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Abstract: Considering the environmental factors and uncertainties, we propose, in this paper, a higher-
order stochastically perturbed delay differential model for the dynamics of hepatitis B virus (HBV) in-
fection with immune system. Existence and uniqueness of an ergodic stationary distribution of positive
solution to the system are investigated, where the solution fluctuates around the endemic equilibrium
of the deterministic model and leads to the stochastic persistence of the disease. Under some condi-
tions, infection-free can be obtained in which the disease dies out exponentially with probability one.
Some numerical simulations, by using Milstein’s scheme, are carried out to show the effectiveness of
the obtained results. The intensity of white noise plays an important role in the treatment of infectious
diseases.
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1. Introduction

Hepatitis B is a liver infection, caused by the hepatitis B virus (HBV), is responsible for more
than 400 million chronic infections worldwide [1]. HBV is a leading cause of broad-spectrum liver
diseases such as hepatitis, cirrhosis and liver cancer [2]. Some people with HBV are sick for only a few
weeks (known as ’acute’ infection), but for others, the disease progresses to a serious, lifelong illness
known as ’chronic’ hepatitis B. Majority of infected adults successfully clear the virus and acquires
lifelong immunity [3]. The immune response to HBV-encoded antigens is responsible both for viral
clearance and for disease pathogenesis during this infection. While the humoral antibody response to
viral envelope antigens contributes to the clearance of circulating virus particles, the cellular immune
response to the envelope, nucleocapsid, and polymerase antigens eliminates infected cells. During
acute HBV infection, cytotoxic T lymphocytes (CTLs) can directly attack infected hepatocytes and
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participate in the pathogenesis of liver disease by orchestrating diverse components of the immune
system; see [4, 5].

In fact, the process intercellular transmission and virus-to-cell infection is not instantaneous but
needs to be completed over a period of time, so it is necessary to consider the effect of time-delays on
the HBV system [6–9]. Moreover, the parameters for growth and interactions depend on the state and
nature of the virus, the condition of the immune system, and the environment in which the interaction
takes place the body [10]. The environment of the body is determined by the overall health of the
individual. One way to explore the impact of body environmental factors on the dynamics of HBV
infection could be the extension of the deterministic description of the virus-CTL interaction to include
the stochastic forcing either in an additive or multiplicative way. Mathematical models to investigate
the dynamics of HBV transmission within environmental noise have been studied by many researchers,
among them [11–14].

Many other mathematical models have been designed to evaluate the effect of public health pro-
grams and provided long-term predictions regarding the disease prevalence and control [15–19]. More
and more attentions have been paid to the study of virus dynamics within-host, which can provide
insights into virus infection and dynamics, as well as to how an infection can be reduced or even erad-
icated, see [20–24]. However, most of these approaches are based on deterministic models and do not
consider the randomness in cell transmission and effect of environmental variability.

Motivated by the mentioned biological and mathematical considerations, in the present paper, we
investigate the dynamics of stochastic delay differential equations (SDDEs) of HBV model with cell-to-
cell transmission and CTLs immune response. For more realistic situation of the development process
of the disease, we incorporate the effect of multiple time-delays and randomization within a host.
The organization of the rest of this paper is as follows: In Section 2, we propose a stochastic delay
differential model for HBV infection. In Section 3, we investigate existence and uniqueness of the
global positive solution, and study existence of stationary distribution in Section 4. Possible extinction
of the disease is studied in Section 5. Some numerical results and simulations are provided in Section
6 to show the effectiveness of the theoretical results. Concluding remarks are discussed in the last
Section.

2. Time-delay dstochastic model of HBV

Although HBV replication at the cellular level is not fully understood, in this paper, we propose a
new model of stochastic delay differential equations (SDDEs) for HBV replications in one host. We
assume that during HBV infection, uninfected (healthy) hepatocytes can be infected not only by newly
released free virus, but also by contacting with infected hepatocytes. We also assume that the cytotoxic
T lymphocytes (CTLs) can specifically attack the target infected host cells. Of course there is an
intracellular time-delay (time-lag) between the infection of a cell and the viral particles emission, and
virus production. Time-delay is also required to represent incubation period, the time required for the
production of new virus particles. Herein, based on the basic model of Nowak et al. [25], we introduce
a delay differential model to combine the CTLs population with HBV infection. The model takes the
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form

dH(t)
dt

= η1 − α1H(t) − β1H(t)V(t) − β2H(t)I(t)

dI(t)
dt

= β1H(t − τ1)V(t − τ1) + β2H(t − τ1)I(t − τ1) − β3I(t)D(t) − α2I(t)

dV(t)
dt

= aI(t − τ2) − α3V(t)

dD(t)
dt

= η2 − α4D(t) + β4I(t)D(t).

(2.1)

H(t), I(t), V(t), and D(t), respectively, denote the healthy hepatocytes that are not infected by the
viruses, the infected hepatocytes which are infected by viruses, hepatitis B viruses and CTLs. Time-
delay τ1 is considered, in the first term of the second equation, to justify the required time between
initial infection of a cell by HBV and the release of new virions. It is also incorporated in the second
term to consider the reaction time that healthy hepatocytes become infected by the infected cell contacts
and then transformed into the infected hepatocytes; While τ2 stands for the time necessary for the newly
produced particles to become mature then infectious particles. The healthy cells become infected either
by free viruses at rate β1HV (virus-to-cell infection mode), or by direct contact with an infected cell at
rate β2HI (cell-to-cell transmission mode). Hence, the term β1HV +β2HI represents the total infection
rate of uninfected cells. Infected cells are eliminated by CTLs at rate β3ID, a is the production rate of
free viruses by infected cells; While CTLs are produced at a constant η2 from the thymus and at the
rate β4ID as a result of stimulation of infected cells (see Figure 1). (Existence of the equilibrium points
and basic reproduction number R0 for the deterministic system (2.1) are given in the Appendix.) The
description of the model parameters is presented in Table 1.

Figure 1. Mathematical scheme of system (2.1).

As a matter of fact, there are inevitably random disturbances in the process of HBV infection within-
host, such as temperature fluctuation, mood fluctuation and other physiological rhythm changes, which
may affect the dynamics of HBV infection. Taking this into consideration enables a lot of authors to
introduce randomness into deterministic model of biological systems to reveal the effect of environ-
mental variability, see [26–28].
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For more realistic situation of the development process of the disease, we incorporate the effect of
randomization within-host by introducing nonlinear perturbation on the natural death rate with white
noise into each equation of system (2.1). In reality, the parameters associated with the Hepatitis B
model are not certain, but the interval in which it belongs to can readily be determined. Therefore, we
propose a delayed stochastic model of the form

dH(t) = [η1 − α1H(t) − β1H(t)V(t) − β2H(t)I(t)]dt + (ν11H(t) + ν12)H(t)dW1

dI(t) = [β1H(t − τ1)V(t − τ1) + β2H(t − τ1)I(t − τ1) − β3I(t)D(t) − α2I(t)]dt+

(ν21 + ν22I(t))I(t)dW2

dV(t) = [aI(t − τ2) − α3V(t)]dt + (ν31 + ν32V(t))V(t)dW3

dD(t) = [η2 − α4D(t) + β4I(t)D(t)]dt + (ν41 + ν42D(t))D(t)dW4,

(2.2)

subject to the initial conditions

H(ζ) = ϕ1(ζ), I(ζ) = ϕ2(ζ), V(ζ) = ϕ3(ζ), D(ζ) = ϕ4(ζ),
ζ ∈ [−τ, 0], τ = max{τ1, τ2}, ϕi(ζ) ∈ C, i = 1, 2, 3, 4.

(2.3)

Here, C is the family of Lebesgue integrable functions C([−τ, 0],R4
+). Such that, ν11, ν12, ν21, ν22, ν31,

ν32, ν41, ν42, represent the intensities of the white noise and Wi, (i = 1, 2, 3, 4) is a real-valued standard
Brownian motion defined on a complete probability space (Ω,A,P) satisfying the usual conditions
[29]. We assume that the parameters αi, i = 1, 2, 3, 4, are distributed by some non linear stochastic
noise [30]. The random perturbation may be dependent on square of the state variables H, I, V and D
of system (2.2), respectively, that is to say α1 → α1 − (ν11H + ν12)dW1, α2 → α2 − (ν21 + ν22I)dW2,
α3 → α3 − (ν31 + ν32V)dW3, α4 → α4 − (ν41 + ν42D)dW4.

Table 1. Description of the model parameters.

Parameters Description
η1 Production rate of the uninfected hepatocytes

from bone marrow and other organs
η2 Production rate of the CTLs from the thymus
α1 Natural death rate of the uninfected hepatocytes
α2 Natural death rate of the infected hepatocytes
α3 Decay rate of the free viruses
α4 Death rate of the CTLs
β1 Effective contact rate between uninfected hepatocytes and virus
β2 Effective contact rate between uninfected and infected hepatocytes
β3 Elimination rate of infected hepatocytes by CTLs
β4 Production rate of CTLs due to the stimulation of infected cells
a Production rate of free viruses from infected cells

3. Existence and uniqueness of the global positive solution

In this section, we provide some conditions that guarantee a unique global positive solution of the
SDDEs system (2.2). This can be achieved that if the coefficients of the system realize the growth and
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Lipschitzian conditions, then there will be a positive solution.

Theorem 1. For any initial value system (2.3), there is a unique positive solution (H(t),I(t),V(t),D(t))
of system (2.2), on t ≥ −τ and the solution will remain in R4

+ almost surely (a.s.).

Proof. Since all the coefficients of system (2.2) are Lipschitz continuous, therefore, there is a unique
local solution (H(t), I(t),V(t),D(t)) on [−τ, τe), where τe is an explosion time. To show this solution
is global, one may need to show τe = ∞ a.s. (almost surely). Let l0 > 0 be sufficiently large so that
(H(t), I(t),V(t),D(t)) = {(ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R4

+) all lie within the

interval [
1
l0
, l0]. For each integer l ≥ l0, define the stopping time

τl = inf{t ∈ [−τ, τe) : min{H(t), I(t),V(t),D(t)} ≤
1
l

or max{H(t), I(t),V(t),D(t)} ≥ l},

let inf φ = ∞. τl is increasing with l and let τ∞ = lim
l→∞

τl, then τ∞ ≤ τe and by showing τ∞ = ∞ a.s., the
aim is to conclude that τe = ∞ a.s. If this assertion is erroneous, then there exists a pair of constants
T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. Therefore, there is an integer l1 ≥ l0 such that

P{τl ≤ T } > ε, for all l ≥ l1. (3.1)

Define a C2-function G : R4
+ → R+ as follows:

G(H, I,V,D) ≡ G(.) = (H − 1 − ln H) + (I − 1 − ln I) + l2V + l2(D − 1 − ln D)

+

∫ t

t−τ1

[
β1H(s)V(s) + β2H(s)I(s)

]
ds + al2

∫ t

t−τ2

I(s)ds,
(3.2)

where l2 is a positive constants to be determined later. By Itô’s formula, we have

dG(.) =
(
1 −

1
H

)
dH +

(
1 −

1
I

)
dI + l2dV + l2

(
1 −

1
D

)
dD +

1
2

1
H2 (dH)2 +

1
2

1
I2 (dI)2

+ l2
1
2

1
D2 (dD)2 + [β1HV − β1H(t − τ1)V(t − τ1) + β2HI − β2H(t − τ1)I(t − τ1)

+ al2I − al2I(t − τ2)]

=
[
η1 − α1H −

η1

H
+ α1 + β1V + β2I +

ν2
11H2

2
+
ν2

12

2
+ ν11ν12H − α2I − β3DI

−
β1H(t − τ1)V(t − τ1)

I
−
β2H(t − τ1)I(t − τ1)

I
+ α2 + β3D +

ν2
21

2
+ ν21ν22I

+
ν2

22I2

2
+ l2aI − l2α3V + l2η2 − l2α4D + l2β4ID − l2

η2

D
+ l2α4 − l2β4I + l2

ν2
41

2

+ l2ν41ν42D + l2
ν2

42D2

2

]
dt + (H − 1)(ν11H + ν12)dW1 + (I − 1)(ν21 + ν22I)dW2

+ l2(ν31 + ν32V)VdW3 + l2(D − 1)(ν41 + ν42D)dW4

= LG(.)dt + (H − 1)(ν11H + ν12)dW1 + (I − 1)(ν21 + ν22I)dW2 + l2(ν31 + ν32V)VdW3

+ l2(D − 1)(ν41 + ν42D)dW4.

(3.3)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5194–5220.
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Here,

LG(.) ≤ η1 + α1 + α2 + l2η2 + l2α4 + (ν11ν12 − α1)H + (β1 − l2α3)V
+ (β2 + ν21ν22 + l2a − α2 − l2β4)I + (l2β4 − β3)DI + (β3 + l2ν41ν42)D

+
ν2

11H2

2
+
ν2

12

2
+
ν2

21

2
+
ν2

22I2

2
+ l2

ν2
41

2
+ l2

ν2
42D2

2
.

(3.4)

Choosing l2 = β3/β4, yields

LG(.) ≤ sup
H∈R+

{
(ν11ν12 − α1)H +

ν2
11H2

2

}
+ sup

I∈R+

{
(β2 + ν21ν22 + l2a − α2 − l2β4)I +

ν2
22I2

2

}
+ sup

V∈R+

{
(β1 − l2α3)V

}
+ sup

D∈R+

{
(β3 + l2ν41ν42)D + l2

ν2
42D2

2

}
+ η1 + α1 + α2 + l2η2 + l2α4 +

ν2
12

2
+
ν2

21

2
+ l2

ν2
41

2
≤ B,

(3.5)

where B is a positive constant. It follows that LG(.) is bounded. Since the following proof is standard
and it is similar to the method in the literature [31], so it is omitted. Therefore, the proof is completed.

4. Existence of ergodic stationary distribution

Herein, we construct a suitable stochastic Lyapunov function to study existence of a unique ergodic
stationary distribution of the positive solutions to system (2.2). Ergodic stationary distribution of a
stochastic model is one of the most important and significant characteristics. Ergodic property of a
stochastic HBV epidemic model means that the stochastic model has a unique stationary distribution
which predicts the persistence of the disease in the future under some restrictions on the intensity of
white noise, that is the stochastic model fluctuate in a neighborhood of the infected equilibrium, E∗

(defined in the Appendix) of the corresponding undisturbed model for all time regardless of the initial
conditions.

First, assume that X(t) is a regular time-homogenous Markov process in Rd, illustrated by the SDDE

dX(t) = f (X(t), X(t − τ), t)dt +

d∑
r=1

gr(X(t), t)dWr(t). (4.1)

The diffusion matrix of the process X(t) is

Λ(x) = (λi j(x)), λi j(x) =

d∑
r=1

gi
r(x)g j

r(x).

Lemma 1. [32]. The Markov process X(t) has a unique ergodic stationary distribution π(.) if there
exist a bounded domainU ⊂ Rd with regular boundary Γ and

(i): there is a positive numberM such that
∑d

i, j=1 λi j(x)ξiξ j ≥ M|ξ|
2, x ∈ U, ξ ∈ Rd.
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(ii): there exists a nonnegative C2-function V such that LV is negative for any Rd \ U.

Theorem 2. Assume that

Rs
0 =

(η1β2)ψ1 + (η1aβ1α
−1
1 )ψ0

ψ0ψ1ψ2
> 1, (4.2)

where

ψ0 = α1 +
ν2

12

2
+ 2
√
η1ν11ν12 + 2 3

√
η2

1ν
2
11, ψ1 = α3 +

ν2
31

2
,

ψ2 = α2 +
β3η2

α4
+
ν2

21 + ν2
41

2
+ 2 3
√
η1( 3

√
ν2

22 +
3
√
ν2

42) +
4 3
√
ν2

42η2

3 3
√
η1

,

then system (2.2) admits a unique stationary distribution π(.) and it has the ergodic property.

Proof. In order to prove Theorem 2, it is enough to validate conditions (i) and (ii) of Lemma 1.
We first prove condition (i). The diffusion matrix of system (2.2) is given by

Λ(H, I,V,D) =


(ν11H + ν12)2H2 0 0 0

0 (ν21 + ν22I)2I2 0 0
0 0 (ν31 + ν32V)2V2 0
0 0 0 (ν41 + ν42D)2D2

 .
LetU be any bounded domain in R4

+, then there exists a positive constant

M0 = min
(H,I,V,D)∈Ūσ

{(ν11H + ν12)2H2, (ν21 + ν22I)2I2, (ν31 + ν32V)2V2, (ν41 + ν42D)2D2},

such that
4∑

i, j=1

λi j(H, I,V,D)ξiξ j = (ν11H + ν12)2H2ξ2
1 + (ν21 + ν22I)2I2ξ2

2 + (ν31 + ν32V)2V2ξ2
3

+ (ν41 + ν42D)2D2ξ2
4

≥ M0|ξ|
2,

for any (H, I,V,D) ∈ Ūσ, ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4
+. Thus, we have verified that condition (i) of Lemma

1 is satisfied. We then prove condition (ii) of Lemma 1. For any relatively small θ ∈ (0, 1), we define

Rs
0(θ) =

(η1β2)ψ1 + (η1aβ1α
−1
1 )ψ̂0

ψ̂0ψ1ψ̂2
, (4.3)

where,

ψ̂0 = α1 +
ν2

12

2
+ 2

√
η1ν11ν12

1 − θ
+ 2

3

√( η2
1ν

2
11

(1 − θ)2

)
,

ψ̂2 = α2 +
β3η2

α4
+
ν2

21

2
+
ν2

41

2
+ 2 3
√
η1(

3
√
ν2

22 +
3
√
ν2

42

3
√

(1 − θ)2
) + f1 f θ−1

2 η2,
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such that f1 =
8

3(1 − θ) f θ2
, f2 = 2 3

√
η1

(1 − θ)ν2
42

. Clearly, lim
θ→0+
Rs

0(θ) = Rs
0. Since Rs

0(θ) is continuous

and Rs
0 > 1, we can choose relatively small θ such that Rs

0(θ) > 1. By system (2.2), we have

L(− ln H) = −
η1

H
+ α1 + β1V + β2I +

ν2
12

2
+ ν11ν12H +

ν2
11

2
H2 (4.4)

L(− ln I) = −
β1H(t − τ1)V(t − τ1)

I
−
β2H(t − τ1)I(t − τ1)

I
+ α2 + β3D

+
ν2

21

2
+ ν21ν22I +

ν2
22

2
I2

(4.5)

L(− ln V) = −
aI(t − τ2)

V
+ α3 +

ν2
31

2
+ ν31ν32V +

ν2
32

2
V2 (4.6)

and

L(− ln D) = −
η2

D
+ α4 − β4 +

ν2
41

2
+ ν31ν42D +

ν2
42

2
D2. (4.7)

Define

V1(H) =

2∑
i=1

ci(H + hi)θ

θ
,

V2(H, I,D) = k1H +
k2(I + k3)θ

θ
+

f1(D + f2)θ

θ
+ k2kθ−1

3

∫ t

t−τ1

[
β1H(s)V(s) + β2H(s)I(s)

]
ds

V3(V, I) = − ln V +
m1(ν31 + ν32V)θ

θ
+
ν31ν32

α3
V +

aν31ν32(1 + m1ν
θ−2
31 α3)

α3

∫ t

t−τ2

I(s)ds,

V4(H, I,V,D) =
(ν11H + ν12)θ

θ
+

(ν21 + ν22I)θ

θ
+

(ν31 + ν32V)θ

θ
+

(ν41 + ν42D)θ

θ

+ ν22ν
θ−1
21

∫ t

t−τ1

[β1H(s)V(s) + β2H(s)I(s)]ds + ν32ν
θ−1
31 a

∫ t

t−τ2

I(s)ds.

V5(H, I,V,D) = V2(H, I,D) − ln I − ln D + m2(V1(H) − ln H) + m3V3(V, I).

where c1, c2, h1, h2, m1, m2, m3 and k1, k2, k3 are positive constants which will be determined later. By
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Itô formula toV1, we obtain

LV1 =

2∑
i=1

[
ci(H + hi)θ−1(η1 − α1H − β1HV − β2HI) −

ci(1 − θ)
2(H + hi)2−θ (ν11H + ν12)2H2

]
≤

2∑
i=1

ciη1

h1−θ
i

−
c1(1 − θ)hθ−2

1 ν2
11H4

2( H
h1

+ 1)2−θ
−

c2(1 − θ)hθ−2
2 ν11ν12H3

( H
h2

+ 1)2−θ

≤

2∑
i=1

ciη1

h1−θ
i

−
c1(1 − θ)hθ+2

1 ν2
11( H

h1
)4

2( H
h1

+ 1)2
−

c2(1 − θ)hθ+1
2 ν11ν12( H

h2
)3

( H
h2

+ 1)2

≤

2∑
i=1

ciη1

h1−θ
i

−
c1(1 − θ)hθ+2

1 ν2
11( H

h1
)4

4(( H
h1

)2 + 1)
−

c2(1 − θ)hθ+1
2 ν11ν12( H

h2
)3

2(( H
h2

)2 + 1)

≤

2∑
i=1

ciη1

h1−θ
i

−
c1(1 − θ)hθ+2

1 ν2
11

4

[3
4

( H
h1

)2
−

1
4

]
−

c2(1 − θ)hθ+1
2 ν11ν12

2

( H
h2
−

1
2

)
=

(ciη1

h1−θ
1

+
c1(1 − θ)hθ+2

1 ν2
11

16

)
+

(ciη1

h1−θ
2

+
c2(1 − θ)hθ+1

2 ν11ν12

4

)
−

3c1(1 − θ)hθ1ν
2
11

16
H2

−
c2(1 − θ)hθ2ν11ν12

2
H.

Let

c1 =
8

3(1 − θ)hθ1
, c2 =

2
(1 − θ)hθ2

, h1 = 2 3

√
η1

(1 − θ)ν2
11

, h2 = 2
√

η1

(1 − θ)ν11ν12
.

Therefore,

LV1 ≤ 2
√
η1ν11ν12

1 − θ
+ 2

3

√
η2

1ν
2
11

(1 − θ)2 − ν11ν12H −
ν2

11

2
H2. (4.8)

Thus, from systems (4.4) and (4.8), we have

LV1 +L(− ln H) ≤ −
η1

H
+ α1 + β1V + β2I +

ν2
12

2
+ 2

√
η1ν11ν12

1 − θ
+ 2

3

√
η2

1ν
2
11

(1 − θ)2 .
(4.9)

By Itô’s formula toV2, we get
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LV2 = k1

(
η1 − α1H − β1HV − β2HI

)
−

k2(1 − θ)
2(I + k3)2−θ (ν21 + ν22I)2I2

+ k2(I + k3)θ−1[β1H(t − τ1)V(t − τ1) + β2H(t − τ1)I(t − τ1) − α2I − β3ID]

+ f1(D + f2)θ−1[η2 − α4D + β4ID] −
f1(1 − θ)

2(D + f2)2−θ (ν41 + ν42D)2D2

+ k2kθ−1
3 β1

[
HV − H(t − τ1)V(t − τ1)

]
+ k2kθ−1

3 β2
[
HI − H(t − τ1)I(t − τ1)

]
≤ k1η1 + f1 f θ−1

2 η2 + (k2kθ−1
3 − k1)β1HV + ( f1 f θ−1

2 β4 − k2kθ−1
3 β3)ID − k1β2HI

+ k2kθ−1
3 β2HI −

k2(1 − θ)kθ−2
3

2( 1
k3

+ 1)2−θ
ν2

22I4 −
f1(1 − θ) f θ−2

2

2( 1
f2

+ 1)2−θ
ν2

42D4

≤ k1η1 + f1 f θ−1
2 η2 + (k2kθ−1

3 − k1)β1HV + ( f1 f θ−1
2 β4 − k2kθ−1

3 β3)ID

+ (k2kθ−1
3 − k1)β2HI −

k2(1 − θ)kθ−2
3

2( 1
k3

+ 1)2−θ
ν2

22I4 −
f1(1 − θ) f θ−2

2

2( 1
f2

+ 1)2−θ
ν2

42D4,

such that,

LV2 ≤ k1η1 + f1 f θ−1
2 η2 + (k2kθ−1

3 − k1)β1HV + ( f1 f θ−1
2 β4 − k2kθ−1

3 β3)ID

−
k2(1 − θ)kθ−2

3

2( 1
k3

+ 1)2
ν2

22I4 −
f1(1 − θ) f θ−2

2

2( 1
f2

+ 1)2
ν2

42D4 + (k2kθ−1
3 − k1)β2HI

≤ k1η1 + f1 f θ−1
2 η2 + (k2kθ−1

3 − k1)β1HV + ( f1 f θ−1
2 β4 − k2kθ−1

3 β3)ID

+ (k2kθ−1
3 − k1)β2HI −

k2(1 − θ)kθ+2
3 ν2

22( 1
k3

)4

4(( 1
k3

)2 + 1)
−

f1(1 − θ) f θ+2
2 ν2

42( 1
f2

)4

4(( 1
f2

)2 + 1)

≤ k1η1 + k3η1 + f1 f θ−1
2 η2 + (k2kθ−1

3 − k1)β1HV + ( f1 f θ−1
2 β4 − k2kθ−1

3 β3)ID

−
k2(1 − θ)kθ+2

3 ν2
22

4

[3
4

( I
k3

)2
−

1
4

]
−

f1(1 − θ) f θ+2
2 ν2

42

4

[3
4

(D
f2

)2
−

1
4

]
+ (k2kθ−1

3 − k1)β2HI

= k1η1 + k3η1 + f1 f θ−1
2 η2 + (k2kθ−1

3 − k1)β1HV + ( f1 f θ−1
2 β4 − k2kθ−1

3 β3)ID

+ (k2kθ−1
3 − k1)β2HI −

3k2(1 − θ)kθ3ν22

16
I2 +

k2(1 − θ)kθ+2
3 ν2

22

16

−
3 f1(1 − θ) f θ2 ν42

16
D2 +

f1(1 − θ) f θ+2
2 ν2

42

16
.

Let

k1 = k2kθ−1
3 , k2 =

8
3(1 − θ)kθ3

, k3 = 2 3

√
η1

(1 − θ)ν2
22

f1 =
8

3(1 − θ) f θ2
, f2 = 2 3

√
η1

(1 − θ)ν2
42

, k2kθ−1
3 β3 > f1 f θ−1

2 β4.

Thus, we get

LV2 ≤ 2
3

√
η1ν

2
22

(1 − θ)2 + 2
3

√
η1ν

2
42

(1 − θ)2 −
ν2

22

2
I2 −

ν2
42

2
D2 + f1 f θ−1

2 η2. (4.10)
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From systems (4.5), (4.7) and (4.10), we have

L(− ln I) +L(− ln D) +LV2 ≤ −
β1H(t − τ1)V(t − τ1)

I
−
β2H(t − τ1)I(t − τ1)

I

−
η2

D
− β4 + α2 + α4 + β3D +

ν2
21

2
+
ν2

41

2
+ ν31ν42D + ν21ν22I + f1 f θ−1

2 η2

+ 2
3

√
η1ν

2
22

(1 − θ)2 + 2
3

√
η1ν

2
42

(1 − θ)2 .

(4.11)

Applying Itô formula toV3, one gets

LV3 = −
aI(t − τ2)

V
+ α3 + ν31ν32V +

ν2
32

2
V2 + m1ν32(ν31 + ν32V)θ−1(aI(t − τ2) − α3V)

−
m1ν

2
32(1 − θ)

2
(ν31 + ν32V)θV2 +

[ν31ν32

α3
(aI(t − τ2) − α3V)

]
+
ν2

31

2
+

aν31ν32(1 + m1ν
θ−2
31 α3)

α3
I −

aν31ν32(1 + m1ν
θ−2
31 α3)

α3
I(t − τ2).

(4.12)

Hence,

LV3 ≤ −
aI(t − τ2)

V
+ α3 +

ν2
31

2
+
ν2

32

2
V2 +

aν31ν32(1 + m1ν
θ−2
31 α3)

α3
I −

m1ν
2
32(1 − θ)νθ31V2

2
. (4.13)

Let m1 =
1

(1 − θ)νθ31

. Therefore,

LV3 ≤ −
aI(t − τ2)

V
+ α3 +

ν2
31

2
+

aν31ν32(1 + m1ν
θ−2
31 α3)

α3
I. (4.14)

By Itô’s formula toV4, we have

LV4 = ν11(ν11H + ν12)θ−1
(
η1 − α1H − β1HV − β2HI

)
−
ν2

11

2
(1 − θ)(ν11H + ν12)θH2

+ ν22(ν21 + ν22I)θ−1
(
β1H(t − τ1)V(t − τ1) + β2HI − α2I − β3ID

)
−
ν2

22

2
(1 − θ)(ν21 + ν22I)θI2 + ν32(ν31 + ν32V)θ−1

(
aI(t − τ2) − α3V

)
+ ν42(ν41 + ν42D)θ−1

(
η2 − α4D + β4ID

)
−
ν2

42

2
(1 − θ)(ν31 + ν32D)θD2

+ ν22ν
θ−1
21 β1HV − ν22ν

θ−1
21 β1H(t − τ1)V(t − τ1) + ν22ν

θ−1
21 β2HI

− ν22ν
θ−1
21 β2H(t − τ1)I(t − τ1) + ν32ν

θ−1
31 aI − ν32ν

θ−1
31 aI(t − τ2)

−
ν2

32

2
(1 − θ)(ν31 + ν32V)θV2

≤ ν11ν
θ−1
12 η −

1 − θ
2

νθ+2
11 Hθ+2 + ν22ν

θ−1
21 β1HV + ν22ν

θ−1
21 β2HI −

1 − θ
2

νθ+2
22 Iθ+2

+ ν32ν
θ−1
31 aI −

1 − θ
2

νθ+2
32 Vθ+2 + ν42ν

θ−1
41 η2 + ν42ν

θ−1
41 β4ID −

1 − θ
2

νθ+2
42 Dθ+2.

(4.15)
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Applying Itô’s formula toV5, one obtains

LV5 ≤ −
β1H(t − τ1)V(t − τ1)

I
−
β2H(t − τ1)I(t − τ1)

I
+ α2 + β3D +

ν2
21

2

+ ν21ν22I +
ν2

22

2
I2 −

η2

D
+ α4 − β4 +

β2η2

α4
+
ν2

41

2
+ ν31ν42D +

ν2
42

2
D2

+ 2
3

√( η1ν
2
22

(1 − θ)2

)
+ 2

3

√( η1ν
2
42

(1 − θ)2

)
−
ν2

22

2
I2 −

ν2
42

2
D2 + f1 f θ−1

2 η2

+ m2(−
η1

H
+ α1 + β1V + β2I +

ν2
12

2
+ 2

√
η1ν11ν12

1 − θ
+ 2

3

√( η2
1ν

2
11

(1 − θ)2

)
)

+ m3(−
aI(t − τ2)

V
+ α3 +

ν2
31

2
+

[ν31ν32a
α3

+ m1ν32ν
θ−1
31 a

]
I).

(4.16)

Additionally, we have

LV5 ≤ −2
√
η1β2m2 − 2

√
aβ1m3 + α4 − β4 + α2 + β3D +

ν2
21

2
+
ν2

41

2
+ 2

3

√( η1ν
2
22

(1 − θ)2

)
+ 2

3

√( η1ν
2
42

(1 − θ)2

)
+
β2η2

α4
+ f1 f θ−1

2 η2 + m3(α3 +
ν2

31

2
) + m2β1V + ν31ν42D

+ (ν21ν22 + m3(
ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I

+ m2(α1 +
ν2

12

2
+ 2

√
η1ν11ν12

1 − θ
+ 2

3

√( η2
1ν

2
11

(1 − θ)2

)
).

(4.17)

Let

m2 =
η1β2

(α1 +
ν2

12
2 + 2

√
η1ν11ν12

1−θ + 2 3
√(

η2
1ν

2
11

(1−θ)2

)
)2

, m3 =
aβ1η1α

−1
1

(α3 +
ν2

31
2 )2

.

Therefore, we obtain

LV5 ≤ −
η1β2

(α1 +
ν2

12
2 + 2

√
η1ν11ν12

1−θ + 2 3
√(

η2
1ν

2
11

(1−θ)2

)
)
−

aβ1η1α
−1
1

(α3 +
ν2

31
2 )

+ α4 − β4 + α2 +
β2η2

α4

+ 2
3

√( η1ν
2
22

(1 − θ)2

)
+ 2

3

√( η1ν
2
42

(1 − θ)2

)
+ f1 f θ−1

2 η2 + m2β1V + (β3 + ν31ν42)D

+ (ν21ν22 + m3(
ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I +

ν2
21

2
+
ν2

41

2
≤ −(ψ̂2)(Rs

0(θ) − 1) + m2β1V + (β3 + ν31ν42)D

+ (ν21ν22 + m3(
ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I.

(4.18)
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Define a C2-function Ṽ : R4
+ → R in the following form

Ṽ(H, I,V,D) =MV5 − ln H − ln V − ln D +V4, (4.19)

whereM > 0 is a sufficiently large number satisfying the following condition

−Mψ̂2(Rs
0(θ) − 1) + λ1 ≤ −5, (4.20)

and

λ1 = sup
(H,I,V,D)∈R4

+

{
α1 + β1V + β2I +

ν2
12

2
+ ν11ν12H +

ν2
11

2
H2 + α3 +

ν2
31

2
+ ν31ν32V

+ α4 +
ν2

41

2
+ ν31ν42D +

ν2
42

2
D2 + ν11ν

θ−1
12 η −

1 − θ
2

νθ+2
11 Hθ+2 −

1 − θ
2

νθ+2
22 Iθ+2

+ ν22ν
θ−1
21 (β1H(t − τ1)V(t − τ1) + β2H(t − τ1)I(t − τ1)) + ν32ν

θ−1
31 aI(t − τ2)

+ ν42ν
θ−1
41 η2 + ν42ν

θ−1
41 β4ID −

1 − θ
2

νθ+2
42 Dθ+2 −

1 − θ
2

νθ+2
32 Vθ+2 +

ν2
32

2
V2

}
.

(4.21)

Noting that Ṽ(H, I,V,D) is not only continuous, but also tends to +∞ as (H, I,V,D) approches the
boundary of R4

+, and ‖(H, I,V,D)‖ → ∞. Hence, Ṽ must have a minimum point (H0, I0,V0,D0) in the
interior of R4

+. We define a C2-functionV : R4
+ → R+ as follows:

V(H, I,V,D) =MV5 − ln H − ln V − ln D +V4 − Ṽ(H0, I0,V0,D0). (4.22)

By Itô’s formula, it follows that

LV ≤ −Mψ̂2(Rs
0(θ) − 1) +M(β3 + ν31ν42)D +M(ν21ν22 + m3(

ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I

+Mm2β1V −
η1

H
+ α1 + β1V + β2I +

ν2
12

2
+ ν11ν12H +

ν2
11

2
H2 −

aI(t − τ2)
V

+ α3 +
ν2

31

2
−
η2

D
+ α4 − β4 +

ν2
41

2
+ ν31ν42D +

ν2
42

2
D2 + ν11ν

θ−1
12 η −

1 − θ
2

νθ+2
11 Hθ+2

+ ν22ν
θ−1
21 β1H(t − τ1)V(t − τ1) + ν22ν

θ−1
21 β2HI −

1 − θ
2

νθ+2
22 Iθ+2 +

ν2
32

2
V2 + ν31ν32V

+ ν32ν
θ−1
31 aI(t − τ2) −

1 − θ
2

νθ+2
32 Vθ+2 + ν42ν

θ−1
41 η2 + ν42ν

θ−1
41 β4ID −

1 − θ
2

νθ+2
42 Dθ+2.

(4.23)

Now, one can construct a bounded open domain Uε such that condition (ii) of Lemma 1 satisfies.
Define a bounded open set, for arbitrary ε > 0, as follows

Uε =
{
(H, I,V,D) ∈ R4

+ : ε < H <
1
ε
, ε2 < I <

1
ε2 , ε

3 < V <
1
ε3 , ε < D <

1
ε

}
. (4.24)
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Therefore, we need to prove LV ≤ −1 for (H, I,V,D) ∈ R4
+ \Uε . Clearly, R4

+ \Uε = ∪8
i=1Ui, such that

U1 = {(H, I,V,D) ∈ R4
+ : H ≤ ε}, U2 = {(H, I,V,D) ∈ R4

+ : H ≥
1
ε
},

U3 = {(H, I,V,D) ∈ R4
+ : H <

1
ε
, I ≤ ε2,V <

1
ε3 ,D <

1
ε
}

U4 = {(H, I,V,D) ∈ R4
+ : I > ε2,V ≤ ε3}

U5 = {(H, I,V,D) ∈ R4
+ : D ≤ ε}, U6 = {(H, I,V,D) ∈ R4

+ : I ≥
1
ε2 },

U7 = {(H, I,V,D) ∈ R4
+ : V ≥

1
ε3 }, U8 = {(H, I,V,D) ∈ R4

+ : D ≥
1
ε
}.

(4.25)

Choosing

λ2 = sup
(H,I,V,D)∈R4

+

{
Mm2β1V +M(β3 + ν31ν42)D +M(ν21ν22 + m3(

ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I

+ α1 + β1V +
ν2

12

2
+ ν11ν12H +

ν2
11

2
H2 + α3 +

ν2
31

2
+ ν31ν32V +

ν2
32

2
V2 + α4 +

ν2
41

2
+ ν31ν42D

+
ν2

42

2
D2 + ν11ν

θ−1
12 η −

1 − θ
4

νθ+2
11 Hθ+2 + ν22ν

θ−1
21 β1HV + ν22ν

θ−1
21 β2HI −

1 − θ
4

νθ+2
22 Iθ+2

+ (β2 + ν32ν
θ−1
31 a)I −

1 − θ
4

νθ+2
32 Vθ+2 + ν42ν

θ−1
41 η2 + ν42ν

θ−1
41 β4ID −

1 − θ
4

νθ+2
42 Dθ+2

}
.

(4.26)

Case I: For any (H, I,V,D) ∈ U1, by system (4.23), one obtains

LV ≤ −
η1

H
+ λ2

≤ −
η1

ε
+ λ2.

(4.27)

Let −
η1

ε
+ λ2 ≤ −1, yields LV ≤ −1.

Case II: For any (H, I,V,D) ∈ U2 from system (4.23), one may have

LV ≤ −
1 − θ

4
νθ+2

11 Hθ+2 + λ2

≤ −
(1 − θ)νθ+2

11

4εθ+2 + λ2,

(4.28)

choosing −
(1 − θ)νθ+2

11

4εθ+2 + λ2 ≤ −1, yields LV ≤ −1.

Case III: For any (H, I,V,D) ∈ U3 from system (4.23), we have

LV ≤ −Mψ̂2(Rs
0(θ) − 1) + ν22ν

θ−1
21 β2HI +Mm2β1V +M(β3 + ν31ν42)D

+M(ν21ν22 + m3(
ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))I + λ1

≤ −Mψ̂2(Rs
0(θ) − 1) + λ1 + ν22ν

θ−1
21 β2ε +

Mm2β1

ε
+
M(β3 + ν31ν42)

ε

+M(ν21ν22 + m3(
ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))ε2,

(4.29)
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we select ε small enough such that the following condition holds

M(m2β1 + ν31ν42 + β3)
2

≤ ε ≤ max
{ 1
ν22ν

θ−1
21 β2

,

√
1

M(ν21ν22 + m3( ν31ν32a
α3

+ m1ν32ν
θ−1
31 a))

}
.

Therefore, we have

LV ≤ −5 + 2 + 1 + 1
≤ −1.

(4.30)

Case V: For any (H, I,V,D) ∈ U4 from system (4.23), we have

LV ≤ −
aI
V

+ λ2

≤ −
aε2

ε3 + λ2.

(4.31)

Let −
a
ε

+ λ2 ≤ −1, then we have LV ≤ −1.

Case VI: For any (H, I,V,D) ∈ U5 from system (4.23), we have

LV ≤ −
η2

D
+ λ2

≤ −
η2

ε
+ λ2,

(4.32)

choose −
η2

ε
+ λ2 ≤ −1, yields LV ≤ −1.

Case VII: For any (H, I,V,D) ∈ U6 from system (4.23), we have

LV ≤ −
1 − θ

4
νθ+2

22 Iθ+2 + λ2

≤ −
(1 − θ)νθ+2

22

4ε2(θ+2) + λ2,

(4.33)

let −
(1 − θ)νθ+2

22

4ε2(θ+2) + λ2 ≤ −1, then we obtain LV ≤ −1.

Case IV: For any (H, I,V,D) ∈ U7 from system (4.23), we have

LV ≤ −
1 − θ

4
νθ+2

32 Vθ+2 + λ2

≤ −
(1 − θ)νθ+2

32

4ε3(θ+2) + λ2,

(4.34)

choose −
(1 − θ)νθ+2

32

4ε3(θ+2) + λ2 ≤ −1, we obtain that LV ≤ −1.

Case VI: For any (H, I,V,D) ∈ U8 from system (4.23), we have

LV ≤ −
1 − θ

4
νθ+2

42 Dθ+2 + λ2

≤ −
(1 − θ)νθ+2

42

4εθ+2 + λ2,

(4.35)
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let −
(1 − θ)νθ+2

32

4εθ+2 + λ2 ≤ −1, then LV ≤ −1. Therefore, condition (ii) of Lemma 1 satisfies, such that
system (2.2) identifies a unique stationary distribution π(.).

Remark 1. If Rs
0 > 1 the solution of system (2.2) fluctuates around the endemic equilibrium of the

undisturbed system (2.1) under certain conditions. This means that the disease will be persistent,
provided that the intensities of white noise are adequately small; See Figure 2.

5. Extinction of the disease

For the undisturbed system (2.1), if R0 ≤ 1, the disease-free equilibrium E0 is globally asymptot-
ically stability and HBV infection will die out. However, for R0 > 1, E∗ is globally asymptotically
stable and E0 is unstable; see [11]. Now, we investigate the possible extinction of the disease I(t) for
the stochastic system (2.2). Define

Re
0 = (β1 + β2)

∫ ∞

0

∣∣∣∣x − η1

α1

∣∣∣∣π(x)dx + min
{
α1α3, α2 −

β2η1

α1

}
(χ2 − 1)1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}
(χ2 − 1)1(Φ0>1) −

1
2(ν−2

21 + ν−2
31 )
.

Here,

Φ0 =
β2η1

α1(α2 −
aβ1η1
α1α3

)
> 0, χ1 =

a
α3
, χ2 =

√
aβ1η1

α1α3(α2 −
β2η1
α1

)
. (5.1)

Theorem 3. For any given initial value system (2.3) on t ≥ −τ, if Re
0 < 0, the solution

(H(t), I(t),V(t),D(t)) of system (2.2) satisfies the following:

lim sup
t→∞

ln
( χ1

(α2 −
β2η1
α1

)
I(t) +

χ2

α3
V(t)

)
≤ Re

0 < 0, a.s. (5.2)

Such that lim
t→∞

I(t) = 0 a.s., i.e., the disease, I(t), will die out exponentially with probability one and
lim
t→∞

V(t) = 0 a.s. Additionally, the distributions H(t) and D(t) converge weakly to the measures which
have the densities π(x) and π(y), which will be determined later.

Proof. Assume the following auxiliary logistic equations with nonlinear stochastic perturbation

dX = [η1 − α1X]dt + (ν11X + ν12)XdW1(t), (5.3)

with initial value X0 = H0 > 0.

dY = [η2 − α4Y]dt + (ν41 + ν42Y)YdW4(t), (5.4)

with initial value Y0 = D0 > 0. Therefore, systems (5.3) and (5.4) have the ergodic property [30], such
that the invariant densities are given by

π(x) = N1x
−2− 2(2η1ν11+α1ν12)

ν312 (ν11x + ν12)
−2+

2(2η1ν11+α1ν12)

ν312 e−
2

ν12(ν11 x+ν12) ( η1
x +

2η1ν11+α1ν12
ν12

)
, x ∈ (0,∞),

π(y) = N2y
−2− 2(2η2ν42+α4ν41)

ν341 (ν42y + ν41)
−2+

2(2η2ν42+α4ν41)

ν341 e−
2

ν41(ν42y+ν41) ( η2
y +

2η2ν42+α4ν41
ν41

)
, y ∈ (0,∞),
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where N1 and N2 are constants such that∫ ∞

0
π(x)dx = 1,

∫ ∞

0
π(y)dy = 1.

Let X(t) be the solution of system (5.3) with initial value X0 = H0 > 0, by the comparison theorem [33],
one obtains H(t) ≤ X(t) for any t ≥ 0 a.s. Similarly, assume that Y(t) be the solution of system (5.4)
with initial value Y0 = D0 > 0, one may have D(t) ≤ Y(t) such that I(t) < 1/β4.

On the other hand, by [34], consider the vector (χ1, χ2) =
(

a
α3
,
√

aβ1η1

α1α3(α2−
β2η1
α1

)

)
. Therefore, we can

derive that there exists a left eigenvector of

A0 =

 0 β1η1

α1(α2−
β2η1
α1

)
a
α3

0

 ,
corresponding to the spectral radius of A0; ρ(A0) =

√
aβ1η1

α1α3(α2−
β2η1
α1

)
, which can be denoted as√

aβ1η1

α1α3(α2−
β2η1
α1

)

)
(χ1, χ2) = (χ1, χ2)A0.

Consider a C2-function V̂ : R2
+ → R+ by

V̂(I,V) = ϕ1I + ϕ2V, (5.5)

where ϕ1 =
χ1

(α2−
β2η1
α1

)
and ϕ2 =

χ2
α3

, by Itô formula to V̂, one may have

d(ln V̂) = L(ln V̂)dt +
ϕ1(ν21 + ν22I)I

V̂
dW2(t) +

ϕ2(ν31 + ν32V)V

V̂
dW3(t), (5.6)

such that

L(ln V̂) =
ϕ1

V̂

[
β1H(t − τ1)V(t − τ1) + β2H(t − τ1)I(t − τ1) − α2I − β3ID

]
+
ϕ2

V̂

[
aI(t − τ2) − α3V

]
−
ϕ2

1(ν21 + ν22I)2I2

2V̂2
−
ϕ2

2(ν31 + ν32V)2V2

2V̂2

≤
ϕ1

V̂

[
β1HV + β2HI − α2I

]
+
ϕ2

V̂

[
aI − α3V

]
−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2

−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2

=
ϕ1β1

V̂

(
H −

η1

α1

)
V +

ϕ1β2

V̂

(
H −

η1

α1

)
I +

ϕ1

V̂

(β1η1

α1
V +

β2η1

α1
I − α2I

)
+
ϕ2

V̂

[
aI − α3V

]
−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2

≤
ϕ1β1

V̂

(
X −

η1

α1

)
V +

ϕ1β2

V̂

(
X −

η1

α1

)
I −

ϕ2
1ν21I2 + ϕ2

1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2

+
1

V̂

{ χ1

(α2 −
β2η1
α1

)

(β1η1

α1
V +

β2η1

α1
I − α2I

)
+
χ2

α3

[
aI − α3V

]}
.
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Hence, we have

L(ln V̂) ≤
ϕ1β1

V̂

∣∣∣∣X − η1

α1

∣∣∣∣V +
ϕ1β2

V̂

∣∣∣∣X − η1

α1

∣∣∣∣I +
1

V̂
(χ1, χ2)(A0(I,V)T − (I,V)T )

−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2

=
ϕ1β1

V̂

∣∣∣∣X − η1

α1

∣∣∣∣V +
ϕ1β2

V̂

∣∣∣∣X − η1

α1

∣∣∣∣I +
1

V̂

(√ aβ1η1

α1α3(α2 −
β2η1
α1

)
− 1

)
(χ1I + χ2V)

−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2
,

by substituting the values of χ1 and χ2 from system (5.1), we obtain

L(ln V̂) ≤
ϕ1β1

V̂

∣∣∣∣X − η1

α1

∣∣∣∣V +
ϕ1β2

V̂

∣∣∣∣X − η1

α1

∣∣∣∣I +
1

V̂

(√ aβ1η1

α1α3(α2 −
β2η1
α1

)
− 1

)
×

[
(α2 −

β2η1

α1
)ϕ1I + α3ϕ2V

]
−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2

≤ β1

∣∣∣∣X − η1

α1

∣∣∣∣ + β2

∣∣∣∣X − η1

α1

∣∣∣∣ + min
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1)

−
ϕ2

1ν21I2 + ϕ2
1ν22I4

2V̂2
−
ϕ2

2ν31V2 + ϕ2
2ν32V4

2V̂2
.

Additionally, squaring both sides of system (5.5) and by Cauchy inequality, one may have

V̂2 = (ϕ1ν21I
1
ν21

+ ϕ2ν31V
1
ν31

)2 ≤ (ϕ2
1ν

2
21I2 + ϕ2

2ν
2
31V2)

( 1
ν2

21

+
1
ν2

31

)
. (5.7)

Hence,

L(ln V̂) ≤ (β1 + β2)
∣∣∣∣X − η1

α1

∣∣∣∣ + min
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) −

1
2(ν−2

21 + ν−2
31 )

−
ϕ2

1ν
2
22I4

2V̂2
−
ϕ2

2ν
2
32V4

2V̂2
.

(5.8)

From systems (5.6), (5.7) and (5.8), we have

d(ln V̂) ≤ (β1 + β2)
∣∣∣∣X − η1

α1

∣∣∣∣ + min
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) −

1
2(ν−2

21 + ν−2
31 )
−
ϕ2

1ν
2
22I4

2V̂2

−
ϕ2

2ν
2
32V4

2V̂2
+
ϕ1(ν21 + ν22I)

V̂
dW2(t) +

ϕ2(ν31 + ν32V)V

V̂
dW3(t).

(5.9)
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Integrating both sides of system (5.9) then dividing it by t, we obtain

ln V̂(t)
t

≤
ln V̂(0)

t
+ min

{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1) −

1
2(ν−2

21 + ν−2
31 )

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) +

(β1 + β2)
t

∫ t

0

∣∣∣∣X(s) −
η1

α1

∣∣∣∣ds

−
1
t

∫ t

0

ϕ2
1ν

2
22I4(s)

2V̂2(s)
ds −

1
t

∫ t

0

ϕ2
2ν

2
32V4(s)

2V̂2(s)
ds +

1
t

∫ t

0

ϕ1ν21I(s)

V̂(s)
dW2(s)

+
1
t

∫ t

0

ϕ1ν22I2(s)

V̂(s)
dW2(s) +

1
t

∫ t

0

ϕ2ν31V(s)

V̂(s)
dW3(s)

+
1
t

∫ t

0

ϕ2ν32V2(s)

V̂(s)
dW3(s).

(5.10)

Assume that Mi(t), i = 1, 2, 3, 4, are real valued continuous local martingale vanishing at t = 0; Such
that

M1(t) :=
∫ t

0

ϕ1ν21I(s)

V̂(s)
dW2(s), M2(t) :=

∫ t

0

ϕ2ν31V(s)

V̂(s)
dW3(s),

M3(t) :=
∫ t

0

ϕ1ν22I2(s)

V̂(s)
dW2(s), M4(t) :=

∫ t

0

ϕ2ν32V2(s)

V̂(s)
dW3(s).

(5.11)

In addition, their quadratic form are given by

〈M1,M1〉(t) =

∫ t

0

(ϕ1ν21I(s)

V̂(s)

)2
ds ≤ ν2

21t, 〈M2,M2〉(t) =

∫ t

0

(ϕ2ν31V(s)

V̂(s)

)2
ds ≤ ν2

31t,

〈M3,M3〉(t) =

∫ t

0

(ϕ1ν22I2(s)

V̂(s)

)2
ds, 〈M4,M4〉(t) =

∫ t

0

(ϕ2ν32V2(s)

V̂(s)

)2
ds.

(5.12)

By strong law of large numbers [35], one obtaines

lim
t→0

Mi(t)
t

= 0 a.s., i = 1, 2. (5.13)

Hence, we have

ln V̂(t)
t

≤
ln V̂(0)

t
−

1
2(ν−2

21 + ν−2
31 )

+
(β1 + β2)

t

∫ t

0

∣∣∣∣X(s) −
η1

α1

∣∣∣∣ds −
1
t

∫ t

0

ϕ2
1ν

2
22I4(s)

2V̂2(s)
ds

−
1
t

∫ t

0

ϕ2
2ν

2
32V4(s)

2V̂2(s)
ds + min

{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) +

M1(t)
t

+
M2(t)

t
+

M3(t)
t

+
M4(t)

t
.

(5.14)

Let ε, ζ1 and T1 are positive constants, by the exponential martingale inequality [36], for each T1 ≥ 1,
such that j = 3, 4, we have

P{ sup
0≤t≤T1

(M j(t) −
ε

2
〈M j(t),M j(t)〉) > ζ1} ≤ e−εζ1 .
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Let T1 = n, ε = 1 and ζ1 = 2 ln n, we get

P{ sup
0≤t≤n

(M j(t) −
1
2
〈M j(t),M j(t)〉) > 2 ln n} ≤

1
n2 .

By using Borel-Cantelli Lemma [36], there is Ω0 ⊂ Ω with P(Ω0) = 1 such that for ρ ∈ Ω0 there exists
an integer n0 = n0(ρ), such that

M3(t) ≤
1
2
〈M3(t),M3(t)〉 + 2 ln n =

1
2

∫ t

0

(ϕ1ν22I2(s)

V̂(s)

)2
ds. (5.15)

M4(t) ≤
1
2
〈M4(t),M4(t)〉 + 2 ln n =

1
2

∫ t

0

(ϕ2ν32V2(s)

V̂(s)

)2
ds. (5.16)

For all 0 ≤ t ≤ n ∧ n ≥ n0(ρ) a.s. That is, for 0 ≤ n − 1 ≤ t ≤ n, one obtains

ln V̂(t)
t

≤
ln V̂(0)

t
+

(β1 + β2)
t

∫ t

0

∣∣∣∣X(s) −
η1

α1

∣∣∣∣ds +
M1(t)

t
+

M2(t)
t

+
4 ln n
k − 1

+ min
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) −

1
2(ν−2

21 + ν−2
31 )
.

(5.17)

Noting that X(t) is ergodic and
∫ ∞

0
xπ(x)dx < ∞ a.s., therefore, we have

lim
t→∞

1
t

∫ t

0

∣∣∣∣X(s) −
η1

α1

∣∣∣∣ds =

∫ ∞

0

∣∣∣∣x − η1

α1

∣∣∣∣π(x)dx. (5.18)

In view of systems (5.13) and (5.18) by taking superior limit on both sides of system (5.17), one gets

lim sup
t→∞

ln V̂(t)
t

≤ (β1 + β2)
∫ ∞

0

∣∣∣∣x − η1

α1

∣∣∣∣π(x)dx + min
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0≤1)

+ max
{
α1α3, α2 −

β2η1

α1

}(
Φ0 − 1

)
1(Φ0>1) −

1
2(ν−2

21 + ν−2
31 )

:= Re
0.

(5.19)

If Re
0 < 0, then lim sup

t→∞

ln I(t)
t

< 0, and lim sup
t→∞

ln V(t)
t

< 0, a.s. which implies that lim
t→∞

I(t) = 0 and

lim
t→∞

V(t) = 0 a.s. Therefore, the disease will die out exponentially with probability one.

We arrive at the following Remark.

Remark 2. From 0 < Φ0 < 1, when the stochastic perturbations ν21 and ν31 are sufficiently large
so that Re

0 < 0, the stochastic system (2.2) displays disease extinction with probability one. Also,
stochastic perturbations lead to the eradication of the disease in the stochastic system faster than the
undisturbed system; See Figure 3.
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Figure 2. The top banner shows the numerical simulations of SDDEs system (2.2), ν11 =

0.003, ν12 = 0.001, ν21 = 0.004, ν22 = 0.001, ν31 = 0.001, ν32 = 0.006, ν41 = 0.003,
ν42 = 0.004, and parameter values given in Table 2. When Rs

0 > 1, the model has a unique
ergodic stationary distribution and the infection is persistent. The bellow banners show the
stationary distribution and illustrate that the solution of the stochastic system (2.2) fluctuate
in a neighborhood of the infected equilibrium, E∗ of the corresponding undisturbed system
(2.1).

6. Numerical simulations

In this section, some numerical simulations are given to validate the theoretical results, through
Milstein’s Higher order method [41, 42], to numerically solve SDDEs system (2.2). The discretization
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Table 2. The list of parameter values for numerical simulations.

Parameters Example 1 Example 2 Units
η1 6 0.3 cell ml−1 day−1

η2 0.2 [10] 0.2 [10] cell ml−1 day−1

α1 0.01 [37] 0.5 day−1

α2 0.1 [38] 0.9 day−1

α3 0.1 0.5 day−1

α4 0.3 [10] 0.1 [39] day−1

β1 0.01 [40] 0.01 virions−1 day−1

β2 0.1 0.1 cell−1 day−1

β3 0.2 [39] 0.2 [39] cell−1 day−1

β4 0.015 0.15 cell−1 day−1

a 0.4 [39] 0.06 cell−1 day−1
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Figure 3. Time domain behavior of SDDEs system (2.2) (blue) and corresponding undis-
turbed system (2.1) (red), with τ1 = 1 and τ2 = 2, ν11 = 0.1, ν12 = 0.1, ν21 = 0.6, ν22 = 0.6,
ν31 = 0.7, ν32 = 0.3, ν41 = 0.2, ν42 = 0.1, when Φ0 < 1 and Re

0 < 0, the infection dies
out in the stochastic model faster than the undisturbed model under the impact of stochastic
perturbations.

transformation takes the form

Hk+1 = Hk + [η1 − α1Hk − β1HkVk − β2HkIk]∆t + (ν11Hk + ν12)Hk

√
∆tξ1,k

+
Hk

2
(2ν2

11H2
k + 3ν11ν12Hk + ν2

12)
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Ik+1 = Ik + [β1HkVk + β2Hk−m1 Ik−m1 − α2Ik − β3IkDk]∆t + (ν21 + ν22Ik)Ik

√
∆tξ2,k

+
Ik

2
(ν2

21 + 3ν21ν22Ik + 2ν2
22I2

k )

Vk+1 = Vk + [aIk−m2 − α3Vk]∆t + (ν31 + ν32Vk)Vk

√
∆tξ3,k +

Vk

2
(ν2

31 + 3ν31ν32Vk + 2ν2
32V2

k )

Dk+1 = Dk + [η2 − α4Dk + β4IkDk]∆t + (ν41 + ν42Dk)Dk

√
∆tξ4,k +

Dk

2
(ν2

41 + 3ν41ν42Dk + 2ν2
42D2

k).

The independent Gaussian random variables denoted as ξi,k, (i = 1, 2, 3, 4), which follow the distribu-
tion N(0, 1), m1 and m2 are integers such that the time-delays can be expressed in terms of the step-size
∆t as τ1 = m1∆t and τ2 = m2∆t. Initial values are taken fixed (0.4, 0.2, 0.7, 0.5).

Example 1. Herein, we use parameter values of Table 2 to analyze the dynamics of systems (2.1)
and (2.2), with time-delays τ1 = 1 and τ2 = 2, we choose ν11 = 0.003, ν12 = 0.001, ν21 = 0.004,
ν22 = 0.001, ν31 = 0.001, ν32 = 0.006, ν41 = 0.003, ν42 = 0.004. Direct calculations leads to Rs

0 > 1,
the condition of Theorem 2 satisfies. The stationary distribution illustrates that the solution of the
stochastic system (2.2) fluctuate in a neighborhood of the endemic equilibrium E∗ of the corresponding
undisturbed system (2.1), which means that the disease is persistent for all time regardless of the initial
conditions if the scale of random perturbations is relatively small. Therefore, system (2.2) admits a
unique ergodic stationary distribution π(.). The simulation also indicates that the endemic equilibrium
is asymptotically stable for the undisturbed system; See Figure 2.

Example 2. Now, we compare the solution of the SDDEs system (2.2) with the undisturbed system
(2.1) around the disease free equilibrium point, using parameter values of Table 2. Figure 3 shows that
the disease free equilibrium point is stable for the undisturbed system. However, for the SDDEs system
(2.2), we choose ν11 = 0.1, ν12 = 0.1, ν21 = 0.6, ν22 = 0.6, ν31 = 0.7, ν32 = 0.3, ν41 = 0.2, ν42 = 0.1,
by a simple calculation we have Φ0 ≈ 0.067 < 1 and Re

0 < 0, so that conditions of Theorem 3 hold,
Therefore, the disease will be extinct with probability one. It is shown that the larger intensity of white
noise set may help to eliminate the disease faster than the model without noise.

7. Concluding remarks

In the present work, we investigated the impact of high-order stochastic perturbations on the dynam-
ics of delay differential model of HBV infection with both virus-to-cell and cell-to-cell transmissions,
intracellular delay, and immunity. The effect of stochastic perturbations on the persistence and possible
extinction of the disease have been studied in detail. By utilizing Lyapunov functional, we proved the
existence and uniqueness of an ergodic stationary distribution of positive solutions to the system, where
the solution fluctuates around endemic equilibrium of the corresponding deterministic model and leads
to the stochastic persistence of the disease with probability one. The model has a unique stationary
distribution which is ergodic if Rs

0 > 1. In addition, we formulate sufficient conditions for complete
extinction of the disease by constructing a suitable stochastic Lyapunov function. Under some con-
ditions, the disease can die out exponentially with probability one. Some numerical simulations, by
using Milstein’s scheme, are carried out to show the effectiveness of the obtained results. The intensity
of white noise plays an important role in the treatment of HBV and other infectious diseases.

The incorporation of intracellular time-delays and stochastic perturbations (noise) in the model is
assumed to give a clearer view in the interpretation of the analytical result and this has important
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implications on therapeutic options and drug development. Some other interesting topics deserve fur-
ther investigation. One may take other kinds of environmental noise into account, such as the Levy
noise [43]. In addition, motivated by the work in [44,45] the deterministic system (2.1) can be extended
to include fractional derivatives in the model in order to consider long-run memory of the dynamic of
the disease.
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Appendix: Equilibrium points and R0 of the deterministic model

The deterministic system (2.1) admits two equilibrium points, namely; The disease-free equilib-
rium, E0 = (H0, 0, 0,D0), where H0 =

η1
α1

and D0 =
η2
α4

; The infected equilibrium, E∗ = (H∗, I∗,V∗,D∗),
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where
H∗ =

η1α3

α1α3 + (β1a + β2α3)I∗
, V∗ =

aI∗

α3
, D∗ =

η2

α4 − β4I∗
,

with α4 > β4I∗ such that I∗ is the positive root of

z1I∗2 + z2I∗ + z3 = 0, where
z1 = aα2β1β4 + α2α3β2β4

z2 = α1α2α3β4 − (aα2α4β1 + aβ1β3η2 + α3β2β3η2 + aβ1β4η1 + α3β2β4η1 + α2α3α4β2)
z3 = aα4β1η1 + α3α4β2 − (α1α3β3η2 + α1α2α3α4).

To determine the expression of the basic reproduction number, we utilize the next generation matrix
approach [46]. Therefore, we have

F =

( β2η1
α1

β1η1
α1

0 0

)
, V =

( β3η2
α4

+ α2 0
−a α3

)
,

V−1 =

 α4
β3η2+α2α4

0
aα4

α3(β3η2+α2α4)
1
α3

 .
The basic reproduction number is the spectral radius of (FV−1), i.e. R0 = ρ(FV−1). Hence,

R0 =
η1α4(aβ1 + α3β2)
α1α3(β3η2 + α2α4)

= R01 + R02,

where R01 =
aα4β1H0

α3(β3η2 + α2α4)
and R02 =

α4β2H0

β3η2 + α2α4
. From biological point of view, R01 stands for

the average number of secondary infected cells produced by an infectious virion and R02 represents the
average number of secondary infected cells produced by an infected cell.
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