

Image size Method 
Information entropy 

R G B 

Peppers 

512 × 512 Ours 7.9993 7.9992 7.9993 

256 × 256 Ours 7.9987 7.9984 7.9987 

256 × 256 Ref. [6] 7.9979 7.9979 7.9979 

512 × 512 Ref. [14] 7.9991 7.9992 7.9993 

256 × 256 Ref. [47] 7.9986 7.9987 7.9985 

256 × 256 Ref. [48] 7.9911 7.9912 7.9915 

256 × 256 Ref. [49] 7.9962 7.9929 7.9725 

Baboon 

512 × 512 Ours 7.9994 7.9994 7.9993 

256 × 256 Ours 7.9981 7.9982 7.9979 

256 × 256 Ref. [48] 7.9914 7.9915 7.9915 

256 × 256 Ref. [49] 7.9923 7.9803 7.9986 
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5.8. Conclusion and perspectives 

This study employed a chaotic quantum logistic map, combining with both scrambling and 

diffusion operations, to propose a new asymmetric image encryption algorithm. First, the Arnold map 

was used to scramble the pixel positions of the plain images to achieve information hiding in the first 

layer. In the diffusion stage, different from the conventional point-to-point diffusion method, our 

solution took each row and each column as different units to perform diffusion operation. As to the 

row direction, the data in each row are first XOR-diffused. Then, each row in the image and the 

corresponding row in the keystream matrix are modulated and diffused; that is, two cyclic diffusions 

are realized by connecting the start and end. Operations to the column direction use a similar process 

to obtain the cipher image. Among them, the initial values of the quantum logistic map are related to 

the plain image, which can resist the known plaintext attack and chosen plaintext attack. Experimental 

tests and analyses show that the new asymmetric image encryption scheme proposed in this paper is 

suitable for both grayscale and color images, can better distribute pixel values be uniform, reduce high 

correlation, is highly sensitive to keys, and has the ability to resist various attacks. 

However, there is still some disadvantages, for example, the compression operation was not 

considered in our scheme. So, in the future work, image can be compressed to reduce data 

redundancy, and how to achieve a good balance between the security and the complexity of image 

reconstruction should be taken into consideration. In addition, fast implement of encryption scheme 

is also an important issue in the future research. 
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