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Abstract: The purpose of the present work is to solve a third kind of multi-singular nonlinear system 

using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized 

with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency 

of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the 

continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler 

equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The 

motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to 

handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model. 

The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third 

kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the 

designed ANN-PSO-IPA are used to endorse the precision, viability and reliability. 
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1. Introduction 

The historical Lane-Emden model was introduced first time by astrophysicist Jonathan Homer 

Lane and Robert Emden [1,2] working on the thermal performance of a spherical cloud of gas and 

classical law linked to thermodynamics [3]. The singular models have several applications in broad 

field of applied science and engineering such as catalytic diffusion reactions along with error estimate 

problems [4], density profile of gaseous star [5], stellar configuration [6], spherical annulus [7], 

isotropic continuous media [8], the theory of electromagnetic [9] and morphogenesis [10]. It is always 

not easy to solve the system of singular equations-based models due to their complex nature and 

singular points. To mention a few schemes that have been applied to solve such models include 

Legendre wavelets spectral technique [11], Bernoulli collocation scheme [12], variational iteration 

technique [13], Haar wavelet quasilinearization method [14], spectral collocation scheme [15], 

differential transformation approach [16] and Adomian decomposition technique [17]. 

All these above cited approaches have their precise merits and imperfections, however stochastic 

solver has not been extensively implemented to solve multi-singular third kind of nonlinear system 

(MS-TKNS) using the artificial neural networks (ANNs) together with particle swarm optimization 

(PSO) and interior-point algorithm (IPA), i.e., ANN-PSO-IPA. The stochastic computing solvers have 

been widely applied to resolve numerous applications [18–22]. Recently, the stochastic solvers 

presented the solution of models for financial market forecasting [23], prey-predator nonlinear system 

[24], nonlinear singular functional differential model [25,26], SITR nonlinear system [27,28], singular 

delay differential system [29], nonlinear periodic boundary value problems [30], HIV nonlinear system 

[31], SIR nonlinear system of dengue fever [32] and alternative approach based on fuzzy-neuro 

methods to solve linear and nonlinear optimization problems [33,34]. These submissions enhance the 

worth of the stochastic solvers to authenticate the convergence and precision of the suggested ANN-

PSO-IPA. The general form of the MS-TKNS is written as [35]: 

{
 
 
 
 

 
 
 
 
𝑑3𝑈

𝑑𝜒3
+
2𝛼1
𝜒

𝑑2𝑈

𝑑𝜒2
+
𝑃(𝑃 − 1)

𝜒2
𝑑𝑈

𝑑𝜒
+ 𝐻1(𝜒)𝐹1(𝑈, 𝑉) = 𝐺1(𝜒),

𝑑3𝑉

𝑑𝜒3
+
2𝛼2
𝜒

𝑑2𝑉

𝑑𝜒2
+
𝑄(𝑄 − 1)

𝜒2
𝑑𝑉

𝑑𝜒
+𝐻2(𝜒)𝐹2(𝑈, 𝑉) = 𝐺2(𝜒),

𝑈(0) = 𝐴,
𝑑𝑈(0)

𝑑𝜒
=
𝑑2𝑈(0)

𝑑𝜒2
= 0,

𝑉(0) = 𝐵,
𝑑𝑉(0)

𝑑𝜒
=
𝑑2𝑉(0)

𝑑𝜒2
= 0.

 (1) 

Where 𝐹1  and 𝐹2  are the nonlinear functions, 𝑃  and 𝑄  are positive constants, 𝐺1  and 𝐺2 are 

indicated as a source functions. 

The purpose of this study is to present the solution of the model (1) via intelligent computing 

ANN-PSO-IPA. The contributions of the paper are as follows: 
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• A novel neuro-swarm computing intelligent heuristics ANN-PSO-IPA is accessible for multi-

singular nonlinear third order EF-SDEs. 

• The overlapping outcomes of the proposed ANN-PSO-IPA with the exact outcomes for three 

examples of MS-TKNS enhance the exactness, consistency and convergence. 

• Authorization of the precise performance is validated via statistical remark using the ANN-

PSO-IPA based on Theil's Inequality Coefficient (TIC), Root Mean Square Error (RMSE), 

Variance Account For (VAF), Semi Interquartile (SI) Range. 

• Beside practically precise continuous outcomes on whole input training intermission, an easy 

implementable process, simplicity in perception, stability and robustness are other well-

intentioned announcements for the designed neuro-swarm intelligent computing approach. 

The remaining structure of the current study is given as: Section 2 indicates the design 

methodology through PSO-IPA. The mathematical form of performance measures can be found in 

section 3. Section 4 shows the numerical results of the designed ANN-PSO-IPA. In the final section, 

final submissions and future guidance are provided. 

2. Methodology 

The design of ANN-PSO-IPA for MS-TKNS is presented in two steps, given as: 

Step 1: An error based objective function is accessible by using the mean square error sense. 

Step 2: The learning procedure of the structures is presented using the hybrid of PSO-IPA. 

2.1 ANN modeling 

The ANNs are famous to solve the various applications in different domain of applied science 

and engineering. The proposed outcomes are denoted by 𝑈(𝜒) and 𝑉(𝜒), while 
𝑑𝑛𝑈

𝑑𝜒𝑛
 and 

𝑑𝑛𝑉

𝑑𝜒𝑛
 show the 

nth derivative, mathematically given as: 

[𝑈̂(𝜒), 𝑉̂(𝜒)] = [∑𝑎𝑈,𝑖𝑍(𝑤𝑈,𝑖𝜒 + 𝜙𝑈,𝑖)

𝑚

𝑖=1

,∑𝑎𝑉,𝑖𝑍(𝑤𝑉,𝑖𝜒 + 𝜙𝑉,𝑖)

𝑚

𝑖=1

], 

(2) 

 

[
𝑑𝑛𝑈̂

𝑑𝜒𝑛
,
𝑑𝑛𝑉̂

𝑑𝜒𝑛
] = [∑𝑎𝑈,𝑖

𝑑𝑛

𝑑𝜒𝑛
𝑍(𝑤𝑈,𝑖𝜒 + 𝜙𝑈,𝑖)

𝑚

𝑖=1

,∑𝑎𝑉,𝑖
𝑑𝑛

𝑑𝜒𝑛
𝑍(𝑤𝑉,𝑖𝜒 + 𝜙𝑉,𝑖)

𝑚

𝑖=1

]. 

Where m shows the neurons and n is the derivative order. The unknown weight vectors are 𝑎,𝑤and 𝜙. 

𝑊 = [𝑊𝑈,𝑊𝑉] , for 𝑊𝑈 = [𝛼𝑈, 𝑤𝑈, 𝜙𝑈]  and 𝑊𝑉 = [𝛼𝑉, 𝑤𝑉, 𝜙𝑉] . The components of the weight 

vector are given as: 

𝑎𝑈 = [𝑎𝑈,1, 𝑎𝑈,2, 𝑎𝑈,3, . . . , 𝑎𝑈,𝑚], 𝑎𝑉 = [𝑎𝑉,1, 𝑎𝑉,2, 𝑎𝑉,3, . . . , 𝑎𝑉,𝑚], 

𝑤𝑈 = [𝑤𝑈,1, 𝑤𝑈,2, 𝑤𝑈,3, . . . , 𝑤𝑈,𝑚], 𝑤𝑉 = [𝑤𝑉,1, 𝑤𝑉,2, 𝑤𝑉,3, . . . , 𝑤𝑉,𝑚], 

𝜙𝑈 = [𝜙𝑈,1, 𝜙𝑈,2, 𝜙𝑈,3, . . . , 𝜙𝑈,𝑚], 𝜙𝑉 = [𝜙𝑉,1, 𝜙𝑉,2, 𝜙𝑉,3, . . . , 𝜙𝑉,𝑚]. 

The log-sigmoid 𝑍(𝜒) =
1

(1+𝑒−𝜒 )
 is used as an activation function. The updated form of the system 
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(2) using the approximate results of 𝑈̂(𝜒) and 𝑉̂(𝜒) are written as: 

[𝑈̂(𝜒), 𝑉̂(𝜒)] = [∑
𝑎𝑈,𝑖

1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)
,

𝑚

𝑖=1

∑
𝑎𝑉,𝑖

1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

𝑚

𝑖=1

] , 

[
𝑑𝑈̂

𝑑𝜒
,
𝑑𝑉̂

𝑑𝜒
] = [∑

𝑎𝑈,𝑖𝑤𝑈,𝑖𝑒
−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
2 ,∑

𝑎𝑉,𝑖𝑤𝑉,𝑖𝑒
−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
2

𝑚

𝑖=1

𝑚

𝑖=1

] , 

[
𝑑2𝑈̂

𝑑𝜒2
,
𝑑2𝑉̂

𝑑𝜒2
] =

[
 
 
 
 
 ∑𝑎𝑈,𝑖𝑤𝑈,𝑖

2 {
2𝑒−2(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
3 −

𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
2}

𝑚

𝑖=1

,

∑𝑎𝑉,𝑖𝑤𝑉,𝑖
2 {

2𝑒−2(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
3 −

𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
2}

𝑚

𝑖=1 ]
 
 
 
 
 

, 

[
𝑑3𝑈̂

𝑑𝜒3
,
𝑑3𝑉̂

𝑑𝜒3
] =

[
 
 
 
 
 ∑𝑎𝑈,𝑖𝑤𝑈,𝑖

3 {
6𝑒−3(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
4 −

6𝑒−2(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
3 +

𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖)

(1 + 𝑒−(𝑤𝑈,𝑖𝑥+𝜙𝑈,𝑖))
2}

𝑚

𝑖=1

,

∑𝑎𝑉,𝑖𝑤𝑉,𝑖
3 {

6𝑒−3(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
4 −

6𝑒−2(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
3 +

𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖)

(1 + 𝑒−(𝑤𝑉,𝑖𝑥+𝜙𝑉,𝑖))
2}

𝑚

𝑖=1 ]
 
 
 
 
 

 

(3) 

The error based objective formulation is written as: 

        𝐸 = 𝐸1 + 𝐸2 + 𝐸3, (4) 

𝐸1 =
1

𝑁
∑ (𝜒𝑚

2
𝑑3𝑈̂

𝑑𝜒3
+ 2𝛼1𝜒𝑚

𝑑2𝑈̂

𝑑𝜒2
+ 𝑃(𝑃 − 1)

𝑑𝑈̂

𝑑𝜒
+ 𝜒𝑚

2 𝐻1𝐹1(𝑈̂, 𝑉̂) − 𝜒𝑚
2 𝐺1)

2

,

𝑁

𝑚=1

 (5) 

𝐸2 =
1

𝑁
∑ (𝜒𝑚

2
𝑑3𝑉̂

𝑑𝜒3
+ 2𝛼2𝜒𝑚

𝑑2𝑉̂

𝑑𝜒2
+ 𝑄(𝑄 − 1)

𝑑𝑉̂

𝑑𝜒
+ 𝜒𝑚

2 𝐻2𝐹2(𝑈̂, 𝑉̂) − 𝜒𝑚
2 𝐺2)

2

,

𝑁

𝑚=1

 (6) 

        𝐸3 =
1

6
((𝑈̂ − 𝐴)

2
+ (𝑈̂1

′ )
2
+ (𝑈̂1

″)
2
+ (𝑉̂ − 𝐵)

2
+ (𝑉̂ ′)

2
+ (𝑉̂″)

2
) at 𝜒 = 0. (7) 

Where 𝑁 =
1

ℎ
, 𝑥𝑚 = 𝑚ℎ . The Objective functions 𝐸1  and 𝐸2  are associated with the system of 

differential equations and 𝐸3 is the corresponding initial conditions. 

2.2 Optimization procedure 

The optimization is performed to solve the MS-TKNS using the hybrid framework of PSO- IPA. 

PSO is an effective research method that has widely used as an alternative optimization of genetic 

algorithms that were discovered by Kennedy and Eberhart [36]. In the theory of search space, a single 

candidate result of decision variables in the optimization procedure is called a particle and set of these 

particle formulated a swarms. For the refinement of optimization variables in standard PSO utilized 

iterative process of optimizing based on local 𝑃𝐿𝐵
𝜌−1

 and global 𝑃𝐺𝐵
𝜌−1

 best position of the particle in 
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the swarm. The mathematical relations of position Xi along with the velocity Vi in PSO are given, 

respectively, as follows: 

𝑋𝑖
𝜌
= 𝑋𝑖

𝜌−1
+ 𝑉𝑖

𝜌−1
, (8) 

𝑉𝑖
𝜌
= 𝜔𝑉𝑖

𝜌−1
+ 𝜂1(𝑃𝐿𝐵

𝜌−1
− 𝑋𝑖

𝜌−1
)𝑟1 + 𝜂2(𝑃𝐺𝐵

𝜌−1
− 𝑋𝑖

𝜌−1
)𝑟2, (9) 

where 𝜌represent the current flight index, the inertia vector is denoted by 𝜔 varying between 0 and 

1, 𝜂1 and 𝜂2 indicate the cognitive and social accelerations, respectively, while, r1 and r2 are vectors 

form with pseudo real number between 0 and 1. Further information regrading PSO can be seen in 

[37], while few recent applications address by PSO include parameter estimation [38], nonlinear 

electric circuits [39], optimize performance of induction generator [40], optimization of permanent 

magnets synchronous motor [41] and systems of equations based physical models [42]. 

The quickly converges performance of PSO is attained by the process of hybridization with the 

appropriate local search approach by taking the PSO best values as an initial weight. Consequently, in 

the presented study, an effective local search scheme based on interior-point (IPA) is exploited for 

rapid fine-tuning of the results by the PSO algorithm. The hybrid of PSO-IPA train the ANNs as well 

as fundamental parameter setting for both PSO and IPA are tabulated in Table 1. Recently, IPA is used 

to power flow optimization incorporating security constraints [43], multistage nonlinear nonconvex 

problems [44], image processing [45] and multi-fractional order doubly singular model [46]. The 

hybrid of PSO-IPA train the decision variables of ANNs as per procedure and settings tabulated in 

Table 1. 

Table 1. Detailed pseudo code of PSO-IPA to solve the nonlinear third order EF-SDEs. 

Start of PSO  

 Step-1: Initialization: Generate the primary swarm randomly and amend the parameters of 

{PSO} and {optimoptions}  routine. 

 Step-2: Fitness Evaluation: Scrutinize the {fitness value}  for each particle in Eq (4). 

 Step-3: Ranking: Rank to each particle of the least  standards of the {fitness function} 

 Step-4: Stopping Standards: Stop, if any of the below  form achieved  

• Selected flights 

• Fitness level 

 When accomplished the above values, then go to Step-5 

 Step-5: Renewal: The Eqs (8) and (9) are used for the  position and velocity. 

 Step-6: Improvement: Repeat the above steps 02–06, until  the entire flights are attained. 

Step-7: Storage: The attained best fitness values is stored and elect as the global best particle. 

End of PSO 

 

Start the process of PSO-IPA 

 Inputs: Use the global best values 
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 Output: WPSO-IPS are the PSO-IPA’s best values 

 Initialize: Take {global best values} as a {start  point} 

 Termination: Terminate the process, when {Fitness = 𝐸 =  10−18}, {TolX = 10−20}, {TolCon = 

TolFun = 10−21}, {MaxFunEvals  = 260000} and {Generation = 1500}. 

 While: [Stop] 

 Fitness Evaluation: The Eq (4) is used for the fitness  value 𝐸 

 Adjustments: Invoke the routine {fmincon} for the IP  algorithm to adjust the values of the 

weight vector. 

 Store to fitness values using the basic form of the  weight vector 

 Store: WPSO-IPS values, final adaptive weight values, function count, fitness, time and generations 

for the present run. 

End of the PSO-IPA 

3. Performance indices 

The current study is associated to present the statistical measures for solving the MS-TKNS. 

Therefore, three performances based on Theil’s inequality coefficient (TIC) mean absolute deviation 

(MAD) and Variance Account For (VAF) and their global variables are Global TIC (G.TIC), Global 

MAD (G.MAD) and Global EVAF (G.EVAF) are applied. The mathematical descriptions of these 

statistical operators are provided as: 

[TIC𝑈,TIC𝑉] =

[
 
 
 
 √1

𝑛
∑ (𝑈(𝜒𝑖) − 𝑈̂(𝜒𝑖))
𝑛
𝑖=1

2

(√
1
𝑛
∑ 𝑈2(𝜒𝑖)
𝑛
𝑖=1 +√

1
𝑛
∑ 𝑈̂2(𝜒𝑖)
𝑛
𝑖=1 )

,
√1
𝑛
∑ (𝑉(𝜒𝑖) − 𝑉̂(𝜒𝑖))
𝑛
𝑖=1

2

(√
1
𝑛
∑ 𝑉2(𝜒𝑖)
𝑛
𝑖=1 +√

1
𝑛
∑ 𝑉̂2(𝜒𝑖)
𝑛
𝑖=1 )

]
 
 
 
 

, (10) 

[𝑅𝑀𝑆𝐸𝑈 , 𝑅𝑀𝑆𝐸𝑉] =

[
 
 
 
√
1

𝑛
∑(𝑈𝑖 − 𝑈̂𝑖)

2
𝑛

𝑖=1

, √
1

𝑛
∑(𝑉𝑖 − 𝑉̂𝑖)

2
𝑛

𝑖=1
]
 
 
 
, (11) 

{
[𝑉𝐴𝐹𝑈 , 𝑉𝐴𝐹𝑉] = [(1 −

𝑣𝑎𝑟(𝑈(𝜒𝑖) − 𝑈̂(𝜒𝑖))

𝑣𝑎𝑟(𝑈(𝜒𝑖))
) ∗ 100, (1 −

𝑣𝑎𝑟(𝑉(𝜒𝑖) − 𝑉̂(𝜒𝑖))

𝑣𝑎𝑟(𝑉(𝜒𝑖))
) ∗ 100]

[𝐸𝑉𝐴𝐹𝑈 , 𝐸𝑉𝐴𝐹𝑉] = [|100 − 𝑉𝐴𝐹𝑈|, |100 − 𝑉𝐴𝐹𝑉|].

 (12) 

4. Results and discussion 

In this section, the detail discussion to solve three variants of the MS-TKNS is presented. 

Problem 1: Consider the MS-TKNS is: 
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(13) 

The exact/true solutions of the above Eq (13) are [𝑒𝜒
3
, 𝑒−𝜒

3
] and the fitness function becomes as: 

𝐸 =
1

𝑁
∑

(

 
 
(𝜒𝑚

𝑑3𝑈̂

𝑑𝜒3
+ 2

𝑑2𝑈̂

𝑑𝜒2
+ 3

𝑑𝑈̂

𝑑𝜒
− 𝜒𝑚𝑈̂

2𝑉̂ − 𝜒𝑚𝐺1)

2

+

(𝜒𝑚
𝑑3𝑉̂

𝑑𝜒3
+ 2

𝑑2𝑉̂

𝑑𝜒2
+ 3

𝑑𝑉̂

𝑑𝜒
− 𝜒𝑚𝑈̂𝑉̂

2 − 𝜒𝑚𝐺2)

2

)

 
 

𝑁

𝑚=0

+
1

6

(

 
 
(𝑈̂ − 1)

2
+ (

𝑑𝑈̂

𝑑𝜒
)

2

+ (
𝑑2𝑈̂

𝑑𝜒2
)

2

+(𝑉̂ − 1)
2
+ (

𝑑𝑉̂

𝑑𝜒
)

2

+ (
𝑑2𝑉̂

𝑑𝜒2
)

2

)

 
 
. 

(14) 

Problem 2: Consider the MS-TKNS is: 

{
 
 
 
 
 

 
 
 
 
 
𝑑3𝑈

𝑑𝜒3
+
2

𝜒

𝑑2𝑈

𝑑𝜒2
+
3

𝜒

𝑑𝑈

𝑑𝜒
+ 𝑈𝑉3 = 4 + 𝑒−3𝜒

3
+ 4𝑒−2𝜒

3
+ 6𝑒−𝜒

3
+ 19𝑒𝜒

3
+ 9𝜒𝑒𝜒

3

              +72𝜒3𝑒𝜒
3
+ 27𝜒6𝑒𝜒

3
,

𝑑3𝑉

𝑑𝜒3
+
2

𝜒

𝑑2𝑉

𝑑𝜒2
+
3

𝜒

𝑑𝑉

𝑑𝜒
+ 𝑈3𝑉 = 4 − 17𝑒−𝜒

3
+ 4𝑒2𝜒

3
+ 6𝑒𝜒

3
+ 3𝑒3𝜒

3
− 9𝜒𝑒−𝜒

3

                   +72𝜒3𝑒−𝜒
3
− 27𝜒6𝑒−𝜒

3
,

𝑈(0) = 2,
𝑑𝑈(0)

𝑑𝜒
=
𝑑2𝑈(0)

𝑑𝜒2
= 0,

𝑉(0) = 2,
𝑑𝑉(0)

𝑑𝜒
=
𝑑2𝑉(0)

𝑑𝜒2
= 0.

 

(15)                                     

 

 

The true solutions of the above equation are [1 + 𝑒𝜒
3
, 1 + 𝑒−𝜒

3
] and the objective function becomes as: 

𝐸 =
1

𝑁
∑

(

 
 
(𝜒𝑚
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𝑑𝜒3
+ 2

𝑑2𝑉̂

𝑑𝜒2
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𝑑𝑉̂

𝑑𝜒
+ 𝜒𝑚𝑈̂

3𝑉̂ − 𝜒𝑚𝐺2)

2

)

 
 

𝑁

𝑚=0

+
1

6

(
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2
+ (

𝑑𝑈̂

𝑑𝜒
)

2

+ (
𝑑2𝑈̂

𝑑𝜒2
)

2

+(𝑉̂ − 2)
2
+ (

𝑑𝑉̂
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)

2

+ (
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. (16) 

Problem 3: Consider the MS-TKNS is: 
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𝑉(0) = 1,
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=
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 (17) 

The true solutions of the Eq (17) are [1 + 𝜒3, 1 − 𝜒3] and the fitness function becomes as: 

𝐸 =
1

𝑁
∑

(

 
 
(𝜒𝑚

𝑑3𝑈̂

𝑑𝜒3
+ 6
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+
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)
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)

2
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)
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(18) 

In order to find the proposed solutions of the Problems 1, 2 and 3 based on the MS-TKNS by using 

the proposed solver ANN-PSO-IPA for 40 multiple trials to achieve the adaptable parameters. The 

plots of the weight sets are shown in Figure 1 for 𝑈(𝜒) and 𝑉(𝜒), respectively. These weights are the 

decision variables of ANNs as presented in equations 3 such that the fitness functions in (14), (16) and 

(18) for respective problems 1, 2 and 3 are optimized with PSO-IPA, i.e., initially for global search 

efficacy of PSO and fine tune with IPA for rapid local search. These sets of weights are applied in first 

equation of set (3) to find approximate solutions to the three problems and the mathematical form are 

given as: 

𝑈̂𝑃−1 =
−6.786

1 + 𝑒−(−11.644𝜒+15.35)
+

4.539

1 + 𝑒−(−1.651𝜒+2.200)

+
−0.558

1 + 𝑒−(−8.143𝜒+9.243)
+. . . +

4.377

1 + 𝑒−( 0.019𝜒+2.086)
, 

(19) 

𝑈̂𝑃−2 =
1.008

1 + 𝑒−(1.230𝜒+0.015)
+

4.209

1 + 𝑒−(12.45𝜒−15.681)

+
0.336

1 + 𝑒−(−6.716𝜒+6.309)
+. . . −

0.329

1 + 𝑒−( −1.124𝜒+3.324)
, 

(20) 

𝑈̂𝑃−3 =
−0.017

1 + 𝑒−(4.530𝜒−3.801)
+

4.682

1 + 𝑒−(2.529𝜒+2.999)

+
5.098

1 + 𝑒−(0.715𝜒+0.913)
+. . . +

3.159

1 + 𝑒−( −2.099𝜒+8.587)
, 

(21) 
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𝑉̂𝑃−1 =
5.049

1 + 𝑒−(−2.457𝜒+2.070)
+

0.068

1 + 𝑒−(0.380𝜒+1.115)

+
−0.041

1 + 𝑒−(−0.464𝜒+0.215)
+. . . +

1.790

1 + 𝑒−( 2.540𝜒−1.143)
, 

(22) 

𝑉̂𝑃−2 =
−1.550

1 + 𝑒−(0.418𝜒−1.586)
−

0.692

1 + 𝑒−(4.495𝜒+2.403)

+
1.550

1 + 𝑒−(−3.258𝜒+2.387)
+. . . −

0.253

1 + 𝑒−( −0.32𝜒−0.418)
, 

(23) 

𝑉̂𝑃−3 =
2.237

1 + 𝑒−(0.454𝜒−0.035)
−

0.825

1 + 𝑒−(1.564𝜒+0.541)

−
0.249

1 + 𝑒−(1.204𝜒−0.301)
+. . . −

0.771

1 + 𝑒−( −1,792𝜒+0.440)
, 

(24) 

The optimization of the MS-TKNS is performed for the problems 1, 2 and 3 using the proposed solver 

ANN-PSO-IPA for 40 independent trials. Set of weights and results comparison are plotted graphically 

in Figure 1. It is specified that the exact and proposed solutions overlapped for both the indexes 𝑈(𝜒) 

and 𝑉̂(𝜒) of the problems 1, 2 and 3. This exact matches of the outcomes shows the correctness of the 

proposed methodology ANN-PSO-IPA. In order to calculate the comparison of the numerical results, 

the plots of the absolute error (AE) are drawn in Figure 2(a),(b) for 𝑈̂(𝜒) and 𝑉̂(𝜒). One can observe 

that most of the AE values of problems 1–3 for 𝑈(𝜒) lie in the range of 10−6 to 10−7, 10−4 to 10−6 and 

10−6 to 10−8, while, for 𝑉̂(𝜒), these values lie around 10−5 to 10−6, 10−3 to 10−4 and 10−6 to 10−7. The 

plots of the performance measures through fitness, RMSE, TIC and EVAF are drawn in the Figure 

2(c),(d) for 𝑈(𝜒) and 𝑉̂(𝜒). It is seen that the fitness values lie around to 10−06 to 10−08
, for problems 1 

and 3, while the fitness values for Problem 2 are close to 10−08. The RMSE values of 𝑈(𝜒) and 𝑉̂(𝜒) for 

problem 1 and 3 are close to 10−6 to 10−8, while for Problem 2, the RMSE lie 10−4–10−6 for 𝑈(𝜒) and 

10−2–10–4 for 𝑉̂(𝜒). The TIC performance lie around 10−6–10−8 for both indexes of all the Problems. 

The EVAF values for problem 1 and 3 lie 10−10–10−12 for both the indexes, while it lies around 10−8–

10−10 for problem 2. 

The convergence measures for the Problems 1–3 based on the MS-TKNS using the Fitness, 

histograms and boxplots for 10 numbers of neurons are provided in Figure 3. It is shown that most of 

the fitness values lie around 10−4–10−6 for Problem 1 and 3, while for Problem 3 these values lie around 

10−6–10−8. The convergence of both the indexes of all the problems for RMSE, TIC and EVAF is 

provided in Figures 4–9. Most of the values for both the indexes of all the problems lie in good ranges. 

For more accuracy and precision, statistical indices are performed based on minimum (Min), 

standard deviation (SD), mean, SI range and Median. SI Range is one half of the difference of Q3 = 

75% data, i.e., 3rd quartile and Q1 = 25% data, i.e., 1st quartile is calculated for 40 trials of ANN-PSO-

IPA to solve three different problems of MS-TKNS. These statistical based outcomes for Problems 1–

3 are tabulated in Tables 2 and 3 for the indexes 𝑈(𝜒) and 𝑉̂(𝜒). It is observed that most of the 𝑈(𝜒) and 

𝑉̂(𝜒) values for Problems 1–3 lie in the best ranges. The global performance G.FIT, G.RMSE, G.TIC 

and G.EVAF of 𝑈(𝜒) and 𝑉̂(𝜒) for Problems 1, 2 and 3 are tabulated in Table 4. These performances of 

the global values for Problems 1, 2 and 3 for 40 independent trials are provided. The magnitude (Mag) 

and Median values for all Problems using the indexes 𝑈(𝜒) and 𝑉̂(𝜒) proved very good results based on 

the statistical global operators. 
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(a) Results of 𝑈̂(𝜒) for Problems 1, 2 and 3. 

   

(b) Weights of Problem 1 for 𝑈(𝜒). (c) Weights of Problem 2 for 𝑈(𝜒). (d) Weights of Problem 3 for 𝑈(𝜒). 

 

(e) Results of 𝑉̂(𝜒) for Problems 1, 2 and 3. 

   

(f) Weights of Problem 1 for 𝑉̂(𝜒). (g) Weights of Problem 2 for 𝑉̂(𝜒). (h) Weights of Problem 3 for 𝑉̂(𝜒). 

Figure 1. Best weight sets and result comparisons for Problems 1, 2 and 3. 
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(a) AE of Problems 1, 2 and 3 for 𝑈(𝜒). (b) AE of Problems 1, 2 and 3 for 𝑉̂(𝜒). 

  

(c) Performance measures of Problem 1, 2 and 3 for 

𝑈(𝜒). 

(d) Performance measures of Problem 1, 2 and 3 for 

𝑉̂(𝜒). 

Figure 2. Absolute error and performance indices for Problems 1, 2 and 3. 
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Convergence indices for all problems of the MS-TKNS for the Fitness values.  

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 3. Convergence procedures for the Problems 1, 2 and 3 based on the MS-TKNS 

using the Fitness, histograms and boxplots for 10 neurons. 
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Convergence indices of 𝑈(𝜒) for each problem of the MS-TKNS for the RMSE values. 

   

(a): Histogram: Problem-1. (b): Histogram: Problem 2. (c): Histogram: Problem 3. 

   

(d): Boxplot: Problem 1. (e): Boxplot: Problem 2. (f): Boxplot: Problem 3. 

Figure 4. Convergence investigations of 𝑈̂(𝜒) for the Problems 1, 2 and 3 based on the 

MS-TKNS using the Fitness, histograms and boxplots for 10 neurons. 
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Convergence indices of 𝑉̂(𝜒) for each problem of the MS-TKNS for the RMSE values. 

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 5. Convergence investigations of 𝑉̂(𝜒) for the Problems 1, 2 and 3 MS-TKNS 

using the Fitness, histograms and boxplots for 10 neurons. 
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Convergence indices of 𝑈(𝜒) for each problem of the MS-TKNS for the TIC values. 

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 6. Convergence investigations of 𝑈̂(𝜒) for the Problems 1, 2 and 3 based on the 

MS-TKNS for the TIC values. 
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Convergence indices of 𝑉̂(𝜒) for each problem of the MS-TKNS for the TIC values. 

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 7. Convergence investigations of 𝑉̂(𝜒) for the Problems 1, 2 and 3 based on the 

MS-TKNS for the TIC values. 
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Convergence indices of 𝑈(𝜒) for each problems of the MS-TKNS for the EVAF values. 

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 8. Convergence measures of 𝑈̂(𝜒) for the Problems 1, 2 and 3 based on the MS-

TKNS using the EVAF values. 
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Convergence indices of 𝑉̂(𝜒) for each problem of the MS-TKNS based on the EVAF  

   

(a) Histogram: Problem-1. (b) Histogram: Problem 2. (c) Histogram: Problem 3. 

   

(d) Boxplots: Problem 1. (e) Boxplots: Problem 2. (f) Boxplots: Problem 3. 

Figure 9. Convergence measures of 𝑉̂(𝜒) for the Problems 1, 2 and 3 based on the MS-

TKNS for the EVAF, values. 
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Table 2. The statistics results of 𝑈̂(𝜒)  for each problem of the MS-TKNS using the 

designed ANN-PSO-IPA. 

Table 3. The statistics results of 𝑉̂(𝜒)  for each problem of the MS-TKNS using the 

designed ANN-PSO-IPA. 

  

 Mode 
The solution of 𝑈(𝜒) for Problems 1–3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P-1 

Min 3×10−7 1×10−7 6×10−7 7×10−7 5×10−7 1×10−7 8×10−7 8×10−7 4×10−7 1×10−7 5×10−7 

Mean 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5 

SD 4×10−5 4×10−5 4×10−5 4×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5 6×10−5 

Median 7×10−6 6×10−6 9×10−6 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5 

SIR 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5 3×10−5 4×10−5 

P-2 

Min 7×10−6 8×10−6 7×10−6 1×10−5 3×10−6 2×10−6 1×10−5 1×10−6 1×10−6 1×10−5 2×10−5 

Mean 3×10−3 3×10−3 3×10−3 3×10−3 4×10−3 6×10−3 1×10−2 1×10−2 2×10−2 4×10−2 5×10−2 

SD 1×10−2 1×10−2 1×10−2 1×10−2 1×10−2 2×10−2 5×10−2 9×10−2 1×10−1 2×10−1 3×10−1 

Median 3×10−4 3×10−4 3×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4 

SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 

P-3 

Min 1×10−7 1×10−7 7×10−7 1×10−7 2×10−7 1×10−9 3×10−7 1×10−7 8×10−7 2×10−7 1×10−7 

Mean 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5 

SD 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 4×10−5 5×10−5 6×10−5 

Median 3×10−6 3×10−6 3×10−6 5×10−6 6×10−6 7×10−6 8×10−6 1×10−5 1×10−5 1×10−5 1×10−5 

SIR 4×10−6 4×10−6 5×10−6 6×10−6 5×10−6 6×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 

 Mode 
The solution of 𝑈(𝜒) for Problems 1–3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P-1 

Min 7×10−7 4×10−7 1×10−7 1×10−6 1×10−7 1×10−6 8×10−7 2×10−6 8×10−7 3×10−6 5×10−6 

Mean 3×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 7×10−5 8×10−5 8×10−5 

SD 5×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 8×10−5 9×10−5 9×10−5 1×10−4 1×10−4 

Median 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 4×10−5 4×10−5 5×10−5 5×10−5 5×10−5 

SIR 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5 

P-2 

Min 1×10−5 4×10−6 1×10−5 3×10−6 2×10−5 3×10−6 1×10−7 3×10−5 6×10−4 4×10−3 1×10−2 

Mean 1×10−3 5×10−3 1×10−2 2×10−2 3×10−2 4×10−2 4×10−2 5×10−2 5×10−2 6×10−2 9×10−2 

SD 3×10−3 2×10−2 9×10−2 1×10−1 2×10−1 2×10−1 2×10−1 3×10−1 3×10−1 3×10−1 3×10−1 

Median 2×10−4 1×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4 2×10−3 9×10−3 3×10−2 

SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 1×10−4 1×10−4 2×10−4 2×10−4 2×10−4 3×10−4 

P-3 

Min 2×10−7 3×10−7 6×10−7 6×10−7 3×10−7 2×10−7 1×10−7 1×10−7 2×10−7 1×10−7 4×10−7 

Mean 9×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 

SD 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5 

Median 3×10−6 2×10−6 3×10−6 4×10−6 5×10−6 6×10−6 8×10−6 8×10−6 9×10−6 1×10−5 1×10−5 

SIR 5×10−6 5×10−6 3×10−6 3×10−6 4×10−6 6×10−6 6×10−6 7×10−6 8×10−6 8×10−6 1×10−5 



5304 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 5285–5308. 

Table 4. Global performance of 𝑈̂(𝜒) and 𝑉̂(𝜒) for Problems 1, 2 and 3. 

Index Example 
G.FIT G.RMSE G.TIC G.EVAF 

Mag Median Mag Median Mag Median Mag Median 

𝑈̂(𝜒) 

1 6×10-6 3×10-6 4×10−5 2×10−5 7×10−6 4×10−6 2×10−9 5×10−10 

2 2×10−4 4×10−5 2×10−2 2×10−4 7×10−6 4×10−6 4×10−2 2×10−7 

3 1×10−6 3×10−7 2×10−5 9×10−6 1×10−5 6×10−6 4×10−9 1×10−10 

𝑉̂(𝜒) 

1 6×10−6 3×10−6 6×10−5 4×10−5 1×10−5 8×10−6 3×10−7 5×10−9 

2 2×10−4 4×10−5 5×10−2 1×10−2 1×10−5 7×10−6 3×10−1 2×10−3 

3 1×10−6 3×10−7 1×10−5 8×10−6 1×10−5 1×10−5 3×10−9 9×10−11 

5. Conclusions 

In this research study, a stable, reliable and accurate numerical ANN-PSO-IPA is accessible to 

solve the multi-singular nonlinear third kind of Emden-Fowler system by using the ANN strength with 

continuous mapping. A fitness function of these networks is optimized for the global and local search 

capabilities of particle swarm optimization and interior-point algorithm, respectively. The proposed 

ANN-PSO-IPA is broadly applied to solve three different variants of the multi-singular nonlinear third 

kind of Emden-Fowler system. The precise and accurate performance is observed for ANN-PSO-IPA 

based on AE with consistent precision around 5 to 8 decimal places of precision for all three problems 

of the multi-singular nonlinear third kind of Emden-Fowler system. Statistical interpretations in terms 

of Min, Mean, SD, SI ranges and Median are performed to validate the convergence, robustness and 

accuracy of the proposed ANN-PSO-IPA for solving the multi-singular nonlinear third kind of Emden-

Fowler system based Eqs 1–3. 

In the future, new stochastic solvers based on ANN optimized with evolutionary/swarming 

paradigm looks proficient to solve nonlinear biological systems [47–50], fluid dynamics models [51–56] 

and fractional models [57–60]. Additionally, the different ANNs structure exploiting variety of 

activation functions should be implemented to solve the MS-TKNS for improved performance. 
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