
http://www.aimspress.com/journal/MBE

MBE, 18(5): 5392–5408.
DOI: 10.3934/mbe.2021273
Received: 15 March 2021
Accepted: 18 May 2021
Published: 17 June 2021

Research article

A detailed study on a solvable system related to the linear fractional
difference equation
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Abstract: In this paper, we present a detailed study of the following system of difference equations

xn+1 =
a

1 + ynxn−1
, yn+1 =

b
1 + xnyn−1

, n ∈ N0,

where the parameters a, b, and the initial values x−1, x0, y−1, y0 are arbitrary real numbers such that xn

and yn are defined. We mainly show by using a practical method that the general solution of the above
system can be represented by characteristic zeros of the associated third-order linear equation. Also,
we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the
well-defined solutions by using the obtained representation forms.

Keywords: behavior of solutions; characteristic equation; general solution; system of difference
equations; periodic solution

1. Introduction and preliminaries

Nonlinear difference equations have long interested both mathematics and other sciences. Since
these equations play a key role in many applications such as the natural model of a discrete process,
they appear in many disciplines such as population biology, optics, economics, probability theory,
genetics, psychology. See e.g., [1–6] and the references therein. For the last two decades, there has
been interest in studying the global attractivity, the boundedness character and the periodic nature of
nonlinear difference equations. For some recent results see, for example, [7–16]. However, for the last
decade, some researchers have focused on the solvability of nonlinear difference equations and their
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systems. For some recent results see, for example, [17–33].
In this paper, we consider the following system of second-order nonlinear difference equations

xn+1 =
a

1 + ynxn−1
, yn+1 =

b
1 + xnyn−1

, n ∈ N0, (1.1)

where the parameters a, b, and the initial values x−1, x0, y−1, y0 are arbitrary real numbers such that
the solution {( xn, yn)}n≥−1 exists. System (1.1) can be obtained systematically as follows. First, we
consider the following difference equation

xn+1 =
a + bxn

c + dxn
, ad , bc, d , 0, n ∈ N0, (1.2)

where the parameters a, b, c, d, and the initial value x0 are arbitrary such that xn are defined. Equation
(1.2) is called a first order linear fractional difference equation. Equation (1.2) is solvable by virtue
of several changes of variables. The most common method is to transform Eq (1.2) into the second
order linear equation by using the change of variables c + dxn = zn/zn−1. For a detailed background on
Eq (1.2), see e.g, [34, 35]. Also, for other equations related to Eq (1.2), see [36–39]. A different case
occurs when we get b = 0. This case yields the following difference equation

xn+1 =
a

c + dxn
, acd , 0, n ∈ N0. (1.3)

Equation (1.3) can also be transformed into the second order linear equation by using the change of
variables xn = zn−1/zn and so is solvable. Some generalizations of Eq (1.3) can inherit its solvability
property. For example, the following difference equation

xn+1 =
a

c + dxnxn−1
, acd , 0, n ∈ N0, (1.4)

where the parameters a, c, d, and the initial values x−1, x0 are arbitrary such that xn are defined, is
also solvable by using the change of variables xn = zn−1/zn. Hence, the general solutions of (1.2)–(1.4)
follow from the general solutions of the associated linear equations and the corresponding changes of
variables. Note that both Eq (1.2) and Eq (1.3) can be reduced equations with one parameter or two

parameters. If we choose xn = c
d un, ad

c2 = α, and xn =
√ c

d vn, a
c

√
d
c = β, then they are reduced equations

with one parameter in un and vn, respectively. Therefore, we can take c = d = 1 under favorable
conditions.

Based on the above considerations, we investigate a two-dimensional generalization that maintains
the solvability characteristic of Eq (1.4). So, we get a further generalization of (1.4), that is, the system
given in (1.1). System (1.1) can also be transformed into a system of third-order linear equations by
using the changes of variables xn = un−1/vn, yn = vn−1/un, and so can be solved. But, we will use a
more practical method introduced firstly in [40] to solve the system.

We need to the following two results in the sequel of our study.

Lemma 1.1. [41] Consider the cubic equation

P (z) = z3 − αz2 − βz − γ = 0. (1.5)
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Equation (1.5) has the discriminant

∆ = −α2β2 − 4β3 + 4α3γ + 27γ2 + 18αβγ. (1.6)

Then, the following statements are true:
(i) If ∆ < 0, then the polynomial P has three distinct real zeros ρ1, ρ2, ρ3.
(ii) If ∆ = 0, then there are two subcases:
(a) if β = −α2

3 and γ = α3

27 , then the polynomial P has the triple root ρ = α
3 ,

(b) if β , −α
2

3 or γ , α3

27 , then the polynomial P has the double root r and the simple root ρ.
(iii) If ∆ > 0, then the polynomial P has one real root p and two complex roots re±iθ, θ ∈ (0, π).

Theorem 1.1 (Kronecker’s theorem). [42] If θ is irrational, the set of points un = nθ − [nθ] is dense
in the interval (0, 1).

In the above theorem, n is an integer and [nθ] is greatest integer function of nθ.

2. Main results

This section, which contains our main results, is examined in three subsections.

2.1. Representation forms of the general solution

In this subsection, by using an interesting and practical method, we solve system (1.1). If we take
a = 0 in system (1.1), then we have xn = 0 for every n ≥ 1 and yn = b for every n ≥ 2. If we take b = 0
in system (1.1), then we have xn = a for every n ≥ 2 and yn = 0 for every n ≥ 1. So, to enable the use
of the method, we suppose ab , 0 in the sequel of our study.

We start by writing system (1.1) in the following

1
x2n+1

=
1
a

+
y2nx2n−1

a
, (2.1)

1
x2n+2

=
1
a

+
y2n+1x2n

a
, (2.2)

1
y2n+1

=
1
b

+
x2ny2n−1

b
, (2.3)

1
y2n+2

=
1
b

+
x2n+1y2n

b
(2.4)

for every n ≥ 0. By multiplying (2.1), (2.2), (2.3) and (2.4) by

1
n∏

k=0
x2k−1

n∏
k=0

y2k

, (2.5)

1
n∏

k=0
x2k

n+1∏
k=0

y2k−1

, (2.6)
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1
n∏

k=0
x2k

n∏
k=0

y2k−1

, (2.7)

1
n+1∏
k=0

x2k−1

n∏
k=0

y2k

, (2.8)

we have the followings

1
n+1∏
k=0

x2k−1

n∏
k=0

y2k

=
1

a
n∏

k=0
x2k−1

n∏
k=0

y2k

+
1

a
n−1∏
k=0

x2k−1

n−1∏
k=0

y2k

, (2.9)

1
n+1∏
k=0

x2k

n+1∏
k=0

y2k−1

=
1

a
n∏

k=0
x2k

n+1∏
k=0

y2k−1

+
1

a
n−1∏
k=0

x2k

n∏
k=0

y2k−1

, (2.10)

1
n∏

k=0
x2k

n+1∏
k=0

y2k−1

=
1

b
n∏

k=0
x2k

n∏
k=0

y2k−1

+
1

b
n−1∏
k=0

x2k

n−1∏
k=0

y2k−1

(2.11)

1
n+1∏
k=0

x2k−1

n+1∏
k=0

y2k

=
1

b
n+1∏
k=0

x2k−1

n∏
k=0

y2k

+
1

b
n∏

k=0
x2k−1

n−1∏
k=0

y2k

(2.12)

for every n ≥ 0, respectively. In fact, the equalities (2.9)–(2.12) constitute a linear system with respect
to (2.5)–(2.8). Hence, we should solve (2.9)–(2.12). By using (2.9) in (2.12), (2.12) in (2.9) and
similarly by using (2.10) in (2.11), (2.11) in (2.10), we have the following statements

1
n+1∏
k=0

x2k−1

n+1∏
k=0

y2k

=
1

ab
n∏

k=0
x2k−1

n∏
k=0

y2k

+
2

ab
n−1∏
k=0

x2k−1

n−1∏
k=0

y2k

+
1

ab
n−2∏
k=0

x2k−1

n−2∏
k=0

y2k

, (2.13)

1
n+1∏
k=0

x2k−1

n∏
k=0

y2k

=
1

ab
n∏

k=0
x2k−1

n−1∏
k=0

y2k

+
2

ab
n−1∏
k=0

x2k−1

n−2∏
k=0

y2k

+
1

ab
n−2∏
k=0

x2k−1

n−3∏
k=0

y2k

, (2.14)

1
n∏

k=0
x2k

n+1∏
k=0

y2k−1

=
1

ab
n−1∏
k=0

x2k

n∏
k=0

y2k−1

+
2

ab
n−2∏
k=0

x2k

n−1∏
k=0

y2k−1

+
1

ab
n−3∏
k=0

x2k

n−2∏
k=0

y2k−1

, (2.15)

and
1

n+1∏
k=0

x2k

n+1∏
k=0

y2k−1

=
1

ab
n∏

k=0
x2k

n∏
k=0

y2k−1

+
2

ab
n−1∏
k=0

x2k

n−1∏
k=0

y2k−1

+
1

ab
n−2∏
k=0

x2k

n−2∏
k=0

y2k−1

(2.16)

for every n ≥ 2. Note that the equations in (2.13)–(2.16) are linear with respect to (2.5), (2.8), (2.6)
and (2.7), respectively, and they can be represented by the following third-order difference equation

zn+1 −
1

ab
zn −

2
ab

zn−1 −
1

ab
zn−2 = 0, n ≥ 2, (2.17)
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whose characteristic equation is the following equation

P (λ) = λ3 −
1

ab
λ2 −

2
ab
λ −

1
ab

= 0. (2.18)

By Lemma 1.1, we see that there are three cases to be considered.

2.1.1. The case 4/ab < −27

In this case P has three real distinct zeros denoted by ρ1, ρ2, ρ3, respectively. Hence, from (2.13)
and (2.17), we can write

zn = C1ρ
n
1 + C2ρ

n
2 + C3ρ

n
3 =

1
n∏

k=0
x2k−1

n∏
k=0

y2k

(2.19)

from which it follows that
1

x2n−1y2n
=

C1ρ
n
1 + C2ρ

n
2 + C3ρ

n
3

C1ρ
n−1
1 + C2ρ

n−1
2 + C3ρ

n−1
3

, (2.20)

where C1, C2, C3 are arbitrary real constants given by

C1 (x−1, y0) =
ρ2ρ3x1y2x3y4 − (ρ2 + ρ3) x3y4 + 1
(ρ1 − ρ2) (ρ1 − ρ3) x−1y0x1y2x3y4

,

C2 (x−1, y0) =
ρ1ρ3x1y2x3y4 − (ρ1 + ρ3) x3y4 + 1
(ρ2 − ρ1) (ρ2 − ρ3) x−1y0x1y2x3y4

,

C3 (x−1, y0) =
ρ1ρ2x1y2x3y4 − (ρ1 + ρ2) x3y4 + 1
(ρ3 − ρ1) (ρ3 − ρ2) x−1y0x1y2x3y4

,

for every n ≥ 0. By using (2.20) in the first equation of system (1.1), we have

x2n+1 =
a
(
C1ρ

n
1 + C2ρ

n
2 + C3ρ

n
3

)
C1 (ρ1 + 1) ρn−1

1 + C2 (ρ2 + 1) ρn−1
2 + C3 (ρ3 + 1) ρn−1

3

(2.21)

for every n ≥ −1. On the other hand, the first equation of system (1.1) can be written as follows

y2n =
a − x2n+1

x2n+1x2n−1
(2.22)

for every n ≥ 0. By using (2.21) and its backward shifted one from n to n − 1 in (2.22), we have

y2n =
C1 (ρ1 + 1) ρn−2

1 + C2 (ρ2 + 1) ρn−2
2 + C3 (ρ3 + 1) ρn−2

3

a
(
C1ρ

n
1 + C2ρ

n
2 + C3ρ

n
3

) (2.23)

for every n ≥ 0. Now, we consider Eq (2.16), which is linear with respect to (2.7) and (2.17). Hence,
we have

zn = C′1ρ
n
1 + C′2ρ

n
2 + C′3ρ

n
3 =

1
n∏

k=0
x2k

n∏
k=0

y2k−1

(2.24)

from which it follows that
1

x2ny2n−1
=

C′1ρ
n
1 + C′2ρ

n
2 + C′3ρ

n
3

C′1ρ
n−1
1 + C′2ρ

n−1
2 + C′3ρ

n−1
3

, (2.25)
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where C′1, C′2, C′3 are arbitrary real constants given by

C′1 = C1 (y−1, x0) , C′2 = C2 (y−1, x0) , C′3 = C3 (y−1, x0) ,

for every n ≥ 0. By using (2.25) in the second equation of system (1.1), we have

y2n+1 =
b
(
C′1ρ

n
1 + C′2ρ

n
2 + C′3ρ

n
3

)
C′1 (ρ1 + 1) ρn−1

1 + C′2 (ρ2 + 1) ρn−1
2 + C′3 (ρ3 + 1) ρn−1

3

(2.26)

for every n ≥ −1. On the other hand, the second equation of system (1.1) can be written as follows

x2n =
b − y2n+1

y2n+1y2n−1
(2.27)

for every n ≥ 0. By using (2.26) and its backward shifted one from n to n − 1 in (2.27), we have

x2n =
C′1 (ρ1 + 1) ρn−2

1 + C′2 (ρ2 + 1) ρn−2
2 + C′3 (ρ3 + 1) ρn−2

3

b
(
C′1ρ

n
1 + C′2ρ

n
2 + C′3ρ

n
3

) (2.28)

for every n ≥ 0. Consequently, in the case 4
ab < −27, the representation forms of the general solution

of system (1.1) are given by (2.21), (2.23), (2.26) and (2.28).

2.1.2. Case 4/ab = −27

In this case P (λ) has the simple root ρ and the double root r. Moreover, since ab = − 4
27 , we have

ρ = −3/4 and r = −3. Hence, from (2.13) and (2.17), we have

zn = C1ρ
n + rn (C2 + C3n) =

1
n∏

k=0
x2k−1

n∏
k=0

y2k

(2.29)

from which it follows that

1
x2n−1y2n

=
C1ρ

n + rn (C2 + C3n)
C1ρn−1 + rn−1 (C2 + C3 (n − 1))

, (2.30)

where C1, C2, C3 are arbitrary real constants given by

C1 (x−1, y0) =
r2x1y2x3y4 − 2rx3y4 + 1
(ρ − r)2 x−1y0x1y2x3y4

,

C2 (x−1, y0) =
ρ (ρ − 2r) x1y2x3y4 + 2rx3y4 − 1

(ρ − r)2 x−1y0x1y2x3y4
,

C3 (x−1, y0) =
ρrx1y2x3y4 − (ρ + r) x3y4 + 1

(r − ρ) rx−1y0x1y2x3y4
,

for every n ≥ 0. By substituting (2.30) in the first equation of system (1.1), we have

x2n+1 =
a (C1ρ

n + rn (C2 + C3n))
C1 (ρ + 1) ρn−1 + rn−1 (C2 (r + 1) + C3 (nr + n − 1))

(2.31)
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for every n ≥ −1. On the other hand, by using (2.31) and its backward shifted one from n to n − 1 in
(2.22), we have

y2n =
C1 (ρ + 1) ρn−2 + rn−2 (C2 (r + 1) + C3 ((n − 1) r + n − 2))

a (C1ρn + rn (C2 + C3n))
(2.32)

for every n ≥ 0. Now, by considering Eqs (2.16) and (2.17). we have

zn = C′1ρ
n + rn (

C′2 + C′3n
)

=
1

n∏
k=0

x2k

n∏
k=0

y2k−1

(2.33)

from which it follows that

1
x2ny2n−1

=
C′1ρ

n + rn
(
C′2 + C′3n

)
C′1ρ

n−1 + rn−1
(
C′2 + C′3 (n − 1)

) , (2.34)

where C′1, C′2, C′3 are arbitrary real constants given by

C′1 = C1 (y−1, x0) , C′2 = C2 (y−1, x0) , C′3 = C3 (y−1, x0) ,

for every n ≥ 0. By substituting (2.34) in the second equation of system (1.1), we have

y2n+1 =
b
(
C′1ρ

n + rn
(
C′2 + C′3n

))
C′1 (ρ + 1) ρn−1 + rn−1

(
C′2 (r + 1) + C′3 (nr + n − 1)

) (2.35)

for every n ≥ −1. On the other hand, by using (2.35) and its backward shifted one from n to n − 1 in
(2.27), it follows that

x2n =
C′1 (ρ + 1) ρn−2 + rn−2

(
C′2 (r + 1) + C′3 ((n − 1) r + n − 2)

)
b
(
C′1ρ

n + rn
(
C′2 + C′3n

)) (2.36)

for every n ≥ 0. Consequently, in the case 4
ab = −27, the representation forms of the general solution

of system (1.1) are given by (2.31), (2.32), (2.35) and (2.36).

2.1.3. Case 4/ab > −27

In this case P (λ) has one real root and two complex roots denoted by ρ and re±iθ, θ ∈ (0, π),
respectively. Hence, from (2.13) and (2.17), we have

zn = C1ρ
n + rn (C2 cos nθ + C3 sin nθ) =

1
n∏

k=0
x2k−1

n∏
k=0

y2k

(2.37)

from which it follows that

1
x2n−1y2n

=
C1ρ

n + rn (C2 cos nθ + C3 sin nθ)
C1ρn−1 + rn−1 (C2 cos (n − 1) θ + C3 sin (n − 1) θ)

, (2.38)
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where C1, C2, C3 are arbitrary real constants given by

C1 (x−1, y0) =
r2x1y2x3y4 − 2r cos θx3y4 + 1(

ρ2 − 2ρr cos θ + r2) x−1y0x1y2x3y4
,

C2 (x−1, y0) =
ρ (ρ − 2r cos θ) x1y2x3y4 + 2r cos θx3y4 − 1(

ρ2 − 2ρr cos θ + r2) x−1y0x1y2x3y4
,

C3 (x−1, y0) =
ρr (r cos 2θ − ρ cos θ) x1y2x3y4 +

(
ρ2 − r2 cos 2θ

)
x3y4 + r cos θ − ρ

r sin θ
(
ρ2 − 2ρr cos θ + r2) x−1y0x1y2x3y4

,

for every n ≥ 0. By using (2.38) in the first equation of system (1.1), we have

x2n+1 =
a (C1ρ

n + rn (C2 cos nθ + C3 sin nθ))
C1 (ρ + 1) ρn−1 + rn−1 (C4 cos nθ + C5 sin nθ)

, (2.39)

where C4 = C2 (r + cos θ) − C3 sin θ, C5 = C3 (r + cos θ) + C2 sin θ, for every n ≥ −1. On the other
hand, by using (2.39) and its backward shifted one from n to n − 1 in (2.22), we have

y2n =
C1 (ρ + 1) ρn−2 + rn−2 (C4 cos (n − 1) θ + C5 sin (n − 1) θ)

a (C1ρn + rn (C2 cos nθ + C3 sin nθ))
(2.40)

for every n ≥ 0. Now, by considering Eqs (2.16) and (2.17), we have

zn = C′1ρ
n + rn (

C′2 cos nθ + C′3 sin nθ
)

=
1

n∏
k=0

x2k

n∏
k=0

y2k−1

(2.41)

from which it follows that

1
x2ny2n−1

=
C′1ρ

n + rn
(
C′2 cos nθ + C′3 sin nθ

)
C′1ρ

n−1 + rn−1
(
C′2 cos (n − 1) θ + C′3 sin (n − 1) θ

) , (2.42)

where C′1, C′2, C′3 are arbitrary real constants given by

C′1 = C1 (y−1, x0) , C′2 = C2 (y−1, x0) , C′3 = C3 (y−1, x0) ,

for every n ≥ 0. By using (2.38) in the second equation of system (1.1), we have

y2n+1 =
b
(
C′1ρ

n + rn
(
C′2 cos nθ + C′3 sin nθ

))
C′1 (ρ + 1) ρn−1 + rn−1

(
C′4 cos nθ + C′5 sin nθ

) (2.43)

where C′4 = C′2 (r + cos θ) − C′3 sin θ, C′5 = C′3 (r + cos θ) + C′2 sin θ, for every n ≥ −1. On the other
hand, by using (2.43) and its backward shifted one from n to n − 1 in (2.27), we have

x2n =
C′1 (ρ + 1) ρn−2 + rn−2

(
C′4 cos (n − 1) θ + C′5 sin (n − 1) θ

)
b
(
C′1ρ

n + rn
(
C′2 cos nθ + C′3 sin nθ

)) (2.44)

for every n ≥ 0. Consequently, in the case 4
ab > −27, the representation forms of the general solution

of system (1.1) are given by (2.39), (2.40), (2.43) and (2.44).
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2.2. Forbidden set and well-defined solutions

The representation forms given in the previous subsection are valid where the denominators are not
zero. That is, we can obtain the set of initial values that make the solutions of the system undefined
from the forms by equating their denominators to zero. This operation enables us to obtain a set
of initial values that produce the well-defined solutions of system (1.1). In the following we give a
theorem that helps us characterize such solutions.

Theorem 2.1. Consider system (1.1). Then, the following statements are true:
(a) If 4

ab < −27, then the forbidden set of system (1.1) is given by

F =
{
(x−1, x0, y−1, y0) : α′n = 0 or βn = 0 or αn = 0 or β′n = 0

}
,

where

α′n = C′1ρ
n
1 + C′2ρ

n
2 + C′3ρ

n
3, n ≥ 0,

βn = C1 (ρ1 + 1) ρn−1
1 + C2 (ρ2 + 1) ρn−1

2 + C3 (ρ3 + 1) ρn−1
3 , n ≥ −1,

αn = C1ρ
n
1 + C2ρ

n
2 + C3ρ

n
3, n ≥ 0,

β′n = C′1 (ρ1 + 1) ρn−1
1 + C′2 (ρ2 + 1) ρn−1

2 + C′3 (ρ3 + 1) ρn−1
3 , n ≥ −1.

(b) If 4
ab = −27, then the forbidden set of system (1.1) is given by

F =
{
(x−1, x0, y−1, y0) : α′n = 0 or βn = 0 or αn = 0 or β′n = 0

}
,

where

α′n = C′1ρ
n + rn (

C′2 + C′3n
)

, n ≥ 0,
βn = C1 (ρ + 1) ρn−1 + rn−1 (C2 (r + 1) + C3 (nr + n − 1)) , n ≥ −1,
αn = C1ρ

n + rn (C2 + C3n) , n ≥ 0,
β′n = C′1 (ρ + 1) ρn−1 + rn−1 (

C′2 (r + 1) + C′3 (nr + n − 1)
)
, n ≥ −1,

and ρ = −3/4, r = −3.
(c) If 4

ab > −27, then the forbidden set of system (1.1) is given by

F =
{
(x−1, x0, y−1, y0) : α′n = 0 or βn = 0 or αn = 0 or β′n = 0

}
,

where

α′n = C′1ρ
n + rn (

C′2 cos nθ + C′3 sin nθ
)

, n ≥ 0
βn = C1 (ρ + 1) ρn−1 + rn−1 (C4 cos nθ + C5 sin nθ) , n ≥ −1
αn = C1ρ

n + rn (C2 cos nθ + C3 sin nθ) , n ≥ 0
β′n = C′1 (ρ + 1) ρn−1 + rn−1 (

C′4 cos nθ + C′5 sin nθ
)
, n ≥ −1.

Proof. The proof is simple and follows by equalizing denominators of the representation forms ob-
tained in the previous section to zero. �

By considering this theorem, we say that a well-defined solution of system (1.1) is a solution
{(xn, yn)}n≥−1 obtained using the initial values such that (x−1, x0, y−1, y0) ∈ R4\F.
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2.3. Long-term behavior of the solutions

In this subsection we study the long-term behavior of the solutions of system (1.1) by using the
representation forms obtained in the first subsection. We analyze the solutions in the following cases
of the parameter ab:

i) Case 4
ab < −27: in this case we have ab ∈

(
− 4

27 , 0
)
.

ii) Case 4
ab = −27: in this case we have ab = −4

27 .
iii) Case 4

ab > −27: in this case we have ab ∈
(
−∞,− 4

27

)
∪ (0,+∞).

2.3.1. Case 4/ab < −27

This case yields the following result.

Theorem 2.2. Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1). Suppose that 4
ab < −27.

Then, the following statements are true:
(a) If Ci , 0 for i ∈ {1, 2, 3} and |ρ| = max {|ρ1| , |ρ2| , |ρ3|}, then x2n+1 →

aρ
ρ+1 and y2n →

bρ
ρ+1 as

n→ ∞.
(b) If C′i , 0 for i ∈ {1, 2, 3} and |ρ| = max {|ρ1| , |ρ2| , |ρ3|}, then x2n →

aρ
ρ+1 and y2n+1 →

bρ
ρ+1 as

n→ ∞.
(c) If Ci = 0 and C jCk , 0 for i, j, k ∈ {1, 2, 3} with i , j , k and |ρ| = max

{∣∣∣ρ j

∣∣∣ , |ρk|
}
, then

x2n+1 →
aρ
ρ+1 and y2n →

bρ
ρ+1 as n→ ∞.

(d) If C′i = 0 and C′jC
′
k , 0 for i, j, k ∈ {1, 2, 3} with i , j , k and |ρ| = max

{∣∣∣ρ j

∣∣∣ , |ρk|
}
, then

x2n →
aρ
ρ+1 and y2n+1 →

bρ
ρ+1 as n→ ∞.

Proof. (a)–(b) Let us assume without losing generality that |ρ1| = max {|ρ1| , |ρ2| , |ρ3|}. Then, we have
the following limits

lim
n→∞

x2n = lim
n→∞

ρn−2
1

ρn
1

C′1 (ρ1 + 1) + C′2 (ρ2 + 1)
(
ρ2
ρ1

)n−2
+ C′3 (ρ3 + 1)

(
ρ3
ρ1

)n−2

b
(
C′1 + C′2

(
ρ2
ρ1

)n
+ C′3

(
ρ3
ρ1

)n)
=

ρ1 + 1
bρ2

1

.

Since ρ1 is a zero of the polynomial P, we have the relation

ρ1 + 1
bρ2

1

=
aρ1

ρ1 + 1

from (2.18). Hence, we have
lim
n→∞

x2n =
aρ1

ρ1 + 1

and

lim
n→∞

x2n+1 = lim
n→∞

ρn
1

ρn−1
1

a
(
C1 + C2

(
ρ2
ρ1

)n
+ C3

(
ρ3
ρ1

)n)
C1 (ρ1 + 1) + C2 (ρ2 + 1)

(
ρ2
ρ1

)n−1
+ C3 (ρ3 + 1)

(
ρ3
ρ1

)n−1
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=
aρ1

ρ1 + 1
,

lim
n→∞

y2n = lim
n→∞

ρn−2
1

ρn
1

C1 (ρ1 + 1) + C2 (ρ2 + 1)
(
ρ2
ρ1

)n−2
+ C3 (ρ3 + 1)

(
ρ3
ρ1

)n−2

a
(
C1 + C2

(
ρ2
ρ1

)n
+ C3

(
ρ3
ρ1

)n)
=

ρ1 + 1
aρ2

1

=
bρ1

ρ1 + 1
,

lim
n→∞

y2n+1 = lim
n→∞

ρn
1

ρn−1
1

b
(
C′1 + C′2

(
ρ2
ρ1

)n
+ C′3

(
ρ3
ρ1

)n)
C′1 (ρ1 + 1) + C′2 (ρ2 + 1)

(
ρ2
ρ1

)n−1
+ C′3 (ρ3 + 1)

(
ρ3
ρ1

)n−1

=
bρ1

ρ1 + 1
.

The proofs of other cases are similar and so they will be omitted. �

Remark 2.1. Note that the cases |C1| + |C2| + |C3| = |Ci| and
∣∣∣C′1∣∣∣ + ∣∣∣C′2∣∣∣ + ∣∣∣C′3∣∣∣ =

∣∣∣C j

∣∣∣, i, j ∈ {1, 2, 3} are
impossible. Because, for example, if C1 = C2 = 0, then we need to the common solution of the system

ρ2ρ3x1y2x3y4 − (ρ2 + ρ3) x3y4 + 1 = 0, ρ1ρ3x1y2x3y4 − (ρ1 + ρ3) x3y4 + 1 = 0.

This case requires that ρ1 = ρ2 which is a contradiction.

Corollary 2.1. Suppose that 4
ab < −27. Then, every well-defined solution of system (1.1) has a finite

limit point.

2.3.2. Case 4/ab = −27

This case yields the following result.

Theorem 2.3. Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1). Suppose that 4
ab = −27.

Then, the following statements are true:
(a) If |C2| + |C3| , 0, then x2n+1 →

3a
2 and y2n →

3b
2 as n→ ∞.

(b) If
∣∣∣C′2∣∣∣ +

∣∣∣C′3∣∣∣ , 0, then x2n →
3a
2 and y2n+1 →

3b
2 as n→ ∞.

(c) If C2 = C3 = 0 and C1 , 0, then x2n+1 → −3a and y2n → −3b as n→ ∞.
(d) If C′2 = C′3 = 0 and C′1 , 0, then x2n → −3a, and y2n+1 → −3b as n→ ∞.

Proof. (a)–(b) Since ρ = −3/4 and r = −3, we have |ρ| < |r|. So, from (2.31), (2.32), (2.35) and (2.36),
we have the following limits

lim
n→∞

x2n = lim
n→∞

rn−2

brn

C′1 (ρ + 1)
(
ρ

r

)n−2
+ C′2 (r + 1) + C′3 ((n − 1) r + n − 2)

C′1
(
ρ

r

)n
+

(
C′2 + C′3n

)
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=
r + 1
br2

=
−2
9b

=
3a
2
,

lim
n→∞

x2n+1 = lim
n→∞

arn

rn−1

C1

(
ρ

r

)n
+ C2 + C3n

C1 (ρ + 1)
(
ρ

r

)n−1
+ C2 (r + 1) + C3 (nr + n − 1)

=
ar

r + 1

=
3a
2
,

lim
n→∞

y2n = lim
n→∞

rn−2

arn

C1 (ρ + 1)
(
ρ

r

)n−2
+ C2 (r + 1) + C3 ((n − 1) r + n − 2)

C1

(
ρ

r

)n
+ C2 + C3n

=
r + 1
ar2

=
−2
9a

=
3b
2
,

lim
n→∞

y2n+1 = lim
n→∞

brn

rn−1

C′1
(
ρ

r

)n
+ C′2 + C′3n

C′1 (ρ + 1)
(
ρ

r

)n−1
+ C′2 (r + 1) + C′3 (nr + n − 1)

=
br

r + 1

=
3b
2
.

The proofs of (c) and (d) are clear from the forms in (2.31), (2.32), (2.35) and (2.36). �

Corollary 2.2. Suppose that 4
ab = −27. Then, every well-defined solution of system (1.1) has a finite

limit point.

2.3.3. Case 4/ab > −27

For this case we first prove the following lemma.

Lemma 2.1. Suppose that 4
ab > −27 and the zeros of the polynomial P (λ) are ρ and re±iθ, r > 0,

θ ∈ (0, π). Then, the following statements are true:
(a) If ab ∈ (0,+∞), then r < ρ
(b) If ab ∈

(
−∞,− 4

27

)
, then r > |ρ|
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Proof. Let 4
ab > −27. Then, since ρ and re±iθ are the zeros of the polynomial P (λ), the relations

ρr2 =
1
ab

and ρ3 −
1

ab
(ρ + 1)2 = 0

are satisfied. We conclude from these relations that abρ > 0. This implies that if ab < 0, then ρ < 0
and if ab > 0, then ρ > 0. Also, from (2.18), we have

ρ2 −
1

abρ
ρ2 −

2
abρ

ρ −
1

abρ
= ρ2 − r2ρ2 − 2r2ρ − r2 = 0,

which implies

r =

∣∣∣∣∣ ρ

ρ + 1

∣∣∣∣∣ . (2.45)

We must consider the following two cases:
(a) If ab ∈ (0,+∞), then ρ > 0 and so, from (2.45), we have

r =
ρ

ρ + 1
< ρ.

(b) If ab ∈
(
−∞,− 4

27

)
, then we see from (2.45) that ρ < −1. So, from (2.45), we have

r =

∣∣∣∣∣ ρ

ρ + 1

∣∣∣∣∣ > |ρ| .
So, the proof is completed. �

Remark 2.2. Note that the equality r = |ρ| is impossible. Because, in this case we have 1
ab = ρ3 which

yields ab = −1
8 <

(
−∞,− 4

27

)
.

Theorem 2.4. Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1). Suppose that 4
ab > −27.

Then, the following statements are true:
(a) If ab ∈ (0,+∞) and C1 , 0, then x2n+1 →

aρ
ρ+1 and y2n →

bρ
ρ+1 as n→ ∞.

(b) If ab ∈ (0,+∞) and C′1 , 0, then x2n →
aρ
ρ+1 and y2n+1 →

bρ
ρ+1 as n→ ∞.

(c) If ab ∈
(
−∞,− 4

27

)
and |C2| + |C3| , 0, then both x2n+1 and y2n are periodic or converge to a

periodic solution or dense in R.
(d) If ab ∈

(
−∞,− 4

27

)
and

∣∣∣C′2∣∣∣ +
∣∣∣C′3∣∣∣ , 0, then both x2n and y2n+1 are periodic or converge to a

periodic solution or dense in R.

Proof. (a)–(b) The proof follows from the formulas given in (2.39), (2.40), (2.43), (2.44) and Lemma
2.1 by taking the limit.

(c)–(d) Since the proof is similar for the forms given in (2.39), (2.40), (2.43), (2.44), we only prove
for (2.44). Suppose that C′1 = 0. Then, from (2.44), we have

x2n =
1

br2

C′4 cos (n − 1) θ + C′5 sin (n − 1) θ
C′2 cos nθ + C′3 sin nθ

, (2.46)
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where C′4 = C′2 (r + cos θ) −C′3 sin θ, C′5 = C′3 (r + cos θ) + C′2 sin θ. Also, we see that the form given in
(2.46) can be written as

x2n =
1

br2
(r cos θ + cos 2θ + (r sin θ + sin 2θ) tan (nθ − γ)) ,

where γ is an arbitrary constant, which corresponds to the arbitrary constants C′2, C′3, and satisfies the
equality

cos γ
C′2

=
sin γ
C′3

, −
π

2
≤ γ ≤

π

2
.

Now, we consider the following two cases:
(i) If θ =

p
qπ such that p, q are co-prime integers, we have

x2n =
1

br2
(r cos θ + cos 2θ + (r sin θ + sin 2θ) tan (qθ − γ))

=
1

br2
(r cos θ + cos 2θ + (r sin θ + sin 2θ) tan (pπ − γ))

=
1

br2
(r cos θ + cos 2θ + (r sin θ + sin 2θ) tan (−γ))

which implies x2n+q = x2n. Suppose that C′1 , 0. Then, since the inequality r > |ρ| holds, from (2.44),
we have

x2n =
1

br2

C′1 (ρ + 1)
(
ρ

r

)n−2
+ C′4 cos (n − 1) θ + C′5 sin (n − 1) θ

C′1
(
ρ

r

)n
+ C′2 cos nθ + C′3 sin nθ

,

which leads to

x2n →
1

br2

C′4 cos (n − 1) θ + C′5 sin (n − 1) θ
C′2 cos nθ + C′3 sin nθ

for large enough values of n. Hence, the sequence (x2n)n≥0 converges to a periodic solution obtained in
the case C′1 = 0.

(ii) If θ = tπ such that t is irrational, then we have by virtue of the Kronecker’s Theorem that the set
{(nt − [nt]) π : n ∈ N0 and t is irrational} is dense in the interval (0, π). Hence, we have

tan (nθ − γ) = tan (ntπ − γ) = tan (ntπ − [nt] π − γ)

which implies the sequence (x2n)n≥0 is dense in (−∞,+∞). �

3. Conclusions

In this paper we conducted a detailed analysis on all solutions of system (1.1). To do this analysis,
we obtained the representation forms of general solution of the system by using a practical method. By
using these forms, we characterized the well-defined solutions of system (1.1). Finally, we studied the
long-term behavior of the well-defined solutions. We can summarize our results as follows:

Consider system (1.1). Then,
(a) If ab ∈

(
− 4

27 , 0
)
, then every well-defined solution of system (1.1) has a finite limit point.
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(b) If ab ∈ (0,+∞) and C1C′1 , 0, then every well-defined solution of system (1.1) has a finite limit
point.

(c) If ab ∈
(
−∞,− 4

27

)
and (|C2| + |C3|)

(∣∣∣C′2∣∣∣ +
∣∣∣C′3∣∣∣) , 0, then every well-defined solution of system

(1.1) is periodic or converges to a periodic solution or dense in R2.
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