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Abstract: Considering the environmental factors and uncertainties, we propose, in this paper, a higher-
order stochastically perturbed delay differential model for the dynamics of hepatitis B virus (HBV) in-
fection with immune system. Existence and uniqueness of an ergodic stationary distribution of positive
solution to the system are investigated, where the solution fluctuates around the endemic equilibrium
of the deterministic model and leads to the stochastic persistence of the disease. Under some condi-
tions, infection-free can be obtained in which the disease dies out exponentially with probability one.
Some numerical simulations, by using Milstein’s scheme, are carried out to show the effectiveness of
the obtained results. The intensity of white noise plays an important role in the treatment of infectious
diseases.
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1. Introduction

Hepatitis B is a liver infection, caused by the hepatitis B virus (HBV), is responsible for more
than 400 million chronic infections worldwide [1]. HBV is a leading cause of broad-spectrum liver
diseases such as hepatitis, cirrhosis and liver cancer [2]. Some people with HBV are sick for only a few
weeks (known as “acute’ infection), but for others, the disease progresses to a serious, lifelong illness
known as ’chronic’ hepatitis B. Majority of infected adults successfully clear the virus and acquires
lifelong immunity [3]. The immune response to HBV-encoded antigens is responsible both for viral
clearance and for disease pathogenesis during this infection. While the humoral antibody response to
viral envelope antigens contributes to the clearance of circulating virus particles, the cellular immune
response to the envelope, nucleocapsid, and polymerase antigens eliminates infected cells. During
acute HBV infection, cytotoxic T lymphocytes (CTLs) can directly attack infected hepatocytes and
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participate in the pathogenesis of liver disease by orchestrating diverse components of the immune
system; see [4, 5].

In fact, the process intercellular transmission and virus-to-cell infection is not instantaneous but
needs to be completed over a period of time, so it is necessary to consider the effect of time-delays on
the HBV system [6-9]. Moreover, the parameters for growth and interactions depend on the state and
nature of the virus, the condition of the immune system, and the environment in which the interaction
takes place the body [10]. The environment of the body is determined by the overall health of the
individual. One way to explore the impact of body environmental factors on the dynamics of HBV
infection could be the extension of the deterministic description of the virus-CTL interaction to include
the stochastic forcing either in an additive or multiplicative way. Mathematical models to investigate
the dynamics of HBV transmission within environmental noise have been studied by many researchers,
among them [11-14].

Many other mathematical models have been designed to evaluate the effect of public health pro-
grams and provided long-term predictions regarding the disease prevalence and control [15-19]. More
and more attentions have been paid to the study of virus dynamics within-host, which can provide
insights into virus infection and dynamics, as well as to how an infection can be reduced or even erad-
icated, see [20—24]. However, most of these approaches are based on deterministic models and do not
consider the randomness in cell transmission and effect of environmental variability.

Motivated by the mentioned biological and mathematical considerations, in the present paper, we
investigate the dynamics of stochastic delay differential equations (SDDEs) of HBV model with cell-to-
cell transmission and CTLs immune response. For more realistic situation of the development process
of the disease, we incorporate the effect of multiple time-delays and randomization within a host.
The organization of the rest of this paper is as follows: In Section 2, we propose a stochastic delay
differential model for HBV infection. In Section 3, we investigate existence and uniqueness of the
global positive solution, and study existence of stationary distribution in Section 4. Possible extinction
of the disease is studied in Section 5. Some numerical results and simulations are provided in Section
6 to show the effectiveness of the theoretical results. Concluding remarks are discussed in the last
Section.

2. Time-delay dstochastic model of HBV

Although HBV replication at the cellular level is not fully understood, in this paper, we propose a
new model of stochastic delay differential equations (SDDEs) for HBV replications in one host. We
assume that during HBV infection, uninfected (healthy) hepatocytes can be infected not only by newly
released free virus, but also by contacting with infected hepatocytes. We also assume that the cytotoxic
T lymphocytes (CTLs) can specifically attack the target infected host cells. Of course there is an
intracellular time-delay (time-lag) between the infection of a cell and the viral particles emission, and
virus production. Time-delay is also required to represent incubation period, the time required for the
production of new virus particles. Herein, based on the basic model of Nowak et al. [25], we introduce
a delay differential model to combine the CTLs population with HBV infection. The model takes the
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form
dH
dt(’) = 1 — oy H(D) = BIHOV() - BHOI()
dI
d(rt) =BiH(t = T)V(t = 71) + foH(t = T)I(t = 71) = B31()D(1) - a2l (1)
dv(r) =y
—=al(t—1) - a3V(t)
dt
dD
d:’) = 112 — a@sD(1) + B L (D).

H(), I(t), V(t), and D(t), respectively, denote the healthy hepatocytes that are not infected by the
viruses, the infected hepatocytes which are infected by viruses, hepatitis B viruses and CTLs. Time-
delay 7, is considered, in the first term of the second equation, to justify the required time between
initial infection of a cell by HBV and the release of new virions. It is also incorporated in the second
term to consider the reaction time that healthy hepatocytes become infected by the infected cell contacts
and then transformed into the infected hepatocytes; While 7, stands for the time necessary for the newly
produced particles to become mature then infectious particles. The healthy cells become infected either
by free viruses at rate 8y HV (virus-to-cell infection mode), or by direct contact with an infected cell at
rate B, HI (cell-to-cell transmission mode). Hence, the term 8, HV + 3, HI represents the total infection
rate of uninfected cells. Infected cells are eliminated by CTLs at rate 851D, a is the production rate of
free viruses by infected cells; While CTLs are produced at a constant 77, from the thymus and at the
rate 541D as a result of stimulation of infected cells (see Figure 1). (Existence of the equilibrium points
and basic reproduction number R, for the deterministic system (2.1) are given in the Appendix.) The
description of the model parameters is presented in Table 1.

b
azl
N 2
\
Healthy Infected
Cells Cells EﬂD—p
H(t) 1(t)
-
BaID
A 4
W
a,D

Figure 1. Mathematical scheme of system (2.1).

As a matter of fact, there are inevitably random disturbances in the process of HBV infection within-
host, such as temperature fluctuation, mood fluctuation and other physiological rhythm changes, which
may affect the dynamics of HBV infection. Taking this into consideration enables a lot of authors to
introduce randomness into deterministic model of biological systems to reveal the effect of environ-
mental variability, see [26-28].
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For more realistic situation of the development process of the disease, we incorporate the effect of
randomization within-host by introducing nonlinear perturbation on the natural death rate with white
noise into each equation of system (2.1). In reality, the parameters associated with the Hepatitis B
model are not certain, but the interval in which it belongs to can readily be determined. Therefore, we
propose a delayed stochastic model of the form

dH(t) = [m — a1 H(t) = BIHO)V (1) — BH(OI(1)]d1 + (v H (1) + vi) H()d W,
dl(t) = [BiH@ — )Vt = 71) + BoH(t — 1)1t — 71) = B31()D(1) — axl(1)]dt+
(va1 + vl (ONI()dW> (2.2)
dv(t) = lal(t — 1) — a3V (H)]dt + (v31 + v V(1)) V(t)dW3
dD(t) = [y — ayD(t) + Bl () D(D)]dt + (va1 + va2 D(0))D(1)dW,,

subject to the initial conditions

H() = ¢1(0), 1)) = ¢a2(d), V(D) =¢3()), D)= @ald),

2.3
e [-1,0], Tt=max{r, 7}, ¢()eC, i=1,2,34. 23)

Here, C is the family of Lebesgue integrable functions C([-7, 0], Ri). Such that, v;1, vi2, Va1, V22, V31,
V32, Va1, V42, tepresent the intensities of the white noise and W;, (i = 1,2, 3,4) is a real-valued standard
Brownian motion defined on a complete probability space (€2, A, P) satisfying the usual conditions
[29]. We assume that the parameters «;, i = 1,2,3,4, are distributed by some non linear stochastic
noise [30]. The random perturbation may be dependent on square of the state variables H, I, V and D
of system (2.2), respectively, that is to say @ = a1 — (vi1H + vip)dWy, @y = ay — (vo1 + vipl)dWs,
az — a3 — (v31 + v V)dWs3, as — ay — (Va1 + v D)dW,.

Table 1. Description of the model parameters.

Parameters Description
m Production rate of the uninfected hepatocytes
from bone marrow and other organs
m Production rate of the CTLs from the thymus
ay Natural death rate of the uninfected hepatocytes
o) Natural death rate of the infected hepatocytes
a3 Decay rate of the free viruses
ay Death rate of the CTLs
B Effective contact rate between uninfected hepatocytes and virus
B2 Effective contact rate between uninfected and infected hepatocytes
B3 Elimination rate of infected hepatocytes by CTLs
Ba Production rate of CTLs due to the stimulation of infected cells
a Production rate of free viruses from infected cells

3. Existence and uniqueness of the global positive solution

In this section, we provide some conditions that guarantee a unique global positive solution of the
SDDEs system (2.2). This can be achieved that if the coefficients of the system realize the growth and
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Lipschitzian conditions, then there will be a positive solution.

Theorem 1. For any initial value system (2.3), there is a unique positive solution (H(t),1(t),V(t),D(t))
of system (2.2), ont > —7 and the solution will remain in R almost surely (a.s.).

Proof. Since all the coefficients of system (2.2) are Lipschitz continuous, therefore, there is a unique
local solution (H(?), I(¢), V(t), D(t)) on [-T7,T.), where 7, is an explosion time. To show this solution
is global, one may need to show 7, = oo a.s. (almost surely). Let /[, > O be sufficiently large so that
(H(t),I(1), V(£), D(®)) = {(¢1(D), 02(0), @3(1), 04(®)) : =T < t < 0} € C([-7,0];RY) all lie within the

1
interval [l—, lp]. For each integer [ > [, define the stopping time
0

7, = inf{t € [-7,7,) : min{H (), [(?), V(¢), D(?)} < % or max{H(t),1(2),V(2), D)} > 1},

let inf ¢ = oco. 7, 1s increasing with / and let 7, = llim 7;, then 7, < 7, and by showing 7, = oo a.s., the

aim is to conclude that 7, = oo a.s. If this assertion is erroneous, then there exists a pair of constants
T > 0and € € (0, 1) such that P{r,, < T'} > €. Therefore, there is an integer /; > [, such that

P{t;<T}>e¢ forall [>1. (3.1
Define a C*-function G : R* — R, as follows:

GH,ILVD)=G()=H-1-InH)+U~1-Inl)+LV +L(D-1-1InD)

! ! ‘2
+f [ﬁlH(s)V(s)+,82H(s)1(s)]ds+algf 1(s)ds, (3:2)

-
where [, is a positive constants to be determined later. By Ito’s formula, we have

L 11

2 H? 212
11

+ lziﬁ(dl))z +[BHV - BiH({ — 1)Vt —711) + B HI - BH(t — 1)t — 71)

+ al,] — al)I(t — 75)]

dG() = (1 - %)dH + (1 - %)dl +LdV + 12(1 - %)a’D + (dH)* + = —(dI)?

B m viH* v,
= m —aH - ot BV ol + o+ —E b viviH — ol - 3Dl
H(t—t)V(t - H( — I - v
_BHG= Ve pHE I =T | (3.3)
I I 2 '
2 72 4

Y mn Va1
+ 5 + hal — 1203‘/ + 127]2 —bayD + 12ﬁ41D - 125 + bhay — lzﬂ4] + 127

v2,D?
+ 12V41V42D + lz 422 ]dt + (H - 1)(V11H + Vlz)dwl + (I - 1)(V21 + V221)dW2

+ lz(Vgl + V32V)VdW3 + ZZ(D - 1)(V41 + Vv D)YdW,
= Lg()dl + (H - 1)(V11H + V12)dW1 + (I - 1)(V21 + V221)dW2 + lz(V31 + V32V)VdW3
+ lz(D - 1)()/41 + V42D)dW4.
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Here,

LGO) <m+ar+ay+ b+ bhag + (vipvip —a)H + (B — has)V

+ (B + var1vay + ha — ay — LB + (LB — B3)DI + (B3 + Ly var) D (3.4)
+@+v_%2 v_§1+ﬂ+lé+l@
2 2 2 2 P T

Choosing [, = B3/B4, yields

vi H? v3,I?
LG() < sup {(V11V12 —a))H + } + sup {(ﬁz +Vvo1vay + ha — ax — LBHI + }
HeR, 2 IeR 2
v2,D?
+ sup {(Bl - lz(l’j;)V} + sup {(B3 + 12V41V42)D + lz 42 }
VeR, DeR, 2 3.5)
Vi 2 V2
+7]]+a’1+a’2+lzl]2+lza4+%+% lz%

< B,

where B is a positive constant. It follows that £G(.) is bounded. Since the following proof is standard
and it is similar to the method in the literature [31], so it is omitted. Therefore, the proof is completed.

4. Existence of ergodic stationary distribution

Herein, we construct a suitable stochastic Lyapunov function to study existence of a unique ergodic
stationary distribution of the positive solutions to system (2.2). Ergodic stationary distribution of a
stochastic model is one of the most important and significant characteristics. Ergodic property of a
stochastic HBV epidemic model means that the stochastic model has a unique stationary distribution
which predicts the persistence of the disease in the future under some restrictions on the intensity of
white noise, that is the stochastic model fluctuate in a neighborhood of the infected equilibrium, &
(defined in the Appendix) of the corresponding undisturbed model for all time regardless of the initial
conditions.

First, assume that X(7) is a regular time-homogenous Markov process in R, illustrated by the SDDE

d
dX(1) = fX(O,X(t = 1).0dt + Y g,(X(1), NAW,(0). @.1)
r=1

The diffusion matrix of the process X(7) is

d
AG) = (Ay(0), (0 = Y ghx)gl(x).
r=1

Lemma 1. [32]. The Markov process X(t) has a unique ergodic stationary distribution n(.) if there

exist a bounded domain U < R? with regular boundary T and
(i): there is a positive number M such that 3¢ Aj(0EE = MIEP, x € U, € e RY.

ij=1
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(ii): there exists a nonnegative C*-function V such that LV is negative for any R \ U.

Theorem 2. Assume that

(MBI + (maBia; Mo
Yoy

RS = > 1, 4.2)

where

V31

2

)4

12 3
lﬂo:a’1+7+2\/771)/111/12+2 U%V%l’ lﬁl—a’3+7

LV JVirll2
’702:0[2_'_/33772 41+2\/_( v2 v4)+

ay W’

then system (2.2) admits a unique stationary distribution n(.) and it has the ergodic property.

Proof. In order to prove Theorem 2, it is enough to validate conditions (i) and (ii) of Lemma 1.

We first prove condition (7). The diffusion matrix of system (2.2) is given by

(V“H + V12)2H2 0 0 0

_ 0 (V21 + V221)212 0 0

A(H, 1V, D) = 0 0 (va1 + v V)*V? 0
0 0 0 (V41 + V42D)2D2

Let U be any bounded domain in Rﬁ, then there exists a positive constant

Mo = (le\?li)l)l([( (Vi1 H + vi) H?, (vay + vu P2, (v31 + v V)? V2, (va) + vu D)’ D},
1L V,D)EU

such that

D A(H, LV, DY) = i H + v PHPE + vy + vl PPPE + (31 + vV V&

i=1
+ (va1 + viaD)*D*&;
> Molél,

for any (H,1,V,D) € (L_I(,,f = (£1,86,85,&,) € Rﬁ. Thus, we have verified that condition (i) of Lemma
1 is satisfied. We then prove condition (ii) of Lemma 1. For any relatively small 6 € (0, 1), we define

R3(0) = (mB)Y + (mapa;’! )l//O “43)
boys

2 2
771V11V12 771
= + 242
Yo = 2 w/ (1 )
2
B VA sz+ \/Vz

SN U RRL ) + fifd ',
‘/’2 @3 » ) Vn(———— s Y+ AL m

where,
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8 /
such that fy = ————, f, =23 N — . Clearly, hm Ry(0) = R;. Since R}(6) is continuous

3(1-0)f (1-0y7,
and R} > 1, we can choose relatively small 6 such that Rg(@) > 1. By system (2.2), we have

_ M v Vi
L(—IHH) = —E + a +,81V +182[+ 7 + v vipH + 7[‘[

BHI—t)Vi-7)) BHI-—1)II—-1) N

L(—lnl):— 7 7 (0% +ﬂ3D
vz V2
+ % + V21V22] + %12
I — v2 )
L(—ln V) = —LVTZ) + a3 + 7 + V31V32V+ 7‘/2
and
v2 )
.E( lllD) —B +CZ4—,84+ 7 +V31V42D+7D2
Define
2
c,(H + h; )9
V(H) = Z
i=1
k(I + k3)? D+ 5) !
Vy(H, I, D) = kg H + 2 - ), - £, kok! [BLH($)V(s) + BoH(5)I(s)]ds
-7
+ v V) avyvon(l + mp~22a t
Vi) = —ny + MO0 vV e, @Rl mes) (T g
0 a3 a3
H +vyp)? + vy I)? + v V)? + v D)?
Vi(H.1.V.D) = v vi2) N (va1 + vl) N (va1 +v32V) N (va1 + v D)
0 0 0 0
! !
+ vzzvgjl [B1H(s)V(s) + B, H(s)I(s)]ds + v32v§}[1af I(s)ds.
-7 -T2

Vs(H,1,V,D) = V,y(H,I,D)—Inl —InD + my(V(H) = In H) + m3V5(V, ).

4.4)

4.5)

(4.6)

4.7)

where ¢y, ¢2, hy, hy, my, my, ms and ky, ky, k3 are positive constants which will be determined later. By
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Ito formula to V,, we obtain

2

- C,‘(l - 6)
L(VI = Z [Ci(H + hi)e 1(7]1 - Q]H _ﬁ]HV —ﬂ2HI) — W(V”H + VIZ)ZHZ:I
i=1 l
< i cin B ci(1 - Q)h?_QV%IH“ ~ (1 - G)hg_2V11V12H3
cyam U OB ol =0 G
= h;™ 2(% +1)? (% +1)2
< ZZ: Ginm ci(1 - 9)h‘1’+2y%1(%)4 _ (1 - Q)hg+IV11V12(%)3
CEMT MG D 2y + 1)
< i _ad- Oh" i, [é(E)Z - l] c(1 = Q)hgﬂwwn(ﬁ _ l)
> —1 hil_g 4 4 hl 4 2 h2 2
_(em, =Ry e o= 0 ey 300 =0,
R 16 ny 1 16
_ (1 - Q)thuVle
2
Let
Cc1 = L c 2 L
1 3(1 - G)h?’ 2 = (1 _ e)hf)’ 9)]/11, (1 — 0)V11Vl2.
Therefore,

mviiviz Yns Vi) 2
L(Vl < 2 ﬁ 2 (1 _ 9)2 - V11V12H - 7[‘] . (48)

Thus, from systems (4.4) and (4.8), we have

2 2.2
m V12 Mmviivin 3 MV
+ L-InH) < ——+a; +,V+Lol + =2 +2] +2 . (4.9)
-E(Vl -E( n ) =g (03] ﬁl BZ B 1-6 (1 _ 6)2

By Ito’s formula to V,, we get
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—_— I
2+ k3)2_9(V21 +vool)

+ koI + k)" [B1H(t — 1)Vt = 71) + BoH(t — T)I(t — 1) — ol — B31D]

1-6
+FiD+ £ — aaD + B4 D] - 2(];1)(+—f2)39

+hoki B [HV — H(t — t)V(t — 71)] + kok§ ' Bo[ HI — H(t — T)I(t — 11)]

LYy = ki~ H = fIHV = fHI) -

(Va1 + v D)*D?

<k + A + (kS — k)BIHV + (fufy By — ko' B)ID — ki B HI

kZ(l - H)kg_z 2 4 fl(l _9)f2—2 2 N4

2+ 1) 2(4 + 1)

<k + fify '+ (ki = kDBHY + (L)' Bs — kok ' B3)ID
kZ(l - Q)kg_zvz 14 _ fl(l - 9)f29—2v2 4
2+ 10 (L1 T

+ kok By HI —

+ (koky™" — Ky )Bo HI —

such that,

LYy <kim + fifs '+ (kS = k)BIHV + (fifs ' Ba — koki ' B3)ID
k(1= 0K oS- 0)f3
2L +1)2 ® 2L+ 17
<k + fufy 7 'm + (k™ = kDBHY + (fiLfy ' Bs — kak$'B3)ID
k(1= 0KV A =0 v ()
MEP+D MG+ D
< kim + ks + fifs ' + (kS = kDBIHV + (ffY By — kak ' B3)ID
k(1 - e)kgﬂvgz[é(i)z 1] s 0)fI+*vs, [§(2)2 1]
4 4\ ks 4 4\ f
+ (kok§' = k)G HI
= ki +kamy + fifs'mo + (kT = kOBIHY + (fify ' Ba — kok'B3)ID

. 3](2(1 - 9)](91/22 k2(1 - 6)k9+2}/2
+ (ko' — ky)BoHI — T My LR T 3 22

_3Ad - 9)f29V42D2 N fil=0) v,
16 16 ’

- 8 m
ki =k, kh=——— ky=23—1——
R T TV A VAT
[ S Y B T Y )
31-60)f, (I =0)vy, ‘

2 2 2 2
3| T V22 3| T V42 V22 2 V42 2 9—1
LV, <2 (1_9)2+2\/m—71 _7D +fify M

v, D* + (ko™ — ky)BoHI

+ (kok' = k)BLHI —

4

4

Let

Thus, we get

(4.10)
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From systems (4.5), (4.7) and (4.10), we have

BiH{I-Tt)Vi-11) BHE-1)I({—-1))
1 1

n Vi Vi
- B —ﬁ4 + @y + a4 +ﬁ3D + % + % + V31V42D + Vo1 vl + f]fze_ll]z (411)

2 f 2

3| MV 3| MVy
+2 +2 .
(1 -6)? (1 -06)?

Applying Ito formula to V3, one gets

al(t—t V3
LV; = —% +asz+ vV + %Vz +myva(var + v V) al(t = 1) — a3V)
_ mlv_%z(l —-6)
2

2 02 )
vs  avava(l + myvytas) avy vy (l + mpsas)
ot 1=

L(-InH)+ L(-InD)+ LV, < —

a1+ v V)V + [ 222l ~ 1) - V)] 4.12)
@3

I(t — 15).
as as

Hence,

2 2 9-2 2 0 2
LV, < _alt = 1) bt Vi, @Vz N avyva(l + myvy; 03)1 ~ mvy,(1 =05,V

4.13
Vv 2 2 ;3 2 @19

Letm; = . Therefore,

(1-0n4,

2 -2
al(t—1 % avy v (1l + mvi ~as)
at-m) @+ =L+ Ly §

4.14
5 . (4.14)

LV3 < -

By Ito’s formula to V,, we have

2
%
LYVy=vi(viiH + V12)0_1(771 - OllH—ﬁlHV—,BzHI) - %(1 —O)(vi H + vin)'H?

+ v (var + szl)e_l(ﬁlH(f -tV —11) + BoHI — ar] —ﬁ3ID)
2
%
- %(1 — 0)(va1 + viu D)’ IP + vap(vy) + V32V)6_1(al(f —T7) — 013V)

2
vV
+ var(var + V42D)9_1<772 —ayD +,341D) - %(1 — 0)(v31 +v3D)'D?
+ V22V§Ilﬂ1HV - VzgnglﬁlH(l -1Vt -1+ sznglﬁzHI (4.15)

- vzzvgflﬁzH(t —tIt—1)) + ngvgjlal - V32vgflal(t )
2
y
- %(1 = 0)(v3 + v V)'V?
1-6
2

1-6
0+2 7 76+2 -1 6—1 0+2 70+2
Y11 H + V2 Vs ,BIHV + V22V ﬁzHI - TVZZ 1
0—1 I 1 B 9 9+2V9+2 6—1 6—1 ID 1 B 0 9+2D9+2
+V3V3al — ——V3, + VapVy Mo + VarVy, ,34 - =V .

2 2

6—1
Svnvp n-
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Applying Ito’s formula to Vs, one obtains

LVs < _BiH(E - Tll)V(f—Tl) _BH(@ - T;)I(t— ), far 4D+ V?%l
+varvael + %%212 7]7)2 +ay—Pa+ ﬁclez + %%1 + vy v D + %%ZDZ
2y ((;71_‘/%)2) +24 (%) - %5212 - %EZDZ + A (4.16)
+ WQ(‘% +ay+ BV + Bl + %%2 +2 ’711"1_11;12 3 (lnf_vzl)z
+ m3(—L‘;T2) + a3+ ‘%1 [V31(1¥/33,2a + mlv32vgfla]1).

Additionally, we have

2 2 2
Vo1, Var sl MYy,
LVs < =2\mBamy = 2\JaBims + @y — By + oy + 3D + 7 +t+2 ((1 _0)2)
s MmViy ,32772 V3,
+2 ( 2) +f1 "'+ ms(as + =) + moBV + vavaa D
-9 2 (4.17)
+ (var1var + m3(V31V32a + m1v32v31 LanI
2.2
771V11V12 sle MV
+ 20
my(a; 1-67
Let
mp _ apimey!
my = H ms = —Vz
(o + 22 42 oo (”11 01;2 (a3 + 5L)2
Therefore, we obtain
_a a;!
LVs < — mpB2 B Vzl s Bitart Bomo
(g + 2 42 free (’{1 ;)12 (a5 + 2 @4
mv 771V _
Zi/( 222)+2i/( 422)+f1f29 "+ mapiV + (B3 + va1van)D
(-0 1-9) (4.18)
2 2
+ (va1vay + m3(V3IV32a +myvaVita)l + =+ =L
;3 2 2

< —(W)(RYO) — 1) + mafBiV + (B3 + va1va2)D

V31V324
+ (va1va + ms(
as

6—1
+ myvaVs, Cl))]
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Define a C2-function V : R* — R in the following form

V(H,1,V,D)= MVs—InH—-InV —1InD + V.,

(4.19)
where M > 0 is a sufficiently large number satisfying the following condition
— Myn(RS(6) — 1) + A, < -5, (4.20)
and
v Vi Vil
A = sup {(1'1+,81V+,82]+—+V11V12H+—H + a3+ — +v31vV
(H,1,V,D)eR% 2
2 2
1 Vi _ 1-6 1-6
+ay + > + v31vaaD + 7D2 +vivl'n - TV?T2H€+2 - Tvggzleﬂ 4.21)
+ vV (BIH(t = T)V(t = T1) + BoH(t — T)I(1 = 71)) + v3 Vs, al (1 — T2)
_ _ 1-6 1-6 v
Fvain +vaVi Bal D - ——ViEPDIE - — VY o %\/2}.

Noting that (T/(H, 1,V,D) is not only continuous, but also tends to +oo as (H, I, V, D) approches the

boundary of Rﬁ, and ||(H, I, V, D)|| — oo. Hence, V must have a minimum point (Hy, Iy, Vy, Dy) in the
interior of R?. We define a C>-function V : R? — R, as follows:

YV(H,I,V,D) = MVs—InH—-InV —InD +V, — V(Hy, I, Vo, Do). (4.22)
By Ito’s formula, it follows that

LV < =Mr(Ry(6) = 1) + M(Bs + v31va2)D + M(vava + mS(V31V32a

6-1
+myv3vy, a)l

Qas
2 2
m Yo Vi al(t—12)
+M V——+a1+6V+LIl+—+ H+—H - ——
myf3 H a) + B B2 > Vi1vV12 5 %
2 2 2
% y

v 1-6
+ @y —,84 + 4L + V31V42D + ﬁDZ + v“v(fgln - —V?TZHFH—Z (423)
2 D 2 2
-1 -1 10 40000 Vi 2
+ Voo Vy, ,BIH(Z - TI)V(I - T1) + Vo Vs, ﬁzHI ——=Vy 1 + 7‘/ + v31v3V
6-1 1-6 0+27760+2 61 61 1-6 6+2 y0+2
+ V32V3 Cll(l - Tz) - TV32 \% T VapVyy M2 + V4V ﬁ4ID - =V D",

2

Now, one can construct a bounded open domain U, such that condition (ii) of Lemma 1 satisfies.
Define a bounded open set, for arbitrary € > 0, as follows

1 1
(L{E:{(H,I,V,D)eRi:e<H<—,62<I<—,63<V< ,
€ €2 el

1
e<D< —}. (4.24)
€

Mathematical Biosciences and Engineering

Volume 18, Issue 5, 5194-5220.



5207

Therefore, we need to prove LV < —1 for (H,1,V, D) € R} \ U.. Clearly, R} \ U. = U¥ U, such that
1

U, ={(H,1,V,D)eR! : H < ¢}, (L’z:{(HJ’V,D)ERiiHZE},
1 1 1
Us = {(H,1,V,D) e R} : H<—I<e V< =5.D<-)
€ €

w4:{(H,1,ch)eRi.1>e,VSe} (4.25)

1
Us={(H,IV,D)eR,:D<e), Us={HLV,D)eR}: 1>},
€

1 1
U =((H,LV,D)€R}: V2 =), Us={(HIV,D)eR}: D> ).

Choosing
V31V320
/12 = sup {MmZﬂ] V+ M(ﬁ3 + V31V42)D + M(V21V22 + m3(
(H,1,V,D)eR% a3
2 2 2 2 2
4 \4 \4 V. 4
+ +ﬁ1V + 712 + V11V12H + %Hz + a3 + % + V31V32V + %Vz + a4 + % + V31V42D

-1
+mvnvs a)l

) (4.26)
y 1-6 1-0
+ 2D+ vV = —VIPHT? 4 vy ST BIHY + v B HI — Va2

2 4 4
61 1-6 0+2770+2 6-1 61 1-6 0+2 1y0+2
+ (B2 + vaovs, a)l — Tv32 V77 + vapva 1o + Vaavy, BalD — Tv42 D }

Case I: For any (H, 1, V, D) € U, by system (4.23), one obtains

-E(V<—%+/lz

<—m+/12
€

(4.27)

Let =L 4 2, < —1, yields £V < —1.
€
Case II: For any (H, 1, V, D) € U, from system (4.23), one may have

1-6
L(V < _T 9+2H9+2 /12
(1 _ 9)V6+2

4 €€+2

(4.28)

25

9) H+2
W + A < -1, yields LV < -1.

Case III: For any (H, 1, V, D) € U; from system (4.23), we have

choosing —

LYV < Mlﬁz(R(s)(H) - 1) + V22V ﬁzHI + Mmz,b’IV + M(ﬂg + V31V42)D

1V32d
+ M2 1va + m3(

+ mIV32v3[ a))] + A

Mm;, B, N M(B3 + v31va2) (4.29)
€

€

a3

< —Ml,l;z(ﬂé(e) - 1) + A+ sznglﬂze +

V31V324 o—1 2
+ M(va1vas + ms( +mvnvy, a)e,

as
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we select € small enough such that the following condition holds

M(mofy + v31van + B3)
2

<e< :
< e < max| }
V22V211:32 M(a1var + ma(ZL22 + mv3vs;'a))

Therefore, we have

LV<-5+2+1+1

4.30
<-1. ( )
Case V: For any (H, 1, V, D) € U, from system (4.23), we have
1
LV < —av + A
2 (4.31)
ae
<-—+d.
€
Let _4 + A, < —1, then we have LV < —1.
€
Case VI: For any (H, 1, V, D) € Us from system (4.23), we have
LV < —@ + Ay
,702 (4.32)
<-4,
€
choose _r + Ay < -1, yields LV < —1.
€
Case VII: For any (H, 1, V, D) € U from system (4.23), we have
L(v < _1_9 9+219+2 /12
4
( 9)V9+2 (433)
T 4e206+2) 2
(1-6 Vg;z )
let g + A, < —1, then we obtain LV < —1.
Case 1V: For any (H, 1, V, D) € U; from system (4.23), we have
LV < _u 9+2V9+2 /12
4
( 9)V6+2 (434)
= 4636+2) 2
9)V6+2
choose — W + A, < —1, we obtain that LV < —1.
Case VI: For any (H, 1, V, D) € Ug from system (4.23), we have
L(v < _u 6+2D0+2 /12
4
( 0)V9+2 (435)
ST g TR
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( 9) 9+2

let _W + Ay < —1, then LYV < —1. Therefore, condition (ii) of Lemma 1 satisfies, such that
€

system (2.2) identifies a unique stationary distribution (.).

Remark 1. If Ry > 1 the solution of system (2.2) fluctuates around the endemic equilibrium of the
undisturbed system (2.1) under certain conditions. This means that the disease will be persistent,
provided that the intensities of white noise are adequately small; See Figure 2.

5. Extinction of the disease

For the undisturbed system (2.1), if Ry < 1, the disease-free equilibrium & is globally asymptot-
ically stability and HBV infection will die out. However, for Ry > 1, & is globally asymptotically
stable and & is unstable; see [11]. Now, we investigate the possible extinction of the disease /(¢) for
the stochastic system (2.2). Define

Ro =B +ﬁ’z)f ‘x - ﬂ‘H(X)a’x + min {3, @ - @}(Xz = Dl@y<)
0
Bom 1
+maxaa,a—— - D1 o
{ 13, @ }(Xz M @y>1) — 2("512 n v;f)
Here,
Bam a apim

q)O = > 09 X = XZ = . 5.1
ai(ay — aflltf;) T ajas(as — ﬂf%) G-

Theorem 3. For any given initial value system (2.3) on t > -7, if Rj < 0, the solution
(H(t),I(t), V(t), D(1)) of system (2.2) satisfies the following:

lim sup ln(( 1) + V(t)) <R, <0, a.s. (5.2)
a

t—00

ﬁzm
a

Such that lim I(t) = 0 a.s., i.e., the disease, I(t), will die out exponentially with probability one and

t—0o0

lim V(¢) = 0 a.s. Additionally, the distributions H(t) and D(t) converge weakly to the measures which

t—00

have the densities n(x) and n(y), which will be determined later.

Proof. Assume the following auxiliary logistic equations with nonlinear stochastic perturbation
dX = [ — a1 X]dt + (v X + vip)XdW, (1), (5.3)
with initial value Xy, = H, > 0.
Y = [ — asY]dt + (a1 + v Y)YdWy (1), 5.4

with initial value Yy = Dy > 0. Therefore, systems (5.3) and (5.4) have the ergodic property [30], such
that the invariant densities are given by

_p_2emyitayvip) _p4 2@mriraivin)

3 3 2 u $HIVTO112

P = Nx o e xR eI e (0,00,
—p- 2omraprasra) —p4 Xmraptosra) 2 (24 2pviptagva

n(y) = Noy Va1 (Vay + va1) a1 e a0y V41 , y€(0,00),
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where N; and N, are constants such that

fooﬂ(x)dx =1, fmﬂ(y)dy =1.
0 0

Let X(¢) be the solution of system (5.3) with initial value X, = Hy > 0, by the comparison theorem [33],
one obtains H(¢) < X(¢) for any ¢t > 0 a.s. Similarly, assume that Y(#) be the solution of system (5.4)
with initial value Yy = Dy > 0, one may have D(¢) < Y(¢) such that I(r) < 1/4.

On the other hand, by [34], consider the vector (y1,Y>) = (03 %) Therefore, we can

ajaz(ar—

derive that there exists a left eigenvector of

Bini
Ay = 0 o= |
£ 0

3

corresponding to the spectral radius of Ay; p(Ay) = / %, which can be denoted as
]

%)(/\/1,/\/2) = (x1, X2)Ao.
a

ajas(az—

Consider a C*-function V : R? — R, by

VUAV) =il + @V, (5.5)
where ¢ = o ﬁz,,l : and ¢, = 3’ by Ito formula to Y, one may have
. o + v )] + v V)V
dn V) = LnVydr + L2 v2DE o (;32 WV awso, (5.6)
such that

Lan V) = Z [y H = 1)V = 10) + foH (= 1)1 =) = ol = fsID)

@1(va1 + vl PIF 93(va1 + v V)P V2
292 - 292

eval? + givnl?
292

+ =

ﬁ[al(t - T3) — a3V] -

< %[BIHV +BHI — ol | + %[al -~V -

2 2 2
o3v31 Ve + vV

292
_ 501131 (H— ﬂ)V+ 801132(1_1_ ﬂ)1+ g(ﬁlﬂl ,327711 azl)
% g g VYV a )
2voi 2 + @Pvnlt @2y V4 pRvs VA
+g[al—a3 ]_901 21 A% nl" P31 A% 32
% 292 292
IO N A R RS S SR
Vo1 l” + @ vyl v51 V7 + sy V
< QDILBI(X—E)V 901ﬁ2(X_ﬂ)1_ pvul” +ovnll  @va Vot @yvs
% @ % @ 2V2 2V?
1
+ T{ 24 (ﬁlm +,327711 — azl) + )Q[al— a/3V]}.
(az ﬁzm) a a @;

|
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Hence, we have

o 1
meas¢f1x—ﬂh'¢ﬁﬂx—lp+7wnwgmMLmT—@vf)
% ay ay %
_ eIl + lvpnl? _ o33 V2 + plvpV?
2972 2972
90131 |X m ‘V QD]B2|X——‘I aﬂlnlﬂ _ 1)(X11+X2V)
@i 4 aras(ar — =)
B v l* + givpl? B 33V + 802V32V4
292 2972 ’

by substituting the values of y; and y, from system (5.1), we obtain

gplﬁl‘X 1|V 901,32‘X__|I+_\/ afim _1)
a

4 aras(as — '8;—?1)

evul® + glvnl* v V2 + gy V*
x[(a/z—'%)goll+a3(p2V]— 1 — = e
a 292 2V?
S,Bl‘X - Z—lll +,82‘X — ﬂ' + min {a1a3,a2 - ﬁ;—:h}((bo - 1)1(@051)
+ max {ala/3, ap — ﬁzi}(q)o — 1)1(@0>1)

@
2 2,2 2, 2 vk
e l* + @il @I V2 + plvpV

292 292
Additionally, squaring both sides of system (5.5) and by Cauchy inequality, one may have

1 11
- (9011/21[— + ‘p2V31V_) < (‘Plvzl + ‘P2V31V2)(V T)

o 21 VAl
Hence,
L(InV) < B +,32)‘X - ﬂ‘ + min 0103, @ — £ }((DO B 1)1(®°<1)
(0] @1
Bom !
+ max , @ — ®o - 1)1 2052 +v32)
S T

ey, I 902V32V4
292 292
From systems (5.6), (5.7) and (5.8), we have

d(lnff/) < (B +,82)‘X - Z—ll‘ + min {0103, a, — ﬁzi}((l)o - 1)1((1>0<1)

ay
Bam 1 90%1/%2[4
+ max a3, @y — —— Dy — 1)1 — - =
{ T }( o )@">1) 20v;2 +v3? 292
B v, V* N §01(V21 + vaol)
2972

©2(v31 + v V)V

dWo(1) +

dWs(1).

(5.7)

(5.8)

(5.9
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Integrating both sides of system (5.9) then dividing it by #, we obtain

InV@©)  InV0) B 1
; < " + min {CYlCl’g,Q’z - a_l}(q)o - 1)1((1)0S1) - m
+
+ max {0103,0’2 - @}((DO - 1)1((1)0>1) + — (ﬁ] BZ) f 'X( ) n ‘dS
ay
_lftM _1IM +1IMdWZ(S) (5.10)
tJo 2V2(s) tJo 2V%(s) tJo  V(s)
!
N lf 901VA221 (s)sz(s)+ _f ¢2V31V(S)dW3(s)
tJo V(s tJo V(s
¢ 2
+1Jqﬁﬁﬂlﬁmmu)
r Jo V(s)

Assume that M;(t), i = 1,2, 3,4, are real valued continuous local martingale vanishing at t = 0; Such
that

N S

©1v211(s) ft ©av31 V()
M = —dw. M = = dW s
(1) fo 6 29, M= | 0 3(s)

(5.11)
@1V I*(5) f @2v3V2(s)
M;(t) = f ———dWy(s), My(t) := ———dW;(s).
’ o Mo ) o Vs
In addition, their quadratic form are given by
" oval(s v V(s
w0 = [ (P20 ds <A, (b0 - f (£ <v2,
0 V(s) 0 V(s) (5.12)
(Ms, M3 (1) = f (IO M0 = f (2 Wy |
’ 0o\ Ws) ’ ’ 0" Vs
By strong law of large numbers [35], one obtaines
M;(t
lim& =0 as., i=1,2. (5.13)
t—0 t
Hence, we have
m@mSmW@ 1 +%+&{rk@‘ﬂh‘lf¢%¢®5
t t 20,7 + V312) t 0 ) tJo 2V2(s)
1 ' ¢2V32V4(S) ,82771
L e A P (@ — 1)1 (5.14)
t‘[oV Z(VZ(S) s + min {0’103,02 @, }( 0 ) (@o<1)
Ban Mi()  My() M)  Mu@)
+ max {alag,az — ;—11}(®0 - 1)1@0>1) Ny 2t + 3t + ‘; .

Let €, {; and T are positive constants, by the exponential martingale inequality [36], for each T} > 1,
such that j = 3,4, we have

P{ sup (M;(1) — §<Mj(z>, MiDY) > 51} < e

0<t<T
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LetT) =n,e=1and {; = 21Inn, we get

1 1
P{sup (M;(t) - §<Mj(t)’ Mi1))) >2Inn} < et
0<t<n
By using Borel-Cantelli Lemma [36], there is 0y € Q with P(€2y) = 1 such that for p € Q) there exists
an integer ny = ny(p), such that

@1Vl (S))

5.15
Vo) (5.15)

1 1
M;(t) < §<M3(t), M5(®)) +21Inn = 5]; (

1 1 0V V2(s)
M) < S(Mu(0), M) + 21nn = 2 fo (P2 as (5.16)

Forall0 <t <nAn>nyg(p)a.s. Thatis, for O <n—1 <t < n, one obtains

t o t t
4lnn
1

In V@) < InV(0) N B ‘:ﬁz) f’ 'X(s) _ ﬂ‘ds . M1t(t) N M;(1)
0 (04]

+ min {ala'3,a'2 - ﬁzi}(q)o - 1)1(@031) (517)

a)
1

20,2 +v3D)

k
+ ma {alag, s — 2—m}(q)o - 1)1<<1>0>1)

Noting that X(7) is ergodic and fooo xn(x)dx < oo a.s., therefore, we have

1
lim —

t—oo

‘ds - foo ‘x = o (5.18)
0

(03]

In view of systems (5.13) and (5.18) by taking superior limit on both sides of system (5.17), one gets

lim sup < (B +B2) f |x S ﬂ(x)dx + min {e03, 2 — ﬂ;i}(cpo — 1) L@p=n
1—00 1
,32771 1 (5.19)
+ma L — 2 Dy - D)@ty — ——————
X{Q’la’3 (0%} @ }( 0 ) (©o>1) 2(‘/512 +V§12)

= Ry

In I(t
If RY < 0, then lim sup n () < 0, and lim sup

t—00 t—00

lim V(¢) = 0 a.s. Therefore, the disease will die out exponentially with probability one.

—00

< 0, a.s. which implies that lim /(r) = 0 and
1—o00

We arrive at the following Remark.

Remark 2. From 0 < ®y < 1, when the stochastic perturbations v, and vs, are sufficiently large
so that R < 0, the stochastic system (2.2) displays disease extinction with probability one. Also,
stochastic perturbations lead to the eradication of the disease in the stochastic system faster than the
undisturbed system; See Figure 3.
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=
T

=
Il

H(®).1(1).V(1).D(1)

0 20 4 60 80 1{)0 120 140 160 180 20
Time

—Stochasfic
—Deterministc

1(t)
T3

1
0 10 2 kil L] ]Ell)me 60 i 8 9 100 0 10 2 kil L] 5 60 0 8 L] 100
Timg

12 T T T T T T T = kil T T T T T T T
—Stochastic —Stochastic
. —Deterministic 5 —Deterministc

O0 110 ;ﬂ ;0 :D _l_S:(;ne ;ﬂ 710 ;D 5;0 1[;0 AD 110 ;0 ;U 410 ]'5:?“ . ;0 710 ;0 ;0 160
Figure 2. The top banner shows the numerical simulations of SDDEs system (2.2), v{; =
0003, Vi = 0001, Vo1 = 0004, Vo = 0001, V31 = 0001, V32 = 0006, V41 = 0003,
v4, = 0.004, and parameter values given in Table 2. When Rj > 1, the model has a unique
ergodic stationary distribution and the infection is persistent. The bellow banners show the
stationary distribution and illustrate that the solution of the stochastic system (2.2) fluctuate
in a neighborhood of the infected equilibrium, & of the corresponding undisturbed system

(2.1).

6. Numerical simulations

In this section, some numerical simulations are given to validate the theoretical results, through
Milstein’s Higher order method [41,42], to numerically solve SDDEs system (2.2). The discretization

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5194-5220.
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Table 2. The list of parameter values for numerical simulations.

Parameters Example 1 Example 2 Units
n 6 0.3 cell ml~! day~!
7 0.2 [10] 0.2 [10] cell ml~! day™!
a; 0.01 [37] 0.5 day!
@ 0.1 [38] 0.9 day™!
a3 0.1 0.5 day™!
ay 0.3 [10] 0.1 [39] day™!
Bi 0.01 [40] 0.01 virions™! day™!
B 0.1 0.1 cell™! day™!
B3 0.2 [39] 0.2 [39] cell”! day™!
Ba 0.015 0.15 cell! day™!
a 0.4 [39] 0.06 cell”! day™!
! ——Stochastic o4 —Stochastic
09} —— Deterministic 0.35¢ ——Deterministic

H(t)

0.7

40 60 80 100
Time

06

05r

04+

V(t)

03r

0.2

0.1r

o—

—Stochastic

= Deterministic

P,

0

40 _ 60 80 100
Time

80 100

—Stochastic
= Deterministic

0 20

80 100

Figure 3. Time domain behavior of SDDEs system (2.2) (blue) and corresponding undis-
turbed system (2.1) (red), with 7y = 1 and 7, = 2, vi; = 0.1, vj5 = 0.1, v5; = 0.6, vo, = 0.6,
v3i = 0.7, v3p = 0.3, v4y = 0.2, v = 0.1, when @y < 1 and R < 0, the infection dies
out in the stochastic model faster than the undisturbed model under the impact of stochastic

perturbations.

transformation takes the form

Hiy = H + [ — a1 Hy — BiH Vi — Bo Hi i JAt + (vi Hy + vi2)Hy ‘/A_tfl,k

H
+ Tk(valH,f + 3V1]V12Hk + V%z)
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Div1 = I + [BiH Vi + BoHi Loy — a2l — B3k DAL + (vay + var o) ‘/Efz,k

I
+ Ek(vél + 3V21V22[k + 21/%2]/3)
V,
Vier = Vi + [alk_m2 — a3z Vi]AL + (va31 + v V)V, VAI§3J< + Tk(vgl + 3v3v3o Vi + 2V%2V£)

D
Dyy1 = Dy + [0 — asDy + Balik DAt + (Var + vao Di) Dy ‘/A_f§4,k + Tk(%zu + 3v41var Dy + 2V4212Di)-

The independent Gaussian random variables denoted as &y, (i = 1,2, 3,4), which follow the distribu-
tion N(0, 1), m; and m, are integers such that the time-delays can be expressed in terms of the step-size
At as Ty = mAt and 7, = m,At. Initial values are taken fixed (0.4,0.2,0.7,0.5).

Example 1. Herein, we use parameter values of Table 2 to analyze the dynamics of systems (2.1)
and (2.2), with time-delays T = 1 and T, = 2, we choose vi; = 0.003, vi; = 0.001, v,; = 0.004,
vay = 0.001, v3; = 0.001, v3, = 0.006, v4; = 0.003, v4» = 0.004. Direct calculations leads to R} > 1,
the condition of Theorem 2 satisfies. The stationary distribution illustrates that the solution of the
stochastic system (2.2) fluctuate in a neighborhood of the endemic equilibrium & of the corresponding
undisturbed system (2.1), which means that the disease is persistent for all time regardless of the initial
conditions if the scale of random perturbations is relatively small. Therefore, system (2.2) admits a
unique ergodic stationary distribution n(.). The simulation also indicates that the endemic equilibrium
is asymptotically stable for the undisturbed system; See Figure 2.

Example 2. Now, we compare the solution of the SDDEs system (2.2) with the undisturbed system
(2.1) around the disease free equilibrium point, using parameter values of Table 2. Figure 3 shows that
the disease free equilibrium point is stable for the undisturbed system. However, for the SDDEs system
(2.2), we choose vi; = 0.1, vi = 0.1, vo; = 0.6, vop = 0.6, v31 = 0.7, v30 = 0.3, v41 = 0.2, v4o = 0.1,
by a simple calculation we have ®y ~ 0.067 < 1 and R < 0, so that conditions of Theorem 3 hold,
Therefore, the disease will be extinct with probability one. It is shown that the larger intensity of white
noise set may help to eliminate the disease faster than the model without noise.

7. Concluding remarks

In the present work, we investigated the impact of high-order stochastic perturbations on the dynam-
ics of delay differential model of HBV infection with both virus-to-cell and cell-to-cell transmissions,
intracellular delay, and immunity. The effect of stochastic perturbations on the persistence and possible
extinction of the disease have been studied in detail. By utilizing Lyapunov functional, we proved the
existence and uniqueness of an ergodic stationary distribution of positive solutions to the system, where
the solution fluctuates around endemic equilibrium of the corresponding deterministic model and leads
to the stochastic persistence of the disease with probability one. The model has a unique stationary
distribution which is ergodic if R) > 1. In addition, we formulate sufficient conditions for complete
extinction of the disease by constructing a suitable stochastic Lyapunov function. Under some con-
ditions, the disease can die out exponentially with probability one. Some numerical simulations, by
using Milstein’s scheme, are carried out to show the effectiveness of the obtained results. The intensity
of white noise plays an important role in the treatment of HBV and other infectious diseases.

The incorporation of intracellular time-delays and stochastic perturbations (noise) in the model is
assumed to give a clearer view in the interpretation of the analytical result and this has important
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implications on therapeutic options and drug development. Some other interesting topics deserve fur-
ther investigation. One may take other kinds of environmental noise into account, such as the Levy
noise [43]. In addition, motivated by the work in [44,45] the deterministic system (2.1) can be extended
to include fractional derivatives in the model in order to consider long-run memory of the dynamic of
the disease.

Acknowledgement

This work has been generously funded by the UAE university (UAE), fund # 31S435-UPAR -
5-2020. The authors believe that the editor and reviewers’ suggestions have been very helpful in
improving the manuscript.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, A. S. Perelson, Modeling the mechanisms of acute
hepatitis B virus infection, J. Theor. Biol., 247 (2007), 23-35.

2. R. M. Ribeiro, A. Lo, A. S. Perelson, Dynamics of hepatitis B virus infection, Microb. Infect., 4
(2002), 829-835.

3. J. 1. Weissberg, L. L. Andres, C. 1. Smith, S. Weick, J. E. Nichols, G. Garcia, et al, Survival in
chronic hepatitis B, Ann. Intern. Med., 101 (5), 613-616.

4. 1. S. Oh, S. H. Park, Immune-mediated liver injury in hepatitis B virus infection, Immun. Netw.,
15 (2015), 191.

5. C. A. Janeway, J. P. Travers, M. Walport, M. J. Sholmchik, Immunobiology: The Immune System
in Health and Disease 5th edition, New York, Garland Science, 2001.

6. F. A. Rihan, Delay Differential Equations and Applications to Biology, 2021.

7. K. Hattaf, N. Yousfi, A generalized HBV model with diffusion and two delays, Comput. Math.
Appl., 69 (2015), 31-40.

8. K. Manna, S. P. Chakrabarty, Global stability of one and two discrete delay models for chronic
hepatitis B infection with HBV DNA-containing capsids, Comput. Appl. Math., 36 (2017), 525—
536.

9. K. Hattaf, K. Manna, Modeling the dynamics of hepatitis B virus infection in presence of capsids
and immunity, in Mathematical Modelling and Analysis of Infectious Diseases, (2020), 269-294.

10. T. Luzyanina, G. Bocharov, Stochastic modeling of the impact of random forcing on persistent
hepatitis B virus infection, Math. Comput. Simul., 96 (2014), 54-65.

11. X. Wang, Y. Tan, Y. Cai, K. Wang, W. Wang, Dynamics of a stochastic HBV infection model
with cell-to-cell transmission and immune response, Math. Biosci. Eng., 18 (2021), 616—642.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5194-5220.



5218

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29

. C. Ji, The stationary distribution of hepatitis B virus with stochastic perturbation, Appl. Math.
Lett., 100 (2020), 106017.

T. Khan, I. H. Jung, G. Zaman, A stochastic model for the transmission dynamics of hepatitis B
virus, J. Biol. Dyn., 13 (2019), 328-344.

D. Kiouach, Y. Sabbar, Ergodic stationary distribution of a stochastic hepatitis B epidemic model
with interval-valued parameters and compensated poisson process, Comput. Math. Methods
Med., 2020 (2020).

G. Bocharov, V. Volpert, B. Ludewig, A. Meyerhans, Mathematical Immunology of Virus Infec-
tions, 2018.

I. Sazonov, D. Grebennikov, M. Kelbert, G. Bocharov, Modelling stochastic and deterministic
behaviours in virus infection dynamics, Math. Model Nat. Phenom., 12 (2017), 63-77.

Y. Yang, L. Zou, S. Ruan, Global Dynamics of a Delayed Within-Host Viral Infection Model
with Both Virus-to-Cell and Cell-to-Cell Transmissions, 2015.

S. Hews, S. Eikenberry, J. D. Nagy, Y. Kuang, Rich Dynamics of a Hepatitis B Viral Infection
Model with Logistic Hepatocyte Growth, 2010.

Y. Wang, Z. Du, W. R. Lawrence, Y. Huang, Y. Deng, Y. Hao, Predicting hepatitis B virus
infection based on health examination data of community population, Int. J. Environ. Res. Public
Health, 16 (2019), 4842.

X. Lai, X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell
transmission, SIAM J. Appl. Math., 74 (2014), 898-917.

F. A. Rihan, G. Velmurugan, Dynamics and sensitivity analysis of fractional-order delay differ-
ential model for coronavirus (COVID-19) infection, Prog. Fract. Differ. Appl., 7 (2021), 43-61.

S. Pan, S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a

non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul.,
61 (2018), 180-197.

F. A. Rihan, M. Sheek-Hussein, A. Tridane, R. Yafia, Dynamics of hepatitis C virus infection:
mathematical modeling and parameter estimation, Math. Model Nat. Phenom., 12 (2017), 33-47.

A. Goyal, L. E. Liao, A. S. Perelson, Within-host mathematical models of hepatitis B virus
infection: Past, present, and future, Curr. Opin. Syst. Biol., 18 (2019), 27-35.

M. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,
Oxford University Press, 2000.

X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccina-
tion under regime switching, Appl. Math. Lett., 102 (2020).

F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for
COVID-19, Adv. Differ. Equation, 2020 (2020), 1-20.

Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Dynamical behavior of a higher order stochas-
tically perturbed SIRI epidemic model with relapse and media coverage, Chaos Solitons Frac-
tals., 139 (2020), 110013.

. X. Mao, Stochastic Differential Equations and Their Applications, Horwood, Chichester, 1997.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5194-5220.



5219

30.

31.

32.

33.

34.
35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear
perturbation, Appl. Math. Lett., 73 (2017), 8—15.

Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Asymptotic behavior of a stochastic delayed HIV-1
infection model with nonlinear incidence, Phys. A, 486 (2017), 867—-882.

R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, Sijthoff &
Noordhoft, 1980.

S. Pengd, X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional
stochastic differential equations, Stoch. Process. Their. Appl., 116 (2006), 370-380.

A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.

R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3247 (1980),
217-228.

X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.

H. Dahari, A. Lo, R. M. Ribeiro, A. S. Perelson, Modeling hepatitis C virus dynamics: Liver
regeneration and critical drug efficacy, J. Theor. Biol., 247 (2007), 371-381.

D. Wodarz, Mathematical models of immune effector responses to viral infections: Virus control
versus the development of pathology, J. Comput. Appl. Math., 184 (2005), 301-319.

J. Reyes-Silveyra, A. R. Mikler, Modeling immune response and its effect on infectious disease
outbreak dynamics, Theor. Biol. Med. Model., 13 (2016), 1-21.

D. Wodarz, Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses,
J. Gen. Virol., 84 (2003), 1743-1750.

C. Bake, E. Buckwar, Numerical analysis of explicit one-step methods for stochastic delay dif-
ferential equations, LMS J. Comput. Math., 3 (2000), 315-335.

Z. Wang, C. Zhang, An analysis of stability of Milstein method for stochastic differential equa-
tions with delay, Comput. Math. Appl., 51 (2006), 1445-1452.

B. Berrhazi, M. E. Fatini, T. G. Caraballo, R. Pettersson, A stochastic SIRI epidemic model with
1évy noise, Discret. Contin. Dyn. Syst. Ser. B., 23 (2018), 3645-3661.

K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Com-
putation, 8 (2020), 49.

F. A. Rihan, A. A. Arafa, R. Rakkiyappand, S. Rajivganthi, Y. Xu, Fractional-order delay differ-
ential equations for the dynamics of hepatitis C virus infection with IFN-« treatment, Alex. Eng.
J., 60 (2021), 4761-4774.

J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc.
Interf., 2 (2005), 281-293.

Appendix: Equilibrium points and R, of the deterministic model

The deterministic system (2.1) admits two equilibrium points, namely; The disease-free equilib-
rium, & = (H,, 0,0, D), where Hy = Z—'l and D, = Z—i; The infected equilibrium, & = (H*, I*, V*, D*),

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5194-5220.



5220

where N
H* _ mas a % m

a1 + (Bia + Baa) I s oy =Bl

with a4 > 41" such that I* is the positive root of

ul”? + 0" +23 =0, where

21 = a1 Ba + ar3fafs

22 = 13y — (A + a1 Bana + @3fafsne + aPifam + @3fofan + a3 aufs)
73 = aPin + azaafr — (@1asfsn + @1anasay).

To determine the expression of the basic reproduction number, we utilize the next generation matrix
approach [46]. Therefore, we have

B fim Bam
?:( aq ay ), V:( 4 +Q’2 O )’

—a (0%}

y O
-1 _ Bam+azay
vl = rta L
a3(B3m+aras) a3

The basic reproduction number is the spectral radius of (FV™'), i.e. Ry = p(F V). Hence,

mas(aB + asfs)

Ry = = Ro1 + Roa,
* 7 @By + araw) oL e
a4 H H
where Ry = aasfsi Ho and Ry, = M. From biological point of view, R, stands for
@3(B3ny + ara) Bz + aray

the average number of secondary infected cells produced by an infectious virion and R, represents the
average number of secondary infected cells produced by an infected cell.
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