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Abstract: This paper proposed a fractional-order Holling type-II food chain model. First, we verified
the existence, uniqueness, nonnegativity and boundedness of the solution of the model, and some con-
ditions for equilibrium existence and local stability were studied. Second, a controller was proposed,
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Finally, numerical simulations were performed to verify the theoretical results.
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1. Introduction

Population dynamics has always been an important research object of biomathematics. Various
groups often have complex interspecific relationships, such as predation, competition, parasitism and
mutualism [1]. Predation behavior, as a widespread interspecies relationship, has been widely studied.
Lotka and Volterra were the first to propose a predator-prey system to describe the widespread inter-
species relationship of predation [2]. Holling further proposed three functional responses of predators
to describe the energy transfer between predators and prey [3]. These three functional responses have
been applied and perfected by many scientists [4]. In 1991, Hastings and Powell proposed a food
chain system with chaotic dynamics and studied the dynamics of the model [5]. In recent years, many
mathematicians have also studied the development and improvement of Hastings-Powell food chain
models [6–9].

Fractional calculus is a generalization of traditional calculus, and its order can be composed of in-
tegers, fractions or complex numbers [10]. Fractional calculus can better describe some systems or
processes with memory and hereditary properties, and it has been widely used in many fields, such
as physics, secure communication, system control, neural networks, and chaos [11, 12]. The method
of solving the fractional model has also been widely studied [13, 14]. In [15], the Caputo fractional
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derivative operator is used instead of the integer first derivative to establish an effective numerical
method for solving the dynamics of the reaction-diffusion model based on a new implicit finite differ-
ence scheme. In [16], a numerical approximation for the Caputo-Fabrizio derivative is used to study
the dynamic complexity of a predator-prey system with a Holling-type functional response. In [17],
a new fractional chaotic system described by the Caputo fractional derivative is presented, and how
to use the bifurcation diagram of this chaotic system to detect chaotic regions is analyzed. In [18],
the generalization of Lyapunov’s direct method applying Bihari’s and Bellman-Gronwall’s inequalities
to Caputo-type fractional-order nonlinear systems is proposed. In [19], the Fourier spectral method
is introduced to explore the dynamic richness of two-dimensional and three-dimensional fractional
reaction-diffusion equations. In [20], the spatial pattern formation of the predator-prey model with dif-
ferent functional responses was studied. [21] studied the numerical solution of the space-time fractional
reaction-diffusion problem that simulates the dynamic and complex phenomena of abnormal diffusion.

Since most biological mathematical models have long-term memory, fractional differential equa-
tions can more accurately and reliably describe the actual dynamic process [1, 22]. [23] proposed
fractional predator-prey models and fractional rabies models and studied their equilibrium points, sta-
bility and numerical solutions. In [24], the authors studied the stability of a fractional-order system
by the Lyapunov direct method, which substantially developed techniques to study the stability of
fractional-order population models. In [9], the authors extended the Hastings-Powell food chain sys-
tem to fractional order and analyzed its dynamic behavior.

As an important research object of biological mathematics and control theory, population model
control has received extensive research and development in recent years [25–27]. In [28], the authors
conducted random detection and contacted tracking on the HIV/AIDS epidemic model and used the
Adams-type predictor-corrector method to perform fractional optimal control of the model, which
significantly reduced the number of AIDS patients and HIV-infected patients. In [29], the authors
applied the time-delay feedback controller to the fractional-order competitive Internet model to solve
the bifurcation control problem of this model. In [30], the author considered the influence of additional
predators on the Hastings-Powell food chain model and studied the control of chaos in this model.

Biological models are widely studied by scientists, but many classic models study food chain mod-
els composed of herbivores and carnivores, and omnivores are rarely considered. In fact, omnivores
are widespread in nature and play an important role in the food chain. In this article, the existence of
omnivores is fully considered, and a food chain model in which herbivores, omnivores and carnivores
coexist is studied. Based on these works, this paper proposes a fractional food chain model with a
Holling type-II functional response. The main contributions of this paper are as follows. First, this
paper proves the existence and uniqueness of the solution and the nonnegativity and boundedness of
the solution. Second, the equilibrium point of the model is calculated, and the local stability of the
equilibrium point is proven. Third, a controller is designed to prove the global asymptotic stability of
the system by using the Lyapunov method.

This paper is organized as follows. In Section 2, the definitions and lemmas are given, and the food
chain model is established. In Section 3, the existence, uniqueness, nonnegativity and boundedness are
proven, and the local stability of the equilibrium point of the model is studied. The global stability of
the model is studied through the controller. In Section 4, numerical simulations are performed to verify
the theoretical results. The conclusion of this article is given in Section 5.
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2. Model description and preliminaries

In this section, some basic knowledge about fractional equations and the theorems and lemmas used
in this paper are given, and the fractional food chain system is introduced.

Definition 1. [10]. The Caputo fractional derivative of order α of a function f , R+ → R, is defined by

Dα
t f (t) =

1
Γ(n − α)

∫ t

0

f n(τ)
(t − τ)α+1−n dτ, (n − 1 < α < n), n ∈ Z+,

where Γ(·) is the Gamma function. When 0 < α < 1,

Dα
t f (t) =

1
Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α

dτ.

Definition 2. [31]. When the order a > 0, for a function f : (0,∞) → R, the Riemann-Liouville
representation of the fractional integral operator is defined by

RLD−a
t f (t) =RL Ia

t f (t) =
1

Γ(a)

∫ t

0
(t − τ)a−1 f (τ)dτ, t > 0,

RLI0
t g(t) = g(t),

where a > 0 and Γ(·) is the Gamma function.

Lemma 1. (Generalized Gronwall inequality) [32]. Assume that m ≥ 0, γ > 0, and a(t) are nonnega-
tive, locally integrable, and nondecreasing functions defined on 0 ≤ t ≤ T (T ≤ ∞). In addition, h(t) is
a nonnegative, locally integrable function defined in 0 ≤ t ≤ T and satisfies

h(t) ≤ a(t) + m
∫ t

0
(t − s)γ−1h(t)ds,

then,
h(t) = a(t)Eγ(mΓ(γ)tγ),

where the Mittag-Leffler function Eγ(z) =
∞∑

k=0

zk

Γ(kγ+1) .

Lemma 2. [10]. Consider the fractional-order system{
Dα

t x(t) = f (t, x(t)),
x(0) = x0,

(2.1)

where f (t, x(t)) defined in R+ × Rn → Rn and α ∈ (0, 1].
The local asymptotic stability of the equilibrium point of this system can be derived from |arg(λi)| >

απ
2 , where λi are the eigenvalues of the Jacobian matrix at the equilibrium points.

Lemma 3. [24]. Consider the system {
Dα

t x(t) = f (t, x(t)),
x(0) = xt0 ,

(2.2)

where α ∈ (0, 1], f : [t0,∞) × Ω → Rn, and Ω ∈ Rn; if f (t, x) satisfies the local Lipschitz condition
about x on [t0,∞) ×Ω, then there exists a unique solution of (2.2).
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Lemma 4. [33]. The function x(t) ∈ R+ is continuous and derivable; then, for any t ≥ t0

Dα
t [x(t) − x∗ − x∗ ln

x(t)
x∗

] ≤ (1 −
x∗

x(t)
)Dα

t x(t), x∗ ∈ R+,∀α ∈ (0, 1).

There are a variety of complex biological relationships in nature. Predation is the most important
biological relationship, and it has received attention from and been studied by many scientists. In [5],
the author proposed a three-species food chain model. The model consists of one prey X̂ and two
predators Ŷ and Ẑ. The top predator Ẑ feeds on the secondary predator Ŷ , and the secondary predator
Ŷ feeds on the prey X̂. This is the famous Hastings-Powell model:

dX̂
dT = R̂X̂(1 − X̂

K̂
) − Ĉ1Â1X̂Ŷ

B̂1+X̂
,

dŶ
dT = Â1X̂Ŷ

B̂1+X̂
−

Â2ŶẐ
B̂2+Ŷ
− D̂1Ŷ ,

dẐ
dT = Ĉ2Â2ŶẐ

B̂2+Ŷ
− D̂2Ẑ,

(2.3)

where R̂ and K̂ represent the intrinsic growth rates and environmental carrying capacity, respectively.
For i = 1, 2, parametersÂi, B̂i, Ĉi and D̂i are the predation coefficients, half-saturation constant, food
conversion coefficients and death rates.

The Hastings-Powell model considers a food chain composed of herbivores, small carnivores and
large carnivores but does not consider the existence of omnivores. We consider a food chain consisting
of small herbivores X, medium omnivores Y and large carnivores Z. Among them, omnivores Y prey
on herbivores X, and carnivores Z prey on omnivores Y . They all respond according to Holling II type.
This system can be expressed mathematically as

dX
dT = R1X(1 − X

K1
) − C1A1XY

B1+X ,
dY
dT = R2Y(1 − Y

K2
) + A1XY

B1+X −
A2YZ
B2+Y ,

dZ
dT = C2A2YZ

B2+Y − DZ,
(2.4)

where X, Y and Z represent the densities of the prey population, primary predator population and
top-predator population, respectively. For i = 1, 2, parameters Ri, Ki, Ai, Bi and Ci are the intrinsic
growth rates, environmental carrying capacity, predation coefficients, half-saturation constant and food
conversion coefficients, respectively. The parameter D is the death rates for Z.

Then, we obtain the following dimensionless version of the food chain model:
dx
dt = r1x(1 − x

K1
) − a1 xy

1+b1 x ,
dy
dt = r2y(1 − y

K2
) +

a1 xy
1+b1 x −

a2yz
1+b2y ,

dz
dt =

a2yz
1+b2y − dz,

(2.5)

the independent variables x, y and z are dimensionless population variables; t represents a dimension-
less time variable; and ai, bi(i = 1, 2) and d are positive.

Research results show that using fractional derivatives to model real-life biological problems is
more accurate than classical derivatives [15]. To better analyze the dynamics between these three
populations, we studied the following fractional-order Hastings-Powell System food chain model:

Dα
t x = r1x(1 − x

K1
) − a1 xy

1+b1 x ,

Dα
t y = r2y(1 − y

K2
) +

a1 xy
1+b1 x −

a2yz
1+b2y ,

Dα
t z =

a2yz
1+b2y − dz,

(2.6)
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where α ∈ (0, 1) is the fractional order.

3. Main results

3.1. Properties of the solution

Theorem 1. The fractional-order Hastings-Powell System food chain model (2.6) has a unique solu-
tion.

Proof: We will study the existence and uniqueness of the system (2.6) in [0,T ] × Ω, where Ω =

{(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ H}. Let S = (x, y, z), S̄ = (x̄, ȳ, z̄), F(S ) = (F1(S ), F2(S ), F3(S )) and
F1(S ) = Dα

t x = r1x(1 − x
K1

) − a1 xy
1+b1 x ,

F2(S ) = Dα
t y = r2y(1 − y

K2
) +

a1 xy
1+b1 x −

a2yz
1+b2y ,

F3(S ) = Dα
t z =

a2yz
1+b2y − dz,

(3.1)

For any S , S̄ ∈ Ω, it follows from (3.1) that

‖F(S ) − F(S̄ )‖ = |F1(S ) − F1(S̄ )| + |F2(S ) − F2(S̄ )| + |F3(S ) − F3(S̄ )|

= |r1x(1 −
x

K1
) −

a1xy
1 + b1x

− (r1 x̄(1 −
x̄

K1
) −

a1 x̄ȳ
1 + b1 x̄

)|

+ |r2y(1 −
y

K2
) +

a1xy
1 + b1x

−
a2yz

1 + b2y
− (r2ȳ(1 −

ȳ
K2

) +
a1 x̄ȳ

1 + b1 x̄
−

a2ȳz̄
1 + b2ȳ

)|

+ |
a2yz

1 + b2y
− dz − (

a2ȳz̄
1 + b2ȳ

− dz̄)|

≤ r1|x(1 −
x

K1
) − x̄(1 −

x̄
K1

)| + r2|y(1 −
y

K2
) − ȳ(1 −

ȳ
K2

)|

+ 2a1|
xy

1 + b1x
−

x̄ȳ
1 + b1 x̄

| + 2a2|
yz

1 + b2y
−

ȳz̄
1 + b2ȳ

| + d|z − z̄|

≤ r1|x − x̄| + r2|y − ȳ| +
r1

K1
|x2 − x̄2| +

r2

K2
|y2 − ȳ2| + d|z − z̄|

+ |
xy − x̄ȳ + b1 x̄xy − b1 x̄xȳ

(1 + b1x)(1 + b1 x̄)
| + |

yz − ȳz̄ + b2ȳyz − b2ȳyz̄
(1 + b2y)(1 + b2ȳ)

|

≤ r1|x − x̄| + r2|y − ȳ| +
r1

K1
|(x + x̄)(x − x̄)| +

r2

K2
|(y + ȳ)(y − ȳ)| + d|z − z̄|

+ |xy − x̄ȳ + b1xx̄(y − ȳ)| + |yz − ȳz̄ + b2yȳ(z − z̄)|

≤ r1|x − x̄| + r2|y − ȳ| +
r1M
K1
|(x − x̄)| +

r2M
K2
|(y − ȳ)| + d|z − z̄|

+ |xy − xȳ + xȳ − x̄ȳ| + b1|xx̄||y − ȳ| + |yz − yz̄ + yz̄ − ȳz̄| + b2|yȳ||z − z̄|

≤ (r1 +
r1M
K1

)|x − x̄| + (r2 +
r2M
K2

)|y − ȳ| + d|z − z̄|

+ M|y − ȳ| + M|x − x̄| + b1M2|y − ȳ| + M|z − z̄| + M|y − ȳ| + b2M2|z − z̄|

= (r1 +
r1M
K1

+ M)|x − x̄| + (r2 +
r2M
K2

+ 2M + b1M2)|y − ȳ| + (d + M + b2M2)|z − z̄|

≤ L‖S − S̄ ‖.
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where L = max{r1 + r1 M
K1

+ M, r2 + r2 M
K2

+ 2M + b1M2, d + M + b2M2}, Based on Lemma 3, F(S ) satisfies
the Lipschitz condition with respect to S in Ω. According to the Banach fixed point theorem in [34],
system (2.6) has a unique solution in Ω.

�

Theorem 2. Set A = {x, y, z) ∈ R3 : 0 < x + y + z < K1(r1+v)2

4r1v +
K2(r2+v)2

4r2v } as a positively invariant set of
system (2.6), and the solutions are bounded.

Proof: let g(t) , g(x(t), y(t), z(t)) = x(t) + y(t) + z(t),

Dα
t g(t) + vg(t) = (r1 + v)x(t) −

r1

K1
x2(t) + (r2 + v)y(t) −

r2

K2
y2(t) − (d − v)z(t)

= −
r1

K1
(x(t) −

K1(r1 + v)
2r1

)2 −
r2

K2
(y(t) −

K2(r2 + v)
2r2

)2 − (d − v)z(t)

+
K1(r1 + v)2

4r1
+

K2(r2 + v)2

4r2
,

let

u =
K1(r1 + v)2

4r1
+

K2(r2 + v)2

4r2
, v = d.

According to the positive knowledge of all parameters and the nonnegativity of the solutions,

Dα
t g(t) + vg(t) ≤ u,

we obtain
g(t) ≤

u
v

+ [g(0) −
u
v

]Eα(−vtα),

Since Eα(−vtα) ≥ 0, when g(0) ≤ u
v , lim

t→∞
sup g(t) ≤ u

v . According to the nonnegativity of the system

(2.6), g(t) ≥ 0(∀t ≥ 0); hence, A = {x, y, z) ∈ R3 : 0 < x + y + z < K1(r1+v)2

4r1v +
K2(r2+v)2

4r2v } is a positively
invariant set of system (2.6), and the solutions are bounded. �

3.2. Equilibria and their stability

Let 
r1x(1 − x

K1
) − a1 xy

1+b1 x = 0,
r2y(1 − y

K2
) +

a1 xy
1+b1 x −

a2yz
1+b2y = 0,

a2yz
1+b2y − dz = 0,

Then, the equilibrium points are E0 = (0, 0, 0), E1 = (K1, 0, 0), E2 = (0,K2, 0) and E∗ = (x∗, y∗, z∗),
where

x∗ =
b1K1 − 1

2b1
+

√
b2

1K2
1r2

1 + 2b1K1r2
1 − 4a1b1K1r1y∗ + y2

∗

2b1r1
,

y∗ =
d

a2 − b2d
,

z∗ =
a1x∗(b2y∗ + 1)
a2(b1x∗ + 1)

−
r2(b2y∗ + 1)(y∗ − K2)

a2K2
.
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For system (2.6), the Jacobian matrix at the equilibrium point (x′, y′, z′) is

J(x′, y′, z′) =


r1 −

2r1 x′

K1
−

a1d
e1e2

3
−e5 0

e4 r1 + e5 −
a2z′

e2
−

2dr2
K2e1

+ a2b2dz′

e1e2
2
−d

0 e2
1z′

a2
0

 ,
where e1 = a2 − b2d, e2 = b2d

e1
+ 1, e3 = 1 + b1x′, e4 = 2r1 x′

K1
+ a1d

e1e2
3
, e5 = a1 x′

e3
.

Theorem 3. For system (2.6), the equilibrium points E0 and E1 are saddle points.

Proof: The Jacobian matrices evaluated at E0 and E1 are

J(0, 0, 0) =


r1 0 0
0 r2 0
0 0 −d

 , J(K1, 0, 0) =


−r1 −

a1K1
b1K1+1 0

0 r2 + a1K1
b1K1+1 0

0 0 −d

 ,
According to Lemma 2, when the eigenvalues are all real numbers and all negative, the equilibrium

points are locally asymptotically stable.
The eigenvalues of J(E0) are λ01 = r1, λ02 = r2 and λ03 = −d. The eigenvalues of J(E1) are

λ11 = −r1, λ12 = r2 + a1K1
b1K1+1 and λ13 = −d.

Then, we have λ01, λ02 > 0, λ03, λ11 < 0, and λ13 < 0, so the equilibrium points E0 and E1 are saddle
points. �

Theorem 4. For system (2.6), if r1 < a1K2 and a2K2
(b2K2+1) < d, then the equilibrium point E2 = (0,K2, 0)

is locally asymptotically stable.

Proof: The Jacobian matrix evaluated at E2 is

J(0,K2, 0) =


r1 − a1K2 0 0

a1K2 −r2 −
a2K2

b2K2+1
0 0 a2K2

b2K2+1 − d

 ,
The eigenvalues of J(E2) are λ1 = r1 − a1K2, λ2 = −r2 and λ3 = a2K2

b2K2+1 − d.
Therefore, if r1 < a1K2 and a2K2

(b2K2+1) < d, the equilibrium point E2 is locally asymptotically stable. �
The characteristic equation of equilibrium points E∗ = (x∗, y∗, z∗) is given as

P(λ) = λ3 + Aλ2 + Bλ + C = 0, (3.2)

where
A = 2 f4 − 2r1 − e5 + f2z∗ + f1de2

3 + f5 −
f2b2dz∗

e1e2
,

B = (B1 + B2),
B1 = e4e5 + e5r1 + r2

1 − 2r1 f4 − f2r1z∗ − 2e5 f4 +
e2

1dz∗
a2
− f6e5 − f6r1 − 2r1 f5,

B2 = 2e2
3 f1 f5 + 2 f2 f4z∗ + a1 f3e2

3z∗ +
4dr2 f4
e1k1

+ r1 f7 − f1 f7de3 − 2 f4 f7,

C =
dz∗(a1dK1e2

3−e1K1r1+2e1r1 x∗)
f1K1

,

where f1 = a1
e1

, f2 = a2
e2

, f3 =
f2d
e1

, f4 = r1 x∗
K1

, f5 = r2d
e1K2

, f6 =
a1de2

3
e1

, f7 =
b2 f3z∗

e2
.
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For Eq. (3.2), define the discriminant as

D(P) = 18ABC + (AB)2 − 4CA2 − 4B3 − 27C2,

With reference to the results of [35] and [36], we obtain the following fractional Routh-Hurwitz
conditions:

1. If D(P) > 0, A > 0, C > 0, and AB −C > 0, E∗ is locally asymptotically stable.
2. If D(P) < 0 and A ≥ 0, B ≥ 0, and C > 0, when α < 2

3 , E∗ is locally asymptotically stable.
3. If D(P) < 0, A > 0, B > 0, and AB = C, then for all α ∈ (0, 1), E∗ is locally asymptotically stable.

Theorem 5. If D(P) < 0, C > 0 and AB , C, then α∗ ∈ (0, 1) exists; when α ∈ (0, α∗), E∗ is locally
asymptotically stable; when α ∈ (α∗, 1), E∗ is unstable. The system diverges at the critical value E∗.

Proof: If D(P) < 0, then the eigenvalues of Eq. (3.2) have one real root λ1 = a and two complex
conjugate roots λ2,3 = b ± ci. Then, Eq. (3.2) can be written as

P(λ) = (λ − a)[λ − (b + ci)][λ − (b − ci)] = 0, (3.3)

where A = −a − 2b, B = b2 + c2 + 2ab, C = −a(b2 + c2), c > 0, a, b, c ∈ R.
From C > 0, then a < 0, and then |arg(λ1)| = π > απ

2 .
From AB , C, then −a2b + b(b2 + c2) , −2ab2 =⇒ −2b[(a + b)2 + c2] , 0 =⇒ b , 0 and

(a + b)2 + c2 , 0.
Thus, we can obtain |arg(λ2,3)| = |arctan( c

b )| = arctan| cb | ∈ (0, π2 ).
Then, α∗ ∈ (0, 1) exists; when α ∈ (0, α∗), απ

2 < arctan| cb |, according to Lemma 2, E∗ is locally
asymptotically stable, and when α ∈ (α∗, 1), απ

2 > arctan| cb |, E∗ is unstable. �

3.3. Global asymptotic stability

To study the asymptotic stability of system (2.6), three controllers will be added. The controller is
proposed as follows: µ1 = m1x(x − x∗), µ2 = m2y(y − y∗), and µ3 = m3z(z − z∗). where m1, m2 and m3

represent negative feedback gains, which are defined as real numbers. Clearly, if mi = 0(i = 1, 2, 3) or
x = x∗(y = y∗, z = z∗), then µi = 0(i = 1, 2, 3), so it will not change the equilibrium point of system
(2.6).

Controllers added into system (2.6) as follows
Dα

t x = r1x(1 − x
K1

) − a1 xy
1+b1 x − m1x(x − x∗),

Dα
t y = r2y(1 − y

K2
) +

a1 xy
1+b1 x −

a2yz
1+b2y − m2y(y − y∗),

Dα
t z =

a2yz
1+b2y − dz − m3z(z − z∗),

(3.4)

One gives a Lyapunov function as:

V(x, y, z) = x − x∗ − x∗ ln
x
x∗

+ y − y∗ − y∗ ln
y
y∗

+ z − z∗ − z∗ ln
z
z∗
.

then,

Dα
t V ≤

x − x∗
x

Dαx +
y − y∗

y
Dαy +

z − z∗
z

Dαz
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= (x − x∗)(r1 − r1
x

K1
−

a1y
1 + b1x

) − m1(x − x∗)2

+ (y − y∗)(r2 − r2
y

K2
+

a1x
1 + b1x

−
a2z

1 + b2y
) − m2(y − y∗)2

+ (z − z∗)(
a2y

1 + b2y
− d) − m3(z − z∗)2.

Consider E∗ to be the equilibrium point:
r1 − r1

x∗
K1
−

a1y∗
1+b1 x∗

= 0,
r2 − r2

y∗
K2

+ a1 x∗
1+b1 x∗

−
a2z∗

1+b2y∗
= 0,

a2y∗
1+b2y∗

− d = 0,

According to Lemma 4, we can obtain

Dα
t V ≤ (x − x∗)(r1

x∗
K1

+
a1y∗

1 + b1x∗
− r1

x
K1
−

a1y
1 + b1x

) − m1(x − x∗)2

+ (y − y∗)(r2
y∗
K2
−

a1x∗
1 + b1x∗

+
a2z∗

1 + b2y∗
− r2

y
K2

+
a1x

1 + b1x
−

a2z
1 + b2y

) − m2(y − y∗)2

+ (z − z∗)(
a2y

1 + b2y
−

a2y∗
1 + b2y∗

) − m3(z − z∗)2

= a1(x − x∗)(
y∗

1 + b1x∗
−

y
1 + b1x

) + a1(y − y∗)(
x

1 + b1x
−

x∗
1 + b1x∗

)

+ a2(y − y∗)(
z∗

1 + b2y∗
−

z
1 + b2y

) + a2(z − z∗)(
y

1 + b2y
−

y∗
1 + b2y∗

)

− (m1 +
r1

K1
)(x − x∗)2 − (m2 +

r2

K2
)(y − y∗)2 − m3(z − z∗)2

= a1(x − x∗)(
y∗

1 + b1x∗
−

y∗
1 + b1x

+
y∗

1 + b1x
−

y
1 + b1x

)

+ a1(y − y∗)(
x

1 + b1x
−

x∗
1 + b1x

+
x∗

1 + b1x
−

x∗
1 + b1x∗

)

+ a2(y − y∗)(
z∗

1 + b2y∗
−

z∗
1 + b2y

+
z∗

1 + b2y
−

z
1 + b2y

)

+ a2(z − z∗)(
y

1 + b2y
−

y∗
1 + b2y

+
y∗

1 + b2y
−

y∗
1 + b2y∗

)

− (m1 +
r1

K1
)(x − x∗)2 − (m2 +

r2

K2
)(y − y∗)2 − m3(z − z∗)2

= a1(x − x∗)(
b1y∗(x − x∗)

(1 + b1x∗)(1 + b1x)
+

y∗ − y
1 + b1x

) + a1(y − y∗)(
x − x∗

1 + b1x
+

b1x∗(x∗ − x)
(1 + b1x∗)(1 + b1x)

)

+ a2(y − y∗)(
b2z∗(y − y∗)

(1 + b2y∗)(1 + b2y)
+

z∗ − z
1 + b2y

) + a2(z − z∗)(
y − y∗

1 + b2y
+

b2y∗(y∗ − y)
(1 + b2y∗)(1 + b2y)

)

− (m1 +
r1

K1
)(x − x∗)2 − (m2 +

r2

K2
)(y − y∗)2 − m3(z − z∗)2

≤
a1b1y∗

1 + b1x∗
(x − x∗)2 +

a2b2z∗
1 + b2y∗

(y − y∗)2 +
a1b1x∗

1 + b1x∗
(x − x∗)(y∗ − y) +

a2b2y∗
1 + b2y∗

(y − y∗)(z∗ − z)

− (m1 +
r1

K1
)(x − x∗)2 − (m2 +

r2

K2
)(y − y∗)2 − m3(z − z∗)2
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≤
a1b1x∗

2(1 + b1x∗)
((x − x∗)2 + (y − y∗)2) +

a2b2y∗
2(1 + b2y∗)

((y − y∗)2 + (z − z∗)2)

+ (
a1b1y∗

1 + b1x∗
− m1 −

r1

K1
)(x − x∗)2 + (

a2b2z∗
1 + b2y∗

− m2 −
r2

K2
)(y − y∗)2 − m3(z − z∗)2

= (
a1b1(2y∗ + x∗)

2(1 + b1x∗)
− m1 −

r1

K1
)(x − x∗)2 + (

a2b2y∗
2(1 + b2y∗)

− m3)(z − z∗)2

+ (
a2b2(2z∗ + y∗)

2(1 + b2y∗)
+

a1b1x∗
2(1 + b1x∗)

− m2 −
r2

K2
)(y − y∗)2.

When m1 ≥
a1b1(2y∗+x∗)

2(1+b1 x∗)
−

r1
K1

, m2 ≥
a2b2(2z∗+y∗)

2(1+b2y∗)
+ a1b1 x∗

2(1+b1 x∗)
−

r2
K2

, and m3 ≥
a2b2y∗

2(1+b2y∗)
, it follows that

DαV ≤ 0. We can show that the equilibrium point E∗ is uniformly asymptotically stable.

4. Numerical examples

In this section, we use the Adams-Bashforth-Molton predictor-corrector algorithm numerical simu-
lation. This method is described in detail in [37] and [38].
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Figure 1. Stability of the equilibrium E∗ for α = 1, α = 0.9 and α = 0.8.

Example 1. In system (2.6), let r1 = 1, r2 = 0.6, K1 = 50, K2 = 10, a1 = 1, a2 = 0.6, b1 = 5,
b2 = 0.01 and d = 0.5. System (2.6) has a positive equilibrium point E∗ = (49.8479, 0.8403, 1.2597).
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According to Theorem 5, when α = 1, α = 0.9, α = 0.8, and E∗ is locally asymptotically stable, it
can be seen from Figure 1 that the order α will affect the speed at which the system converges to the
equilibrium point. The relevant results are shown in Figure 1.

Example 2. In system (2.6), let r1 = 1, r2 = 0.6, K1 = 50, K2 = 30, a1 = 1, a2 = 0.6, b1 = 5,
b2 = 0.2 and d = 0.2. System (2.6) has a positive equilibrium point E∗ = (49.9382, 0.3571, 1.4158).
It follows from Theorem 5 that system (2.6) has a bifurcation at α∗. When α = 0.95 and α = 0.8, E∗
is locally asymptotically stable, and when α = 0.98, E∗ is unstable. The relevant results are shown in
Figure 2.
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Figure 2. Stability of the equilibrium E∗ for α = 0.98, α = 0.95 and α = 0.8.

Example 3. To verify the sensitivity of the system (2.6) to initial conditions and other parameters,
according to the method in [39], apply the positive Euler format to transform the differential model
into the following discrete form:

xt+1 = xt + δ(r1xt(1 − xt
K1

) − a1 xtyt
1+b1 xt

),
yt+1 = yt + δ(r2yt(1 −

yt
K2

) +
a1 xtyt
1+b1 xt

−
a2ytzt
1+b2yt

),
zt+1 = zt + δ( a2ytzt

1+b2yt
− dzt),

(4.1)

where δ is the time step size. We use the parameters of Example 1 to study Lyapunov exponents.
Figure 3 shows that system (2.6) is in a stable state and is less sensitive to initial conditions.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5221–5235.



5232

0.3 0.35 0.4 0.45 0.5
−0.1

−0.05

0

δ

x 
Ly

ap
no

v 
 e

xp
on

en
t

0.3 0.35 0.4 0.45 0.5
−0.04

−0.02

0

δ

y 
Ly

ap
no

v 
 e

xp
on

en
t

0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

δ

z 
Ly

ap
no

v 
 e

xp
on

en
t

Figure 3. Spectrum of Lyapunov exponent of system (2.6).

5. Conclusions

This paper studies a new fractional-order food chain model with a Holling type-II functional re-
sponse. First, the existence, uniqueness, nonnegativity and boundedness of the solution of the model
are discussed. Second, the local stability of each equilibrium point is discussed. Third, controllers
µ1 = m1x(x − x∗), µ2 = m2y(y − y∗) and µ3 = m3z(z − z∗) are proposed and added to the system. Us-
ing the Lyapunov method, sufficient conditions for the positive equilibrium point to reach the global
uniformly asymptotically stable state are obtained. Finally, we use numerical simulations to verify the
theoretical results.
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