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Abstract: The purpose of the present work is to solve a third kind of multi-singular nonlinear system
using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized
with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency
of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the
continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler
equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The
motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to
handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model.
The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third
kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the
designed ANN-PSO-IPA are used to endorse the precision, viability and reliability.
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1. Introduction

The historical Lane-Emden model was introduced first time by astrophysicist Jonathan Homer
Lane and Robert Emden [1,2] working on the thermal performance of a spherical cloud of gas and
classical law linked to thermodynamics [3]. The singular models have several applications in broad
field of applied science and engineering such as catalytic diffusion reactions along with error estimate
problems [4], density profile of gaseous star [5], stellar configuration [6], spherical annulus [7],
isotropic continuous media [8], the theory of electromagnetic [9] and morphogenesis [10]. It is always
not easy to solve the system of singular equations-based models due to their complex nature and
singular points. To mention a few schemes that have been applied to solve such models include
Legendre wavelets spectral technique [11], Bernoulli collocation scheme [12], variational iteration
technique [13], Haar wavelet quasilinearization method [14], spectral collocation scheme [15],
differential transformation approach [16] and Adomian decomposition technique [17].

All these above cited approaches have their precise merits and imperfections, however stochastic
solver has not been extensively implemented to solve multi-singular third kind of nonlinear system
(MS-TKNS) using the artificial neural networks (ANNs) together with particle swarm optimization
(PSO) and interior-point algorithm (IPA), i.e., ANN-PSO-IPA. The stochastic computing solvers have
been widely applied to resolve numerous applications [18-22]. Recently, the stochastic solvers
presented the solution of models for financial market forecasting [23], prey-predator nonlinear system
[24], nonlinear singular functional differential model [25,26], SITR nonlinear system [27,28], singular
delay differential system [29], nonlinear periodic boundary value problems [30], HIV nonlinear system
[31], SIR nonlinear system of dengue fever [32] and alternative approach based on fuzzy-neuro
methods to solve linear and nonlinear optimization problems [33,34]. These submissions enhance the
worth of the stochastic solvers to authenticate the convergence and precision of the suggested ANN-
PSO-IPA. The general form of the MS-TKNS is written as [35]:

(d3U  2a,d2U PCP-DAU
d3V  2a,d?V Q(Q—1)dV

dy3 + x dx? + x?  dxy HH00RMY) = 600

du(o d?u(o (M
av(o d?v(o

Where F; and F, are the nonlinear functions, P and Q are positive constants, G, and G,are
indicated as a source functions.

The purpose of this study is to present the solution of the model (1) via intelligent computing
ANN-PSO-IPA. The contributions of the paper are as follows:
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e A novel neuro-swarm computing intelligent heuristics ANN-PSO-IPA is accessible for multi-
singular nonlinear third order EF-SDE:s.

e The overlapping outcomes of the proposed ANN-PSO-IPA with the exact outcomes for three
examples of MS-TKNS enhance the exactness, consistency and convergence.

e Authorization of the precise performance is validated via statistical remark using the ANN-
PSO-IPA based on Theil's Inequality Coefficient (TIC), Root Mean Square Error (RMSE),
Variance Account For (VAF), Semi Interquartile (SI) Range.

e Beside practically precise continuous outcomes on whole input training intermission, an easy
implementable process, simplicity in perception, stability and robustness are other well-
intentioned announcements for the designed neuro-swarm intelligent computing approach.

The remaining structure of the current study is given as: Section 2 indicates the design
methodology through PSO-IPA. The mathematical form of performance measures can be found in
section 3. Section 4 shows the numerical results of the designed ANN-PSO-IPA. In the final section,
final submissions and future guidance are provided.

2. Methodology

The design of ANN-PSO-IPA for MS-TKNS is presented in two steps, given as:
Step 1: An error based objective function is accessible by using the mean square error sense.
Step 2: The learning procedure of the structures is presented using the hybrid of PSO-IPA.

2.1 ANN modeling

The ANNSs are famous to solve the various applications in different domain of applied science
and engineering. The proposed outcomes are denoted by U(y) and V(x), while znTZ and ZLXZ show the

n'" derivative, mathematically given as:

[ﬁ(X)' [7()()] = [Z ayiZ(wyix + du,) 'z ay;Z(wyix + ¢V,i)l:
i=1 i=1
2

n

m m
d an
= Z ay d_XnZ(WU,i)( + du,), Z ay,i WZ(WVJX + ¢V,i)l-
i=1 i=1

drg dnv
dy™’ dym

Where m shows the neurons and 7 is the derivative order. The unknown weight vectors are a,wand ¢.
W = [Wy, Wy], for Wy = [ay, wy, py] and Wy, = [ay, wy, ¢y ]. The components of the weight
vector are given as:

ay = [au,p Ay,2,Ay3,---) aU,m]' ay = [av,p Ay 2, Ay 3, -+, aV,m]'
Wy = [WU,1» Wy 2, Wy 3. WU,m]f Wy = [WV,l' Wy 2, Wy 3,..., WV,m]r
by = [¢U,1» ¢U,2» ¢U,3» sy ¢U,m]: Py = [¢V,1' ¢V,2' ¢V,3' R ¢V,m]-

The log-sigmoid Z(y) = is used as an activation function. The updated form of the system

_r
(14+e=x )

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5285-5308.



5288

(2) using the approximate results of U(y) and V() are written as:

[000.7(0)] = [Z o, . l

4 1+ e~ Wuix+du)’ 4 4 1 + e~(Wvix+ov,)
1= =

[dﬁ dv B i aU'iWU’ie_(WU,ix"'qu,i) i aV‘iWV’ie_(WV,ix""bV,i)
dy’dy = (1 + e—(WU'ix+¢U,i))2 ' = (1 + e—(WV,ix+¢V'i))2
[ 2~ 2(Wuix+du,) e~ (Wuix+dy,)
BN Z ay Wi 37 2
d*0 d?v| _|& (1+ e Woirtdu))” (1 + e~(Wuirtdus)) 3)
dy?’dy?| |& , { 2= 2(Wy,ix+y,) e~ (wyix+ov,) } '
Z Ay Wy i 3 2
|~ (1 + e—(WV,iX+¢V.i)) (1 + e_(WV,ix+¢V,i))
[ 5 6e—3(Wuix+du,) 6e—2Wuix+du,) e~ (Wuix+duy,)
s Z Ay ,iWy,i 1= 3T 2
d30 d3V = (1 + e—(Wu.inPu.i)) (1+ e_(WU,ix+¢U,i)) (1 + e_(WU,ix+¢U,i))
dy3'dy3| |& s 6e=3(wy,ix+dy,) 6e~2(wvix+oy,) e~ Wy ix+oy,)
Z ay,iWy i 1= 3T 2
| (1 + e—(Wv,ix+¢V.i)) (1 + e—(WV,ix+¢V,i)) (1 + e_(WV,ix+¢V,i))
The error based objective formulation is written as:
E=E1+E2+E3, (4)
1% d20 d0 ’
- Z a3+ 20t oz + PP = D B0~ 6 ) 5)
N . ~ "
1 20 d2v awv oY
Ea=5 ) (Mgt 2t g + Q@ - D + RO ~hGa) . (©)
m=1
1 -~ 2 —~ry\2 ~m\ 2 ~ 2 ~ 2 ~ o\ 2
Ey=2((0-4) + () + (@) +@-B) +(@) + (7)) at x=0. (7)

1 o . . .
Where N = oo Xm = mh. The Objective functions E; and E, are associated with the system of

differential equations and E; is the corresponding initial conditions.
2.2 Optimization procedure

The optimization is performed to solve the MS-TKNS using the hybrid framework of PSO- IPA.
PSO is an effective research method that has widely used as an alternative optimization of genetic
algorithms that were discovered by Kennedy and Eberhart [36]. In the theory of search space, a single
candidate result of decision variables in the optimization procedure is called a particle and set of these
particle formulated a swarms. For the refinement of optimization variables in standard PSO utilized

iterative process of optimizing based on local PL’;_l and global PG‘OB_1 best position of the particle in
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the swarm. The mathematical relations of position X; along with the velocity V; in PSO are given,
respectively, as follows:

XL =X+ )

VP =V By =X A (Pl = XD, ©)

where prepresent the current flight index, the inertia vector is denoted by w varying between 0 and
1, n; and 7, indicate the cognitive and social accelerations, respectively, while, 71 and r; are vectors
form with pseudo real number between 0 and 1. Further information regrading PSO can be seen in
[37], while few recent applications address by PSO include parameter estimation [38], nonlinear
electric circuits [39], optimize performance of induction generator [40], optimization of permanent
magnets synchronous motor [41] and systems of equations based physical models [42].

The quickly converges performance of PSO is attained by the process of hybridization with the
appropriate local search approach by taking the PSO best values as an initial weight. Consequently, in
the presented study, an effective local search scheme based on interior-point (IPA) is exploited for
rapid fine-tuning of the results by the PSO algorithm. The hybrid of PSO-IPA train the ANNSs as well
as fundamental parameter setting for both PSO and IPA are tabulated in Table 1. Recently, IPA is used
to power flow optimization incorporating security constraints [43], multistage nonlinear nonconvex
problems [44], image processing [45] and multi-fractional order doubly singular model [46]. The
hybrid of PSO-IPA train the decision variables of ANNs as per procedure and settings tabulated in
Table 1.

Table 1. Detailed pseudo code of PSO-IPA to solve the nonlinear third order EF-SDEs.

rt of P

Step-1: Initialization: Generate the primary swarm randomly and amend the parameters of

{PSO} and {optimoptions}  routine.

Step-2: Fitness Evaluation: Scrutinize the {fitness value} for each particle in Eq (4).
Step-3: Ranking: Rank to each particle of the least standards of the {fitness function}
Step-4: Stopping Standards: Stop, if any of the below form achieved

o  Selected flights

e  Fitness level

When accomplished the above values, then go to Step-5

Step-5: Renewal: The Eqs (8) and (9) are used for the  position and velocity.

Step-6: Improvement: Repeat the above steps 02—-06, until  the entire flights are attained.

Step-7: Storage: The attained best fitness values is stored and elect as the global best particle.
End of PSO

rt the pr f PSO-IPA

Inputs: Use the global best values
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Output: Wpeso.ips are the PSO-IPA’s best values
Initialize: Take {global best values} as a {start point}

Termination: Terminate the process, when {Fitness= E = 107'%}, {TolX = 1072°}> {TolCon =
TolFun = 102!}, {MaxFunEvals = 260000} and {Generation = 1500}.

While: [Stop]

Fitness Evaluation: The Eq (4) is used for the fitness  value E

Adjustments: Invoke the routine {fmincon} for the I[P  algorithm to adjust the values of the

weight vector.
Store to fitness values using the basic form of the ~ weight vector

Store: Weso-ips values, final adaptive weight values, function count, fitness, time and generations
for the present run.
End of the PSO-IPA

3. Performance indices

The current study is associated to present the statistical measures for solving the MS-TKNS.
Therefore, three performances based on Theil’s inequality coefficient (TIC) mean absolute deviation
(MAD) and Variance Account For (VAF) and their global variables are Global TIC (G.TIC), Global
MAD (G.MAD) and Global EVAF (G.EVAF) are applied. The mathematical descriptions of these
statistical operators are provided as:

IS - 0’ S0 - P 00)’
[TICy,TICy] = | = - an - , (10)
(Vazm oo + [Fem 0200 ) (JFzmveon + [Bomr00)
1% 2 [Ix R
[RMSEy, RMSEy ] = ;Z(Ui -0, ;Z(Vi -0)’) (11)
_ var(U(x) = U(x) var(V(x) = V(x))
[VAF,,VAF,] = [(1 - var (U0 ) * 100, <1 - var(VixD) ) * 100] (12)

4. Results and discussion

In this section, the detail discussion to solve three variants of the MS-TKNS is presented.

Problem 1: Consider the MS-TKNS is:
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+_ —_
dy' ydy® ydy
3 3 3 3 (13)
dv  2dV Ed—V—UVZ:—19e* +Oyet +T2%e" =21 e,

47 7d d
£ oydr ydy
dU) dU(0)

3 2
dU 20U 30U oy _17er voyer 472507 + 27 1%

U(O)Zl, 2 :01
dy

V(0)=1 dv(0) dz\/(20) 0.
dy dy

The exact/true solutions of the above Eq (13) are [e*’,e~%’] and the fitness function becomes as:

2
+ 3——)(ml7217—)(m61> +

0 420 d0
Xmaat ez T3

2
+3—— x,, UV? —)(m62>

~ azv d2 av
Xm T3
d)( d dy? dy
(14)
(U 1)+ 4O\’ + AN
dy dy?
+(V 1) + ary’ + LAY
dy dx?
Problem 2: Consider the MS-TKNS is:
d*U  2d*U  3dU . s . _
d—)(?)+)—(d—)(2+)—(a+uv =4+e x° + 4e x° + 6e X +19€X +9)(€X
+72x3eX’ + 27 y%eX’,
(15)

d3V ZdZV 3dV + U3V =4—17e % + 42X 4 6eX° 4+ 3e3%* —9ye~X
dy® de de

+72)3e X’ — 276X’
du(0) _ d2U(0) _

- Y

Uo) =2,

dy — dy?

av(o d?v (0
vy = 2, VO _ VO

\ dy dy?

The true solutions of the above equation are [1 + eX’,1 + e *’] and the objective function becomes as:

d3A+2dzﬁ+3dﬁ+ ovs G 2+ (U 2) + dﬁ 2+ d2

N [ — — [

F=v). B . |+3 .| 16)
= +2d2V+3dV+ uiv G ° +(7-2)"+ dV + dz

Problem 3: Consider the MS-TKNS is:

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5285-5308.



5292

rd3U+6d2U 2dU U)W =42—6 .
— == - =42—-6x — x>+ x°,
dy3  xdx* xdy

d3V+6d2V 2dv Ul-V)=—-42+6 3 _ y6

Uioy = 1 4U© _d*U) _ (17)

== =g -

dv(0) d?v(0)
VO =1— ==
The true solutions of the Eq (17) are [1 + x3,1 — 3] and the fitness function becomes as:
4°7 6d2ﬁ zdﬁ+ 1-0)0 G 2+

1 i Im a0 T 2y Xm( W = xmGy

N d3 (420 v ?
— _ -
(18)

(@ +<‘“’> ()
dx dx?
+(7-1)" + (dv> + <ﬁ>2
dx dx?
In order to find the proposed solutions of the Problems 1, 2 and 3 based on the MS-TKNS by using
the proposed solver ANN-PSO-IPA for 40 multiple trials to achieve the adaptable parameters. The
plots of the weight sets are shown in Figure 1 for U(y) and V (x), respectively. These weights are the
decision variables of ANNs as presented in equations 3 such that the fitness functions in (14), (16) and
(18) for respective problems 1, 2 and 3 are optimized with PSO-IPA, i.e., initially for global search
efficacy of PSO and fine tune with IPA for rapid local search. These sets of weights are applied in first

equation of set (3) to find approximate solutions to the three problems and the mathematical form are
given as:

~ —6.786 4.539
Up_1 = 1 4+ e-(-11.644x+15.35) T 1 4+ ¢—(~1.651x+2.200) 19
—0.558 4.377 (19)
+ 1 4+ ¢—(-8.143x+9.243) to.t 1 + ¢—(0.0197+2.086)’
~ 1.008 4.209
Up—2 = 1 4+ e—(1.230x+0.015) + 1 + e—(12.45x-15.681) 20
0.336 0.329 (20)
1 + ¢—(-6.716x+6.309) *e - 1 + e—(-1.124x+3.324)’
~ —0.017 4.682
Up-3 = 1 4+ ¢—(4530x—3.801) + 1 + e—(2529x+2.999) 21
5.098 3.159 (21)

+ 1 + ¢—(0.715x+0.913) LRt 1 + e—(~-2.099x+8.587)’
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N 5.049 0.068
Vp_1 = 1 + e—(-2.457x+2.070) + 1 + ¢—(0380x+1.115) 99
—0.041 1.790 (22)
1 + e—(-0464x+0.215) oot 1 + e—(2.540x—-1.143)’
A —1.550 0.692
Vp_p = 1 + ¢—(0.418x-1.586) - 1 + e—(4495+2.403) 93
1.550 0.253 (23)
1 + e—(-3.258x+2.387) T 1 4+ ¢~ (-032x-0.418)
A 2.237 0.825
Vp_3 = 1 4+ ¢—(0:454x—0.035) o 1 4+ ¢—(1.564x+0.541) o4
0.249 0.771 (24)
"1 4 e—(1.204x-0301) to— 1 + e—(—1792x+0.440)’

The optimization of the MS-TKNS is performed for the problems 1, 2 and 3 using the proposed solver
ANN-PSO-IPA for 40 independent trials. Set of weights and results comparison are plotted graphically
in Figure 1. It is specified that the exact and proposed solutions overlapped for both the indexes ()
and V(y) of the problems 1, 2 and 3. This exact matches of the outcomes shows the correctness of the
proposed methodology ANN-PSO-IPA. In order to calculate the comparison of the numerical results,
the plots of the absolute error (AE) are drawn in Figure 2(a),(b) for U(x) and V()).One can observe
that most of the AE values of problems 1-3 for 0y lie in the range of 10°to 1077, 10* to 107 and
107 to 10°%, while, for 17()(), these values lie around 107 to 107, 10 to 107* and 10°® to 10”7, The
plots of the performance measures through fitness, RMSE, TIC and EVAF are drawn in the Figure
2(c),(d) for 0 and (. It is seen that the fitness values lie around to 107 to 107 for problems 1
and 3, while the fitness values for Problem 2 are close to 10™%. The RMSE values of 0y and v for
problem 1 and 3 are close to 107 to 10~%, while for Problem 2, the RMSE lie 10*-107° for 0(y) and
107210~ for v(p. The TIC performance lie around 107°-107® for both indexes of all the Problems.
The EVAF values for problem 1 and 3 lie 107'°-107!? for both the indexes, while it lies around 1078~
1071 for problem 2.

The convergence measures for the Problems 1-3 based on the MS-TKNS using the Fitness,
histograms and boxplots for 10 numbers of neurons are provided in Figure 3. It is shown that most of
the fitness values lie around 10™#~107° for Problem 1 and 3, while for Problem 3 these values lie around
107°-107%. The convergence of both the indexes of all the problems for RMSE, TIC and EVAF is
provided in Figures 4-9. Most of the values for both the indexes of all the problems lie in good ranges.

For more accuracy and precision, statistical indices are performed based on minimum (Min),
standard deviation (SD), mean, Sl range and Median. SI Range is one half of the difference of Q3 =
75% data, i.e., 3" quartile and Q1 = 25% data, i.e., 1% quartile is calculated for 40 trials of ANN-PSO-
IPA to solve three different problems of MS-TKNS. These statistical based outcomes for Problems 1—
3 are tabulated in Tables 2 and 3 for the indexes 7)) and 7. It is observed that most of the 7)) and
7 values for Problems 1-3 lie in the best ranges. The global performance G.FIT, G.RMSE, G.TIC
and G.EVAF of a¢) and v for Problems 1, 2 and 3 are tabulated in Table 4. These performances of
the global values for Problems 1, 2 and 3 for 40 independent trials are provided. The magnitude (Mag)
and Median values for all Problems using the indexes o) and 7¢) proved very good results based on
the statistical global operators.
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(h) Weights of Problem 3 for V().

Figure 1. Best weight sets and result comparisons for Problems 1, 2 and 3.
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Figure 2. Absolute error and performance indices for Problems 1, 2 and 3.

Mathematical Biosciences and Engineering

Volume 18, Issue 5, 5285-5308.



5296

Trials

Values

Fitness

102
Problem 1
f Q =C= Problem 2
: : " ? I'Q —#®- Problem 3
2 foar ‘1 '11.
p‘e r r o
-4 | @ | L] [~ ] i
10 Uo‘bq ” 2 1 o @ ! “ ] “ PR oy @
o\ e® ‘Ba o e Vv o © "eed
L1 }'—5'. * E)
Of 1
1 » U n
& H ' LY " o £y N
107 [ - " ' 1 g 2.‘ - T . - 1.‘! ".-
“ L ] - - ¥ '
- , - % 1o - X o ‘.‘ H
LY ‘1 : .l' “. 1.II " .
W
e R S S |
0 5 10 15 20 25 30 35 40

Runs of PSO- IP algorithm

Convergence indices for all problems of the MS-TKNS for the Fitness values.

10?
;
10 LA
1 [ n
10° =
\ =
101 \
102
2 - 0 1 2 3
FIT w1072
(a) Histogram: Problem-1.
+
X
|
1078
u
Y
=
-]
-
1078
|
|
|
1
FIT

(d) Boxplots: Problem 1.

102
-
10"
10°
107"
-4 2 0 2 4 6
FIT w103

(b) Histogram: Problem 2.

-3
10 "
-
10
I
I
1
FIT

(e) Boxplots: Problem 2.

10?
10
2]
=
‘=
'—
10°
10"
2 A 0 1 2 3
FIT w1073
(c) Histogram: Problem 3.
1078 ¥
+
1076
w
[+ 5]
=
-]
=
107 |
|
|
L
1078
1
FIT

(f) Boxplots: Problem 3.

Figure 3. Convergence procedures for the Problems 1, 2 and 3 based on the MS-TKNS
using the Fitness, histograms and boxplots for 10 neurons.
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Figure 4. Convergence investigations of U(y) for the Problems 1, 2 and 3 based on the
MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
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Figure 7. Convergence investigations of V(y) for the Problems 1, 2 and 3 based on the
MS-TKNS for the TIC values.
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Table 2. The statistics results of U(y) for each problem of the MS-TKNS using the

designed ANN-PSO-IPA.

The solution of U(x) for Problems 1-3
Mode
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min 3x1077 11077 6x1077 7%1077 5%1077 11077 8x1077 8x1077 4x1077 11077 5%1077
Mean 2x10°7° 2x10°° 2x107° 3x10°7° 3x10°7° 4x10°° 5%10°7° 5%10°7° 6x10°° 6x10°° 6x10°°
P-1 SD 4x107° 4x10°3 4x1073 4x10° 4x1073 5x10°° 5%10°7° 6x107° 6x10°° 6x10°° 6x10°°
Median 7%10°° 6x107° 9x10°° 1x1073 1x1073 2x10°° 2x107° 3x10°7° 3x10°° 3x10°° 3x10°°
SIR 1x107° 1x107° 1x107° 1x107° 2x107° 3x1073 3x107° 3x107° 3x107 3x10°° 4x107°
Min 7x107° 8x107° 7x107 1x107° 3x107° 2x107° 1x107° 1x107° 1x107°® 1x107° 2x107°
Mean 3x107? 3x107 3x107° 3x107? 4x1073 6x1073 1x1072 1x1072 2x1072 4x1072 5x1072
P-2 SD 1x1072 1x1072 1x1072 1x1072 1x1072 2x1072 5x1072 9x1072 1x107! 2x107! 3x107!
Median 3x107 3x107* 3x107 2x107* 2x107 2x107* 2x107 2x107 2x1074 2x107* 3x107*
SIR 2x107 2x107* 2x107 2x107* 2x107 2x107* 2x107 2x107 2x107* 2x107* 2x107*
Min 1107 1x1077 7x1077 11077 2x1077 1x107° 3x1077 1x107 8x1077 2x1077 11077
Mean 8x10°° 9x107° 1x1073 1x10°° 1x1073 1x10°° 2x107° 2x107° 2x10°° 3x10°° 3x10°°
P-3 SD 1x1073 1x1073 1x1073 2x10°° 2x107° 3x10°° 3x10°7° 4x1073 4x10°° 5x10°7° 6x10°°
Median 3x10°° 3x10°° 3x10°° 5x107°° 6x10°° 7x107°° 8x107°° 1x1073 1x10°° 1x10°° 1x107°
SIR 4x107° 4x10°° 5x10°° 6x10°° 5x10°° 6x10°° 8x107°° 9x10°® 1x10°° 1x107° 1x107°
Table 3. The statistics results of 7y for each problem of the MS-TKNS using the
designed ANN-PSO-IPA.
The solution of U(y) for Problems 1-3
Mode
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min 7%x1077 4x1077 1x1077 1x1076 1x1077 1x1076 8x1077 2x10°° 8x1077 3x10°° 5%x107°
Mean 3x10° 3x10°° 3x10° 4x10°° 5x10° 5%x107° 6x10° 7%x107° 7%107° 8x10° 8x10°
P-1 SD 5x10-° 4x10°° 5x10-° 5x10-° 6x10-° 7%x10° 8x107° 9%x10-° 9x10° 1x10* 1x10*
Median 1x10-5 1x107° 1x107° 2x10° 2x107 3x10° 4x107°° 4x107° 5x10-° 5%x10-° 5x10-°
SIR 1x10-5 1x107° 1x107° 1x107° 1x107° 2x107° 2x107° 2x107° 2x107° 2x107° 2x107°
Min 1x10-5 4x10°® 1x107° 3x10°° 2x107 3x10°° 1x1077 3x10°° 6x10* 4x1073 1x1072
Mean 1x1073 5%1073 1x1072 2x1072 3x107? 4x1072 4x107? 5%1072 5x1072 6x1072 9x1072
P-2 SD 3x1073 2x1072 9x1072 1x1071 2x107 2x107! 2x107 3x10! 3x10! 3x10! 3x10!
Median 2x10™ 1x10™ 2x10 2x10™ 2x10* 2x10™ 2x10 3x10™ 2x1073 9x1073 3x1072
SIR 2x10™ 2x107 2x10™ 2x107* 2x10™ 1x10™ 1x10 2x107 2x10™ 2x10™ 3x10™
Min 2x1077 3x1077 6x1077 6x1077 3x107 2x1077 1x1077 1x1077 2x1077 1x1077 4x1077
Mean 9%x107° 8x107® 9%x10°¢ 1x10-° 1x10°° 1x10°° 1x10°° 1x10°° 2x107° 2x107° 2x107°
P-3 SD 1x10°° 1x10-° 1x10°° 1x10-° 1x10°° 2x107° 2x107° 3x107° 3x10°° 4x10-° 5x107°
Median 3x10°¢ 2x10°° 3x10° 4x107® 5x10°¢ 6x107° 8x10°¢ 8x107° 9%x10°® 1x10°° 1x10°°
SIR 5x107° 5%107¢ 3x10°® 3x10°° 4x1076 6x107° 6x107® 7%x10°¢ 8x10°® 8x107° 1x10-5
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Table 4. Global performance of U(y) and V(x) for Problems 1,2 and 3.

G.FIT G.RMSE G.TIC G.EVAF
Index | Example
Mag Median Mag Median Mag Median Mag Median
1 6x10°¢ 3x107 4x107° 2x107° 7x107° 4x107° 2x107° 5%10710
ﬁ()() 2 2x1074 4x1073 2x1072 2x1074 7x107° 4x10°6 4x1072 2x1077
3 1x10°° 3x1077 2x1073 9x107° 1x1073 6x107° 4x107° 1x1071°
1 6x107° 3x10°° 6x1073 4x1073 1x1073 8x107° 3x1077 5x107°
V(X) 2 2x1074 4x1073 5%1072 1x1072 1x1073 7x107° 3x107! 2x1073
3 1x10°° 3x1077 1x1073 8x107° 1x1073 1x1073 3x107° 9x1071

5. Conclusions

In this research study, a stable, reliable and accurate numerical ANN-PSO-IPA is accessible to
solve the multi-singular nonlinear third kind of Emden-Fowler system by using the ANN strength with
continuous mapping. A fitness function of these networks is optimized for the global and local search
capabilities of particle swarm optimization and interior-point algorithm, respectively. The proposed
ANN-PSO-IPA is broadly applied to solve three different variants of the multi-singular nonlinear third
kind of Emden-Fowler system. The precise and accurate performance is observed for ANN-PSO-IPA
based on AE with consistent precision around 5 to 8 decimal places of precision for all three problems
of the multi-singular nonlinear third kind of Emden-Fowler system. Statistical interpretations in terms
of Min, Mean, SD, SI ranges and Median are performed to validate the convergence, robustness and
accuracy of the proposed ANN-PSO-IPA for solving the multi-singular nonlinear third kind of Emden-
Fowler system based Eqs 1-3.

In the future, new stochastic solvers based on ANN optimized with evolutionary/swarming
paradigm looks proficient to solve nonlinear biological systems [47-50], fluid dynamics models [51-56]
and fractional models [57-60]. Additionally, the different ANNs structure exploiting variety of
activation functions should be implemented to solve the MS-TKNS for improved performance.
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