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Abstract: Purpose: Cutaneous melanoma (SKCM) is the most invasive malignancy of skin cancer.
Metastasis to distant lymph nodes or other system is an indicator of poor prognosis in melanoma
patients. The aim of this study was to identify reliable prognostic biomarkers for SKCMs. Methods:
Four RNA-sequencing datasets associated with SKCMs were downloaded from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database as well as corresponding clinical
information. Differentially expressed genes (DEGs) were screened between primary and metastatic
samples by using MetaDE tool. Weighted gene co-expression network analysis (WGCNA) was
conducted to screen functional modules. A prognostic score (PS)-based predictive model and
nomogram model were constructed to identify signature genes and independent clinicopathologic
factors. Results: Based on MetaDE analysis and WGCNA, a total of 456 overlapped genes were
identified as hub genes related to SKCMs progression. Functional enrichment analysis revealed these
genes were mainly involved in the hippo signaling pathway, signaling pathways regulating
pluripotency of stem cells, pathways in cancer. In addition, eight optimal DEGs (RFPLIS, CTSV,
EGLN3, etc.) were identified as signature genes by using PS model. Cox regression analysis revealed
that pathologic stage T, N and recurrence were independent prognostic factors. Three clinical factors
and PS status were incorporated to construct a nomogram predictive model for estimating the three
years and five-year survival probability of individuals. Conclusions: The prognosis prediction model
of this study may provide a promising method for decision making in clinic and prognosis predicting
of SKCM patients.
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1. Introduction

Skin cutaneous melanoma (SKCM) is an aggressive malignancy with the highest mortality in
skin cancer. In general, it is characterized by high grade malignancy, and most patients are diagnosed
at an advanced stage, which leads to missed therapeutic opportunities [1]. According to cancer
statistics in 2020, approximately 95,710 new cases of skin melanoma are diagnosed in US [2].
Although recent checkpoint blockade immunotherapy (such as PD-1/PD-L1 antibodies) and targeted
therapy have contributed to medical breakthroughs, the 5-year overall survival rate of metastatic
SKCM is still less than 5% due to local recurrence and metastasis [3,4]. Therefore, it is urgent
demands to develop more superior reliable biomarkers for early detection and prognosis
prediction in SKCMs.

Metastasis of melanoma was associated with activation of several pathways, such as
epithelial-mesenchymal transition (EMT), angiogenesis, pericytic mimicry and extravascular
migratory [5,6]. However, the genetic and molecular mechanism of metastasis remains unclear.
Cutaneous melanoma can metastasize haematogenously or through the lymphatic system, and three
exist predominant models can explain the progression, stepwise spread, simultaneous spread and
differential spread model [7,8]. Brain metastases are particularly common in metastatic melanoma
patients and they can also metastasize to liver, bones, or distant lymph nodes [9]. Nowadays, the
increasing application of RNA-sequencing technologies has shown effective methods for
understanding tumor metastasis. With the development of gene expression profiling, researchers
have identified gene expression signatures that are associated with metastasis or survival
outcomes [10,11]. Recently, bioinformatic analysis of public databases has been broadly used to
explore prognostic biomarkers in disease progression, and the predictive models can also be utilized
to assess prognosis in melanoma patients [12,13]. Thus, the identification of reliable signature genes
and clinical factors will provide a guide for decision-making in clinical.

In this study, we comprehensively analyzed the RNA-sequencing profiles of SKCMs by using
weighted gene co-expression network analysis (WGCNA) and bioinformatics analysis. Based on
prognostic score (PS) model and nomogram model, we screened eight signature genes and three
clinical characteristics for prognosis prediction of SKCMs. Our findings might provide reliable
prognostic biomarkers in SKCMs.

2. Materials and methods
2.1. Data resource

RNA-sequencing profiles of SKCMs were derived from The Cancer Genome Atlas (TCGA)
(https: //gdc-portal.nci.nih.gov/) on September 9, 2020 and tested on Illumina HiSeq 2000 RNA
sequencing platform. The profile included 473 SKCM tumor samples, of which 458 SKCM tumor
samples with metastasis and clinical survival information were selected as training data set.

In addition, microarray data of SKCM were downloaded from the Gene Expression Omnibus
(GEO) (http: //www.ncbi.nlm.nih.gov/geo/) based on following screening criteria: 1) transcriptional
expression profiles; 2) skin solid tissue samples from SKCM patients; 3) human expression profiles;
4) individuals containing metastasis information; 5) samples counts should be more than fifty; 6)
information with survival and prognosis. Finally, we obtained three datasets associated with SKCM,
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including GSE46517 [14], GSE7553 [15], and GSE65904 [16,17]. The whole testing platform and
corresponding usage of these profiles were shown in Table 1.

Table 1. Datasets and usage information included in this study.

Datasets Platform Component of samples Usage
102 primary, 356 Used for DEGs, WGCNA and prognostic
TCGA Illumina HiSeq 2000 P . Y . Prog
metastatic analysis

GSE46517 GPL570 Affymetrix 31 primary, 73 metastatic
Used for DEGs, WGCNA analysis
GSE7553  GPL570 Affymetrix 14 primary, 40 metastatic

GSE65904 GPL10558 Illumina 214 SKCM Used for prognostic model validation

Moreover, annotation of each platform involved in Table 1 were download from Ensembl
genome browser 96 databases [18] (http: //asia.ensembl.org/index.html), including RNA types, gene
symbol and probe, etc. After re-annotate the detection probes in the expression profile dataset, the
corresponding long non-coding RNAs (IncRNAs) and mRNA expression level were finally obtained.

2.2. Screening DEGs

MetaDE tool [19,20] in R3.6.1 software was utilized to screened significantly differentially
expressed RNAs from three databases of TCGA, GSE46517 and GSE7553. Heterogeneity of gene
expression value was tested with parameters of tau?, Q-value and Qpval. The tau® represents the
amount of heterogeneity, and Qpval represents the heterogeneity of data set. If tau?= 0 and Qpval > 0.05,
it means that the gene was homogeneous and unbiased. Therefore, false discovery rate (FDR) < 0.05,
tau> = 0 and Qpval > 0.05 were set as thresholds to ensure homogeneity of signature genes.
Combining with |log2 fold-change (FC)| parameter, the genes with the same direction of logFC in the
three datasets is screened as candidate genes for further analysis.

2.3. WGCNA

WGCNA is a method for screening diseases-related modules from thousands of genes, and then
incorporating these modules to clinical characteristics [21]. In this study, we used WGCNA version
1.61 packet [22] to screen disease-related modules. Profiles of TCGA were set as training set, while
GSE46517 and GSE7553 were set as validation set. All algorithms were conducted following
scale-free features. The correlation of co-expression matrix was analyzed and adjacency functions
were defined. By the criteria of gene counts > 50 and cut Height = 0.995, we identified the modules
associated with disease traits. The stability of modules across differential datasets was calculated
based on two validation sets.

The mRNAs screened from MetaDE analysis were corresponding to WGCNA modules to
identify overlapped genes significantly associated with disease traits. Hypergeometric algorithm [23]
were conducted to calculated enrichment parameter and significance P value of DEGs in each
module. Fold enrichment > 1 and P < 0.05 were set as thresholds for hub gene screening.

f(k, N, M, n) = C (k, M) * C (n-k, N-M)/C (n, N)
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where “N” and “M” represent the whole gene cohorts and module-related genes screened by
WGCNA. “n” and “k” represent the whole gene counts and module-related genes screened by
MetaDE analysis.

2.4. Co-expression network construction

To identify crucial genes related to SKCM metastasis, we calculated the Pearson correlation
coefficient (PCC) of DEGs in TCGA training set by using cor function. We constructed the
co-expression network for the overlapped genes or IncRNAs screened by MetaDE analysis and
WGCNA. Cytoscape 3.6.1 [24] were utilized to visualize the connection of gene pairs. GO and
KEGG pathways analysis were conducted by using DAVID version 6.8 [25] tool, and p value less
than 0.05 was selected as the threshold.

2.5. Identification optimal RNAs for prognostic risk prediction

Cox regression analysis were conducted to screen DEGs associated with survival time in TCGA
dataset by using survival package [26]. Log-rank p < 0.05 was selected as a threshold.

Next, cox-proportional hazards (Cox-PH) model [27] in penalized package version 0.9-50 [28]
were used to further screen the optimal RNAs associated with SKCM prognosis. The optimal
parameter “lambda” in the screening model is obtained through cycling 1000 cross-validation
likelihood calculation. PS model were constructed on the basis of least absolute shrinkage and
selection operator (LASSO) coefficient and expression value of DEGs in training set. The PS
calculation formula is as follows:

Prognostic score (PS) = X Brnas X EXpP rnas

where Prnas represents the LASSO prognostic coefficient, Exp rnas refers to expression level of
RNAs in training set.

To validate the performance ability of this predictive model, we calculated PS value of each
sample, and divided samples of training set and validation set into high and low risk groups by
setting median PS value as criteria. The correlation between risk grouping and overall survival time
was assessed by using survival package.

2.6. Identify independent prognostic clinicopathologic factors

Univariate and multivariate cox regression analysis were conducted to screen the clinical factors
correlated to survival times of SKCMs. Log-rank p value < 0.05 was selected as a threshold. Since
then, to further explore the correlation of risk grouping and variables, individuals could be divided
into differential subgroups on the basis of clinicopathologic parameters, such as pathologic T, N,
recurrence, etc.

In addition, nomogram model incorporating three factors and PS status were constructed by
using rms package [29] version 5.1-2 for prediction of 3- and 5-year survival probability of
individuals. Nomogram is a graphic scale to visualize the contribution of each factor to survival
probability prediction of an individual patient, and it has been widely applied in survival time
prediction in multiple cancers [30,31], such as bladder cancer, lung cancer, renal cancer, etc.
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2.7. Functional analysis of DEGs between high-risk group and low-risk group

The samples in the training set were divided into high-risk and low-risk two groups
according to PS model. The DEGs between two groups were screened by using limma package
version 3.34.7. FDR < 0.05 and |log2FC| > 1 were considered as screening threshold. Gene set
enrichment analysis (GSEA) [32] was carried out to identify potential pathways related to risk,
and P < 0.05 was set as criteria.

3. Results

3.1. Differentially expressed RNAs between primary and metastasis SKCMs

M Vietastatic TCGA GSE46517 GSE7553
[ Primary

100 3 26 21 17 13 0.9 0.4 0 04 0.9 13 17 21 26 3 100

Figure 1. Hierarchical cluster analysis of DEGs between primary and metastasis
SKCM samples. Black and white column represent primary and metastasis SKCM
samples, respectively.
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According to gene expression analysis, we screened numerous of differential expressed RNAs
from three datasets (TCGA, GSE46517 and GSE7553). After calculated parameters (pval, FDR, tau?,
Qpval and Qval) of each gene, we finally identified 1463 differential expressed RNAs between
primary and metastasis samples, including 11 IncRNAs and 1452 mRNAs. The clustering analysis
results of heatmap showed these differential expressed RNAs could be clustered into the same
column and rows, indicating these genes might be crucial genes related to metastasis of SKCMs
(Figure 1).

3.2. Identification functional modules

While the power value was set as 14, the median connectivity of RNAs satisfied the scale-free
network (Figure 2A). CutHeight was chose as 0.995, and three gene hierarchical clustering trees
(dendrogram) were generated based on TCGA, GSE46517, and GSE7553 dataset, including 12
co-expression modules (Figure 2B). A heatmap were generated to visualize the associations of
module and clinical traits (Figure 2C).

Table 2. Preservation information of TCGA, GSE46517 and GSE7553 modules.

D Color Module size Preservation infor YDEGs . Enrichment infor
Z-score P value Enrichment fold [95%CI]  Phyper

module 1 black 46 1.0948  5.30E-01 | 2 0.461 [0.0540-1.772] 4.33E-01
module 2 blue 412 26.1088 1.50E-32 | 31 0.798 [0.528-1.166] 2.86E-01
module 3 brown 222 13.0959 5.10E-07 | 40 1.909 [1.310-2.725] 7.61E-04
module 4  green 116 3.3211 6.80E-02 | 9 0.822 [0.364-1.630] 7.46E-01
module 5  greenyellow 31 1.4561 2.20E-02 | 1 0.342 [0.00838-2.062] 5.19E-01
module 6  grey 3254 1.3379  3.10E-10 | 305 0.994 [0.851-1.159] 9.69E-01
module 7 magenta 42 55990 7.70E-01 | 1 0.252 [0.00623-0.493] 1.76E-01
module 8  pink 44 9.0744  1.30E-02 | 7 1.686 [0.637-3.802] 2.05E-01
module 9  purple 38 1.9483  6.70E-02 | 4 1.115[0.288-3.119] 7.81E-01
module 10 red 49 2.2596  4.90E-01 | 5 1.082 [0.335-2.719] 8.06E-01
module 11 turquoise 446 31.0564 4.00E-35 | 50 1.188 [1.055-1.622] 2.80E-02
module 12  yellow 134 6.8541 3.50E-01 | 1 0.0791 [0.00198-0.450] 1.26E-04

Notes: where “Z score” represented the stability of modules. Modeled with Z score range from 5 to 10
represented the general stability, while Z score > 10 represented a high stability. The p value represented

correlationships of modules.

Four modules with preservation Z score > 5 and P value < 0.05 were identified as stable
modules associated with clinical traits (Table 2). We compared the differential expressed RNAs from
MetaDE and WGCNA package, and found 456 overlapped genes with consistent expressed status
(Figure 2D). These genes were mainly enriched in brown and turquoise modules according to the
preset thresholds (Fold enrichment > 1, P value < 0.05), including 40 and 50 mRNAs respectively
(Figure 2E).
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Figure 2. Weighted gene co-expression network construction. A, Scale-free network
analysis. B, Division of co-expression gene modules based on TCGA, GSE46517 and
GSE7553 datasets. C, Correlation matrix for each module and clinicopathological
parameters. D, Venn diagram showed the overlapped genes between MetaDE analysis
and WGCNA. E, Distribution of overlapped genes in each module (left) and the
parameter graph of genes enriched in modules (right).

3.3. Co-expression network construction
We explore the correlation-ships of dysregulated mRNAs or IncRNAs related to SKCM

prognosis. By the criteria of absolute PCC value higher than 0.4, we screened 458 pair of
connections to construct network (Figure 3A). These genes were mainly related to 12 BP and 6
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KEGG pathways (Table 3, Figure 3B), such as process of transcription, DNA-templated, protein
autophosphorylation, DNA-templated, anatomical structure morphogenesis, pathways in cancer,
hippo signaling pathway, etc.
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Figure 3. Co-expression network construction A, The co-expression network of DEGs in
brown and turquoise module. B, GO term and KEGG pathway enrichment analysis.

3.4. Prognostic model for establishing optimal RNAs

The whole samples in training set and validation set were divided into low- and high-risk group
after calculating PS value. We screened 41 RNAs significantly correlated to prognosis of disease by
univariate analysis. Multivariate analysis showed 14 RNAs with independent prognostic values were
identified as hub genes, including 2 IncRNAs and 12 mRNAs. Using cox-proportional hazards model,
we final selected 8 RNAs as optimal signature genes associated with SKCM prognosis, such as
RFPLIS, CTSV, EGLN3, ESRP1, HESX1, MANEA, PKP1 and PRSSS8 (Table 4).
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Table 3. GO terms and KEGG pathways enrichment analysis for major mRNAs in
co-expression network.

Category Term Count  Pvalue

Biology Process  GO: 0035735~intraciliary transport involved in cilium morphogenesis 2 3.37E-02
GO: 0030916~otic vesicle formation 2 3.37E-02
GO: 0015889~cobalamin transport 2 3.84E-02
GO: 0045893~positive regulation of transcription, DNA-templated 7 4.00E-02
GO: 0006351~transcription, DNA-templated 16 4.50E-02
GO: 0046777~protein autophosphorylation 4 4.52E-02
GO: 0043508~negative regulation of JUN kinase activity 2 4.66E-02
GO: 0009653~anatomical structure morphogenesis 3 4.74E-02
GO: 0006978~DNA damage respons 2 4.75E-02
GO: 0009948~anterior/posterior axis specification 2 4.80E-02
GO: 0051298~centrosome duplication 2 4.89E-02
GO: 0009235~cobalamin metabolic process 2 4.98E-02

KEGG Pathway  hsa04390: Hippo signaling pathway 5 2.29E-04
hsa04550: Signaling pathways regulating pluripotency of stem cells 4 1.52E-03
hsa05200: Pathways in cancer 5 5.79E-03
hsa04530: Tight junction 2 2.82E-02
hsa04310: Wnt signaling pathway 2 4.10E-02
hsa00230: Purine metabolism 2 4.91E-02

Table 4. Identify the optimal RNA cohorts for prognostic prediction model.
Multi-variate Cox regression analysis
Symbol Type LASSO coef
HR 95%ClI P value

RFPL1S IncRNA 1.424 1.018-1.990 3.89E-02 0.1846

CTsSV mRNA 1.107 1.002-1.358 3.32E-02 0.0440

EGLN3 mMRNA 1.109 1.006-1.342 2.90E-02 0.0651

ESRP1 mRNA 1.122 1.033-1.268 1.64E-02 0.1092

HESX1 mMRNA 0.687 0.476-0.993 4.57E-02 -0.2125

MANEA mMRNA 0.747 0.601-0.930 8.96E-03 -0.2613

PKP1 mMRNA 1.241 1.080-1.426 2.36E-03 0.1473

PRSS8 mMRNA 0.766 0.599-0.980 3.40E-02 -0.0959

PS value of each sample was calculated based on expression value and LASSO coefficient of
eight signature genes. The solution paths and parameters of lasso regression model of 8-genes
prognostic risk model were shown in Figure 4. Individuals of dataset can be divided into low- and
high-risk groups. Accuracy of risk grouping was further validated by evaluating the correlation
between actual survival rate and risk grouping. Patients in high risk groups exhibited a poor
prognosis than those in low risk groups, indicating a significant consistency of disease grouping and
actual disease prognosis (Figure 5A,B).
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Figure 4. Kaplan-Meier curves for SKCMs in training (A) and validation set (B). Left:
Overall survival time analysis based on prediction model. Right: Receiver operating
characteristic curve. Data in bracket represent specificity and sensitivity of model.

3.5. Independent prognostic clinical factors

Three clinical factors (pathologic N, T, recurrence) and PS status were identified as
independent prognosis-related factors (Table 5, Table S1) according to regression analysis.
Patients could be divided into differential groups according to three clinical factors.
Kaplan-Meier curve demonstrated patients in groups of high-grade pathologic T, N and
recurrence statue exhibited a poor prognosis. The results were consistent with actual disease
progression (Figure 6A). Furthermore, individuals could be divided into differential subgroups
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based on pathologic stage and recurrence status. The patients in differential subgroups were
further divided into high and low risk groups according to PS value. Patients in low risk groups
exhibited a better prognosis than those in high risk groups (Figure 6B).
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Figure 5. LASSO profiles of the prognostic genes in SKCM. (A) LASSO coefficient
profiles of the prognostic genes in SKCM. (B) Lasso deviance profiles of the prognostic
genes in SKCM.
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Figure 6. The results of identify prognostic clinical factors in SKCMs. A, Kaplan-Meier
curves for clinical factors pathologic N, T and recurrence. B, Kaplan-Meier curves
showed the correlation of risk grouping and prognosis.
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Table 5. Screening independent clinical factors for survival analysis.

Uni-variables cox Multi-variables cox
Clinical characteristics TCGA (N = 458)

HR 95%Cl P HR 95%Cl P
Age (years, mean =£sd) 58.09 £15.74 1.024 1.015-1.034 1.71E-07 | 1.008 0.992-1.025 3.19E-01
Gender (Male/Female) 284/174 1.148 0.866-1.522 3.32E-01 | - - -
Pathologic M (M0O/M1/-) 408/24/26 1.877 1.019-3.459 4.34E-02 | 1.478 0.439-4.971 5.28E-01
Pathologic N (NO/N1/N2/N3/-) 227/73/49/55/54 1.367 1.198-1.561 2.42E-06 | 1.405 1.201-1.975 4.98E-02
Pathologic T (T1/T2/T3/T4/-) 64/76/89/151/78 1442 1.255-1.657 7.05E-08 | 1.412 1.100-1.811 6.75E-03
Pathologic stage (I/11/111/1V/-) 82/138/169/23/46  1.419 1.203-1.674 2.73E-05 | 1.395 0.775-2.513 2.67E-01
Radiotherapy (Yes/No/-) 49/408/1 0.522 0.317-0.857 8.93E-03 | 1.207 0.538-2.709 6.48E-01
Tumor recurrence (Yes/No/-) 88/207/163 1831 1.193-2.810 4.96E-03 | 1.915 1.110-3.302 1.95E-02
Prognostic model (High/Low) 229/229 2407 1.827-3.172 1.43E-10 | 3.23 1.854-5.628 3.47E-05
Death (Yes/No) 221/237 - - - - - -
Overall survival time (months mean £sd)  61.45 +64.69 - - - - - -

3.6. Nomogram model to predict survival probability of individuals

Nomogram model incorporating four variables (pathologic N, T, recurrence and PS status) were
constructed to predict 3- and 5-year survival probability of individuals (Figure 7). The total score of
each factor corresponded to an estimated survival rate in nomograms. “Total Points” axis in the first
row incorporates the four variables to predict prognosis of patients.

3.7. Screening of crucial genes DEGs between high-risk group and low-risk group

Table 6. KEGG pathways analysis for critical differential expressed genes related to risk grouping.

NAME Gene count ES NES NOM p-val
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 20 -0.5980 -1.8426  6.623E-03
KEGG_FOCAL_ADHESION 5 -0.7394  -1.5914  1.843E-02
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 3 -0.7673  -1.5308  3.419E-02
KEGG_JAK_STAT_SIGNALING_PATHWAY 7 -0.5553  -1.5085  3.601E-02
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 25 -0.4286  -1.4432  3.915E-02
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 6 -0.7082  -1.4858  4.270E-02
KEGG_MELANOGENESIS 3 0.8835  1.6179  6.012E-03
KEGG_TYROSINE_METABOLISM 2 0.8191 1.4877 3.184E-02

Samples of TCGA set were divided into two groups after calculating PS values. We finally
obtained 662 DEGs (including 427 downregulated and 235 upregulated genes) between the high-risk
and low-risk groups, and the volcanic diagram was shown in Figure 8A. The heatmap incorporate the
gene expression level and Risk Score to visualize the distribution of crucial genes (Figure 8B).

GSEA results revealed these DEGs were mainly related to eight pathways, such as
melanogenesis (Table 6, Figure 9), JAK-STAT signaling pathway, cytokine receptor interaction,
neuroactive ligand receptor interaction, etc.
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Figure 9. Enrichment map of KEGG pathways significantly related to risk grouping.

4. Discussion
In this study, a total of 1463 DEGs were screened between primary tumor and metastatic

samples based on three datasets, TCGA, GSE46517 and GSE7553. We conducted WGCNA and
identified two stable functional modules. Functional enrichment analysis revealed module-related
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DEGs were associated with pathways in cancer, hippo signaling pathway, regulating pluripotency of
stem cells. After PS model and nomogram model construction, we identified 8 optimal signature
RNAs (such as IncRNA-RFPLIS, CTSV, ESRPI, etc.) and three independent clinical factors
(Pathologic N, T and Recurrence) for prognosis prediction of individuals.

In this study, a IncRNA-mRNA network was constructed by differentially expressing IncRNAs
and DEGs. In order to elucidate the underlying mechanisms, pathway enrichment analysis was
performed on these IncRNAs and DERs. The results of the study showed that these DEGs were
significantly associated with the Hippo signaling pathway, Signaling pathways regulating
pluripotency of stem cells and Pathways in cancer. The Hippo pathway is a critical regulator of organ
growth and cell fate that is dysregulated in many cancers [33]. Cancer malignancy has been linked to
distinct subsets of stem-like cells, known as cancer stem cells, which persist during treatment and
appear to lead to drug-resistant recurrence [34]. Besides, melanomas develop from
melanoma-competent melanocyte stem cells in response to UVB stimulation, which causes
melanocyte stem cell activation and translocation through an inflammation-dependent process [35].
These findings indicate that the Hippo signaling pathway, Signaling pathways regulating
pluripotency of stem cells and Pathways in cancer are important for SKCM, and that disease-related
RNAs RNAs are involved in the regulation of these pathways in SKCM.

We explored the potential biological function of eight signature genes by searching the
published papers. IncRNAs are types of RNAs molecules without protein encoding function, and
have been reported involved in the tumorgenesis and development. LncRNAs-RFPLIS is antisense to
RFPLI gene and may function in the post-transcriptional regulation of this gene [36]. RFPL
transcripts encode proteins with tripartite structure and it has been reported regulating cell-cycle
progression through cyclin B1/Cdc2 degradation [37]. A recent study showed RFPLIS were
down-regulated in brain tumors samples and expression patterns of this IncRNA were correlated with
malignancy grade in gliomas [38].

CTSV or cathepsin L2 is a lysosomal cysteine proteinase that associated with
extracellular-matrix degradation and tumor progress. High expression of CTSV is reported to
involved in metastasis and poor prognosis in breast ductal cancer, and it is a potential biomarker for
prognosis prediction breast cancer [39]. Moreover, two gene C7SV and CTSC were involved in
invasion of RCC, and a recent study showed praeruptorin B could promote the metastatic ability of
RCC cells through targeting CTSC and CTSV expression [40]. In addition, ELGN3 or PHD3 is a
member of PHDs, which induced in hypoxia. The biological role of PHD3 was related to HIF-1a
hydroxylation, suppression of tumor angiogenesis under hypoxic conditions [41,42]. Further study
demonstrated the tumor inhibition role of EGLN3, and it could regulates p53 stability by
hydroxylating proline 359 and resulted to cell cycle arrest and apoptosis [43]. In murine melanoma
model, treatment of PHD3 inhibitor could decreases tumor growth and angiogenesis through
increasing sVEGFR-1 generation from tumor-associated macrophages, indicating a critical role
PHD3 in tumor progression [44]. Whereas, PHD3 might function as the tumor promotion factor in
some tumors. By integrative -omics and HLA-ligand omics analysis, Anna identified that
EGLN3-derived peptides were associated with higher infiltration of tumor by CD8+ T cells;
functional analyses revealed EGLN3 might play the role of pro-proliferative and anti-apoptotic in
several RCC cell lines [45]. Moreover, EGLN3 were also elaborated that related to chemotherapy
resistance of cancer, such as prostate cancer and pheochromocytoma [46,47].

Furthermore, protein of ESRP1 belong to RNA-binding proteins family and it involved in tumor
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progression through regulating of gene posttranscriptional process [48]. Studies have shown that
downregulation of ESRPs was associated with tumor infiltration in various type of cancers, including
prostate cancer, breast cancer and pancreatic cancers [49,50]. Recently, ESRP1 was identified as
potential prognostic biomarker in cutaneous malignant melanoma [51], and patients with higher
ESRPI level had a poor overall survival rate than those with lower ESRP1 level; the further analysis
showed ESRP1 was negatively associated with infiltration of DC and Treg cells. It is well known
that DC can promote tumor metastasis by up-regulating Treg cells and down-regulating the
cytotoxicity of CD8+ T cells [52]. In fact, data analysis in our study also identified dysregulated
ESRPI1 from metastatic SKCM sample, which consistent with previous studies.

In addition, PKP1/2/3 played an potential role in tumor invasion and metastasis in various
malignancy and PKPI mutation could result in skin fragility syndrome [53,54]. Lee et al reported
that phosphorylation of Pkpl by RIPK4 (receptor-interacting serine-threonine kinase 4) regulated
epidermal differentiation and skin tumorigenesis [55]. Moreover, the serine protease PRSS8 could
suppress colorectal carcinogenesis and metastasis [56]. Hypermethylated PRSS8 in ESCC tissues
was linked to the downregulation of PRSS8; The reduction of PRSS8 was well correlated with
shorter survival time in ESCC patients [57]. High levels of PRSS8 and prostasin has been identified
as potential clinical biomarkers for ovarian cancer early detection [58]. Taken together, these findings
indicated that protein of CTSV, ESRP1, ELGN3 might be critical genes associated with tumor
metastasis, and the eight genes may be reliable biomarkers for predictive of SKCM prognosis.

Univariate and multivariate cox regression analysis revealed three clinicopathological variables
and PS status were correlated to prognosis of SKCMs. Nomogram model incorporating these factors
to predict 3- and 5-year survival probability of individuals. Previous studies showed this model has
been widely used to provide prognosis prediction for cancer patients. A recent study showed six
clinical factors were significantly correlated with sentinel node status, which is major factor of
melanoma prognosis; six variables-based nomogram model exhibited a good predictive performance
and suggested to be a decision aid for T1 melanoma being considered sentinel node biopsy [59].
Using nomogram model, another paper identified five immune-related genes and several clinical
parameters for prognosis prediction of SKCMs [60], such as pathological T, N, AJCC stage etc.. In
our study, we selected common clinical factors of SKCMs, and these clinicopathologic parameters
were relative easily available and comprehensive in clinical work. Moreover, our nomogram
exhibited a better discrimination ability for predicting prognosis.

The potential limitation of this study should be enumerated. Firstly, individual number was
small and the whole data analysis were conducted on the basis of public databases (TCGA and GEO),
thus more external samples from multiple medical centers should be concerned validate the
performance of prediction models. Secondly, the function of optimal RNAs also needed to be further
investigated in SKCM not only by data analysis but also by molecular and cellular experiments.

5. Conclusions

In conclusion, we screened cohorts of overlapping genes related to SKCM metastasis by using
DEGs analysis and WGCNA. On the basis of PS model, we identified eight signature genes and
pathologic N, T and recurrence as prognostic factors for disease prediction. Furthermore, eight
signature genes based predictive model and nomogram might be useful methods for prognostic
prediction of SKCM patients.
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