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Abstract: Radiology experts often face difficulties in mammography mass lesion labeling, which may
lead to conclusive yet unnecessary and expensive breast biopsies. This paper focuses on building an
automated diagnosis tool that supports radiologists in identifying and classifying mammography mass
lesions. The paper’s main contribution is to design a hybrid model based on Pulse-Coupled Neural
Networks (PCNN) and Deep Convolutional Neural Networks (CNN). Due to the need for large
datasets to train and tune CNNs, which are not available for medical images, Transfer Learning (TL)
was exploited in this research. TL can be an effective approach when working with small-sized datasets.
The paper’s implementation was tested on three public benchmark datasets: DDMS, INbreast, and
BCDR datasets for training and testing and MIAS for testing only. The results indicated the
enhancement that PCNN provides when combined with CNN compared to other methods for the same
public datasets. The hybrid model achieved 98.72% accuracy for DDMS, 97.5% for INbreast, and
96.94% for BCDR. To avoid overfitting, the proposed hybrid model was tested on an unseen MIAS
dataset, achieving 98.77% accuracy. Other evaluation metrics are reported in the results section.
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1. Introduction

In 2018, approximately 18 million cancer cases entered the existing population living with cancer
worldwide, and over half of them resulted in death [1]. According to statistical evidence, breast cancer
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is one of the most common types of cancer among women. Around 1 in 8 women in the USA,
approximately 12%, will belong to the breast cancer population over the course of their lifetime [2].
Studies and statistics indicate that if breast cancer patients can be diagnosed at an early stage, the rate
of five-year survival may reach 90%, while it would not exceed 20% in the terminal stage [1].
Generally, “mammography” provides high-resolution, clear, and accurate imaging for the purpose of
breast cancer examination. Accordingly, an intelligent computer-aided diagnosis system assists
radiologists in benefiting from mammography to make a precise diagnosis. Previous research trials
indicate that computer-aided diagnosis systems can enhance the diagnostic success rate and eliminate
the probability of misdiagnosis [2-5]. The main goal for most computer-aided diagnosis platforms is
to perform labeling and to differentiate between malignant and benign lesions.

Recently, Deep Learning (DL) systems have outperformed other Machine Learning (ML) systems
in computer vision problems [6-9]. This is especially the case for Convolutional Neural Networks
(CNN) [10,11]. DL techniques have been exploited in diverse medical domains and applications,
including pulmonary peri-fissural classification [12] and interstitial lung disease lymph node
identification [13]. Most of the implemented systems that have used CNN have applied a “vanilla”
approach. In particular, the extracted CNN features are used solely or in combination with other hand-
crafted descriptors to perform the classification [14,15]. Meanwhile, the most effective characteristic
of employing CNNSs is to neutralize feature engineering in the classification process and use raw
images. CNN architecture is specially designed to benefit from the 2D structure of the input image.
However, more importantly, it can generalize to other recognition problems [14,15]. To benefit from
the characteristics of CNNs, large annotated datasets should be used in training, which are not available
in the medical field, especially in breast cancer. Furthermore, when training CNNs from scratch, the
training process consumes intensive computational power and memory. To overcome this issue,
Transfer Learning (TL) may be used [16], where the idea is to leverage a pre-trained model from
available images and exploit a fine-tuning for in-hand classes [17]. TL is widely applied in DL
applications and it has shown effectiveness in the medical field, particularly in domains where data are
normally limited. Another neural network that can be used as a transformation, which expresses image
contents without segmentation, is known as the Pulse-Coupled Neural Network (PCNN) [18]. The PCNN
can convert a 2D image into a 1D signal that can be perceived as an “Image Signature” [19]. The
PCNN is a neural network model that was first proposed by Eckhorn [19] at the beginning of that
century. The core idea of PCNN comes from the study of synchronous pulse bursts in the cat’s
visual cortex.

1.1. Why PCNN?

e Models involving only CNNs may be sensitive to image acquisition setting, scanning type, and
pre-processing steps. PCNNSs can neutralize these effects through the iterative pulses.

e PCNNs offer a method for prioritizing the features and can act as a feature selector. The main
contributions of our work are as follows:

e To extract mammogram features more precisely, capturing both local and global features, and
use different filter scales.
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e Combining a PCNN model with a CNN pre-trained model to extract and select features before
classification in the dense layer.

e The proposed model neutralizes the problem of overfitting due to relatively small size datasets.

e The proposed model guarantees the generalization by being exposed to multiple datasets.

The rest of this paper is organized as follows: Section 2 discusses related work published in
the scientific community; Section 3 presents the scientific background and describes the datasets;
Section 4 discusses the proposed system; and Section 5 presents the experimental results and
concludes the findings.

2. Related work

In the medical community, examinations and screening tests for detecting and diagnosing breast
cancer by domain experts are parts of an extremely sensitive, time-consuming, and costly process. The
efficiency of the diagnosis procedure can be increased by exploiting technology and intelligent
software components. Hence, using these tools causes direct cost reduction, along with eliminating
diagnosing effort. Accordingly, a substantial number of studies have been undertaken based on Al and
ML approaches. One of these approaches, presented in Akay [20], used Support Vector Machines
(SVM) based on a feature selection algorithm to detect breast cancer. The implemented system
achieved 99.51% classification accuracy. Karabatak [21-25] proposed a hybrid system using an expert
system, association rules, and feed forward neural network to detect breast cancer. The role of the
association riles was to eliminate the neural network input features, while the neural network was
trained for the classification task. The system’s overall classification accuracy was greater than
95%. A hybrid approach was proposed in [26] combining both evolutionary techniques and fuzzy
systems. One advantage of this system was that it provided explainable rules for the domain experts.
Recently, Deep Neural Networks (DNNs) have been introduced in the biomedical field to detect
cancers, including breast cancer. Table 1 illustrates previous trials that have been undertaken using
deep learning.

In past few years, exploiting ML and DL in breast cancer is world widely shining, many
researchers have used different techniques and achieved a competitive results [29-34].

Transfer Learning (TL) is needed in the medical field because data are rare and costly, and few
datasets are publicly available. Furthermore, it is a very time-consuming task for radiology experts to
collect and annotate datasets [35]. At the same time, the task of training a CNN from scratch is
computationally extensive and costly in terms of memory resources. Extracting features from the first
layers of a pre-trained CNN should embrace generic features such as edge detectors. Those are useful
for many requirements, but in the later layers, these features are merged in such a way as to become
more focused on the details of the label classes in the training set.

Until a solution is devised to the problem of limited availability of large-scale medical datasets
for mammaography, the methodology of merging Transfer Learning and data augmentation seems to
be a promising approach for CNN training.

The extracted features can show whether a model has successfully learned or not, allowing a
decision to be made about whether to halt the training process early. This is referred to as early stopping.
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Table 1. Sample of deep neural network research in cancer diagnosis.

Authors Description Results
Dontchos et It uses CNN vanilla architecture to identify the existence of breast 94.9% (academic acceptance)
al. [27] cancer. The model outputs are verified by neurology experts from 90.7(community acceptance)
both Academia and Community. (p<0.001)
Spanhol et al Two tissue types: Epithelial and stromal have been segmented in 90% accuracy
[28] histological images. The segmentation was performed using CNN.

The classification also was performed using pre-trained CNN model
named as AlexNet. Multiple experiments were executed on multiple

datasets.
F. F. Ting et A modified training algorithm for convolutional neural network 90.50% accuracy
al [10] It detects breast cancer.

Lee.etal [11] They proposed incremental boosting CNN for providing an accurate  Accuracy of 96.4 and 99.5% for
fast diagnosis for breast cancer from histopathological. images. The 4 and 2 classes classification
model. jobs

3. Methods and datasets

3.1. Datasets

(a) (b)

Figure 1. Image samples from DDMS dataset (a) Benign masses; and (b) Malignant masses.

In this work, four publicly available datasets were used: 1 for testing only and 3 for training and testing.
The main reason why one uses a dataset for testing only is to ensure that the proposed model does not
overfit. One way to boost the learning task is to merge all 3 datasets into a single one, DDMS [36]. The
DDMS dataset includes more than 2650 instances ordered by the severity degree of the case findings. Each
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case instance has 4 view mammograms for the same person with the associated ground truth (Figure 1),
along with other related information on the following:

e Patient’s age.

e Exact exam timestamp.

e Breast density (determined by the specialist both for benign and malignant cases).

3.1.1. INbreast

INbreast contains a total of 115 cases [37]. Both craniocaudal and mediolateral oblique views are
included (Figure 2). Overall, it contains a total of 410 images. INbreast contains the following
information:

e Acquisition date.

e Patient’s age.

e Existence of previous cases in family.
e Breast density.

INbreast contains a wide diversity of cases, including different types of lesions. In this work, we
focus on benign and malignant cases.

(a) (b)

Figure 2. Image samples from INbreast dataset (right breast views) (a) Mediolateral
oblique view; and (b) Craniocaudal view.

BCDR is a new database of film mammography. It contains 736 lesions in 344 patients. The
lesions were verified by biopsy (Figure 3). The available pieces of information for each case are
the following:

e Clinical data.

e Craniocaudal.

e Mediolateral oblique.

e Lesion contour coordinates.
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(b)

Figure 3. Image samples from BCDR dataset (a) Benign masses; and (b) Malignant masses.

3.1.2. MIAS

Mammographic Image Analysis Society (MIAS) is a commonly known dataset that includes 322
film mammograms [38]. It also contains expert validation ground truth (Figure 4).

(b)

Figure 4. Image samples from MIAS dataset (a) Benign masses; and (b) Malignant masses.

3.2. Convolutional neural network (CNN)

Convolutional Neural Networks (CNN) were proposed by Yann LeCun et al. in 1998 [39]. A
CNN is a multistage combination of convolutional layers and fully-connected layers. Generally, a
convolution process is used to minimize the memory required, and it is computed on limited regions
to enhance performance.

There are four main operations in a CNN [15]:

e Convolution.
¢ Non-linearity.
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e Pooling (subsampling).
o Classification (fully-connected layer).

Starting from a 2D input matrix such as an image, a CNN is composed of layers. Each layer
contains various filters (kernels) (Figure 5). Input through the forward pass, it is convolved with each
filter and dot products between the entries of the filters and the input are computed.

Feature maps

input image

Sub-Sampling
Covolutions Sub-Sampling Covolutions Full Connected

Figure 5. Example of CNN architecture.

A feature map is obtained by repeatedly applying a function across sub-regions of the entire image
(convolution) with a linear filter, adding a bias term, and then applying a non-linear function. If we
denote the K, feature map at a given layer as /¥, whose filters are determined by the weights 1% and
bias Pk, then the feature map h¥ is obtained as follows [40]:

CNN Architecture Example

hf; = tanh(W* * x);; + by, (1)

To capture a richer representation of the input, each hidden layer is composed of many feature
maps, {h®) , k = 0..K}

3.3. Transfer learning

Most computer vision studies that have used TL have customized the ImageNet dataset for
pre-training tasks [41]. There are several commonly known pre-trained CNN models, including
Alex-Net [42], VGG16 [43], ResNet50 [44], and Goog LeNet [45]. Each model was pre-trained
using ImageNet, and each one is tended for a 1K-class classification job. Until high volume
datasets for mammography medical images are available, the concept of combining TL and data
augmentation is an extremely promising CNN training methodology.

AlexNet:

Mathematical Biosciences and Engineering Volume 18, Issue 5, 5029-5046.



5036

e Proposed in 2012

e 8 layers (5 convolution-pool layers and 3 fully-connected)

e Filter sizes are 3, 5, and 11

e 96-384 filters

e 4096-4096-1000 fully-connected layer sizes respectively

e Inputis 227 x 227
VGG-Net

e Proposed in 2014

e 19 layers (16 convolution-pool layers and 3 fully-connected)

o Filtersizeis 3

o 64-512 filters

e 4096-4096-1000 fully-connected layers sizes respectively

e Inputis 224 x 224
Res-Net

e Proposed in 2015.

e 152 layers (151 convolution-pool layers and 1 fully connected)

e Filtersizesare 1, 3,and 7

e 64-2048 filters

e 1000 fully-connected layer size is 1000

e Inputis 224 x 224
Google-Net

e Proposed in 2014,

e 22 layers (21 convolution-pool layers and 1 fully connected)

o Filter sizesare 1, 3,5,and 7

o 64-384 filters

e 1000 fully-connected layer size is 1000

e Inputis 224 x 224

As mentioned before, these TL architectures were trained on the 1 K object type identification on

the ImageNet database. ImageNet includes 1.2 million images as a training set, 50,000 images for
validation purposes, and 100,000 images as a test set. All of these models use a data augmentation
methodology besides dropout layers to minimize the probability of overfitting.

3.4. Pulse-coupled neural networks

PCNNs constitute a biologically-inspired model based on a cat’s sight model. The model consists
of a single layer of neurons, each of which is connected directly to one input image pixel. The neuron
accepts 2 different inputs: the linking and the feeding inputs. The feeding input embraces an external
signal besides an internal one meanwhile the linking only accepts local signal [18]. The internal
stimulus is perceived from the feeding cycle radius around the neurons. Meanwhile, the external
stimulus comes from the intensity of the associated pixel in the input image. Afterward, the linking
and feeding inputs are combined to construct the internal potential that determines the output firing of
the neuron (Figure 6) [18].
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Figure 6. Original PCNN neuron [18].

3.4.1. Modified PCNN

There are many variations for PCNN training algorithms. These variations seek to mimic the
physiological pulse-coupled neuron. They express different simplifications made to the computations
and still retain the main features of the theory. One of these variations is “Modified PCNN”. In this
model, each neuron is governed by the following sequence of equations [18,19]:

L@ =L —De "L + VI.(W * Yy, (i — 1)) 2)
F)=P+F(i—-1)+e*F +VF.(W %Y, (i — 1)) (3)
Y (i) = F(GQ).[1+ B.L(i) (4)

6(i) =0(G —1)e 1 +V6.YO(i — 1) (5)

Y(i) > 6 (i) then Yo(i) =1
otherwise : Yo(i) =0 (6)

where L(i) represents input linking, F(i) represents feeding, P is the image’s pixel intensity, U(i) is the
neuron activation potential, and 0(i) is the neuron threshold. There are multiple hyperparameters,
including (oL, aF and aq, as well as the decay coefficients besides () which represent the linking
coefficient. Finally, VL and VF are the linking and threshold potential hyperparameters. Regarding
the neuron output, Y presents the firing information regarding the surrounding neurons, while Yo
conveys the neuron firing information. Additionally, W is the weight matrix. The “Modified PCNN”
neuron architecture is illustrated in Figure 7 [18].
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Figure 7. Modified model for PCNN neuron [18].

The output of each iteration (the firing status of each neuron) is used to form a time-series-like
signature. The standard feature generation formula G(n) for iteration (i) is computed as [46—48]:

G(n)=Xi= Y () )

In this work, we use the enhanced formula proposed by Elons [18]. This improves signature
quality by adding a weighting factor known as a “Continuity Factor”.

4. Proposed system

The aim of this system is to build a classification model to classify the input images based on one
of the following possible labels: Normal, Abnormal Benign, and Abnormal Malignancy. Different
Transfer Learning (TL) models will be exploited to provide enhanced features for dense layers to
classify the input image. The main challenge is to neutralize the effect of acquisition quality on the
model, which is the main motivation for using PCNNs. PCNNs generate image signatures without the
need for segmentation or pre-processing steps. This signature is fed into feedforward neural layers
besides CNN features (Figure 8). As mentioned above, different TL models were tested on different
datasets. Both models represent a feature extractor models, both features vectors are fused to represent
a unified feature vector.
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Figure 8. Proposed system modules.

The fused feature vector is embraced into a deep feedforward network for the purpose of
classification.

Most previous researchers have used a segmentation step to identify the Region of Interest (ROI).
The main motivation for this is to reduce the computational effort of the CNN and eliminate the impact
of limited training data size. Meanwhile, the proposed system accepts the complete image without
segmentation or any pre-processing steps. This idea mainly depends on the PCNN’s ability to generate
image signatures that are invariant to acquisition quality, scaling, rotation, and translation.

The initial layers of a CNN seek to capture generic features and typically conduct tasks such as edge
detectors. At the same time, the successive layers pay attention to more specific details in the classes.

Due to differences between the ImageNet dataset and the hand-crafted datasets, model fine-tuning
is proposed to adjust the features and to consider the designated datasets.

The superiority of DL and PCNN compared to the other ML methods stems from the capability
of multi-level feature representation in any hidden layer. Additionally, DL and PCNN can significantly
neutralize the effects of low-quality imaging resolution and expected noise.

5. Results and configurations

This research was conducted using the PyTorch platform and the Python environment. For the DDMS
dataset, this was a subset of 900 images from 450 patients, including 150 malignant cases, 150 benign
cases, and 150 are normal cases. Meanwhile, we selected 75 cases from INbreast containing a total of 300
images, 100 images from 25 normal cases, 25 benign cases, and 100 from malignant. From BDCR, a subset
of 450 patients was selected with the same distribution. The final dataset was a combination of all the
subsets selected. The input was “augmented” using a sequence of random transformations, ensuring that
the designated models would never receive the same image as an input multiple times. Shifting was
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conducted with a fraction of 0.3 from the image’s overall height and width. Also, a rotation was randomly
applied in a range between 0 degrees and 45 degrees. Shear and zoom were applied in the ranges of 0.5
(0.5 1.5) respectively. In the preparation phase, the training procedure considered balanced class preserving,
and the dataset was separated into a training set (80%) and a test set (20%).

Since the data has no impactful imbalance, accuracy can be represent a key performance indicator.
The simulation environment can be represented as a grid search process to select the optimal set of
hyper-parameters. The model is evaluated for each dataset separately and on the merged dataset.

Since the model final output is a probability distribution and the data do not suffer from severe
imbalance so we count on the default classification certain threshold. Meanwhile, we should consider
the model uncertainty for biased or imbalance classes situation.

Selecting the correct hyperparameters when conducting fine-tuning is a sensitive process. The
optimization step was performed using Stochastic Gradient Descent (SGD) rather than any other
optimizer. The main motivation for this was to ensure that the learning rate magnitude was limited.
The feedforward layers exploited adaptive ADAM. Optimizer as a training algorithm.

Moreover, to enhance the experimental results and to neutralize the probability of overfitting,
data augmentation was exploited with L2 regularization, and dropout was added. At the outset, the
dataset (training and testing) was got encoded on the label using one-hot encoding. This meant that the
last layer in the feedforward layers consisted of 3 neurons. A softmax activation function was used in
that layer, while ReLU was used in all hidden layers. Selecting hyperparameters for a PCNN is a
complex process; the experiments simulations were conducted on the setting multiple values for hyper-
parameters as following:

- =(0.05,0.1, 0.5, 0.9)

-aL =(0.1,0.2,05,0.9,1)

-ag = (0.1,0.4,0.8,0.85,0.86,0.9)
-VL =(0.1,0.3,0.5,0.9)

-VF =(0.1,0.2,0.5,0.7,1)

-Vo =(1,3,5,7,10,12)

After running grid search and evaluating the results over validation and testing sets, the optimal
combinations of hyper-parameters are:

-=0.1
-aL =0.9
-ag =0.86
-VL=0.3
-VF=0.7
-V = 10.
1 11
W=1I|1 0 1
1 1 1

To perform the model performance evaluation, it was tested both on the test split from the merged
dataset and the completely unseen dataset, the MIAS dataset.

To perform the model performance evaluation, it was tested both on the test split from the merged
dataset and the completely unseen dataset, the MIAS dataset. Models were trained and tested using
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stratified 10-fold cross-validation. Different measurements were collected, including mean accuracy,
standard deviation, and training time for each TL model. Results on a merged dataset testing set are
illustrated in Table 2. To verify the main idea of this research, the experiments were conducted twice: one
does not consider segmentation before the model (the main idea) and the second conducts segmentation
before the model.

Table 2. Merged dataset testing results.

Without Segmentation
Model Accuracy % Standard Deviation
AlexNet 97.3 0.3
VGG-Net 97.7 0.32
Res-Net 97.92 0.52
Google-Net 98.9 0.76
With Segmentation

AlexNet 97.24 0.38
VGG-Net 97.81 0.3
Res-Net 97.73 0.53
Google-Net 98.81 0.81

Table 2 illustrates that the model can operate without any pre-processing steps better and the
standard deviation optimal value lays in VGG-Net and AlexNet.

When the proposed model was trained for each dataset separately, it achieved 98.72% accuracy
for DDMS, 97.5% for INbreast, and 96.94% for BCDR.

These results were obtained when 3 hidden layers were used in the feedforward network and the
sizes were 1000><1000>200. After the first experiment was conducted, the TL models were scored and
tested on an unseen dataset, MIAS. Table 3 provides an overview of the results.

The parameters of a PCNN are difficult to optimize and the grid search operation is a very intensive
computation process. Therefore, the values were set based on the best practices established in other studies.

Table 3. MIAS dataset results.

Without Segmentation
Model Accuracy % Standard Deviation
AlexNet 97.1 0.26
VGG-Net 97 0.4
Res-Net 98.1 0.45
Google-Net 98.77 0.7
With Segmentation

AlexNet 97.11 0.24
VGG-Net 97.06 0.38
Res-Net 97.92 0.55
Google-Net 98.76 0.74
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One method for assessing the proposed breast cancer diagnosis performance involves
calculating both the AUC and accuracy for the MIAS unseen dataset. In this test, the results were
0.99 and 98.77% respectively.

Meanwhile, an evaluation of the same dataset by Peng et al. [9] yielded 96% accuracy and
0.92 AUC. Also, Alxander et al [49] worked on Molecular predictions reach balanced accuracies
up to 78%, whereas accuracies of over 95% can be achieved for subgroups of patients. Yu-Dong
Zhang et al [50] ran BDR-CNN-GCN algorithm 10 times on the breast mini-MIAS dataset and
achieved an accuracy of 96.1%.

The experimental results lead to two important insights:

e Using PCNN can neutralize the effect of image differences and can eliminate any preprocessing
steps.
e GoogleNet outperforms other TL models as a pre-trained model due to its ability to generalize.

Based on the hyperparameter values, the overall system training time was measured between 20
and 30 hours, considering the grid search process to optimize model hyper-parameters.

Finally, the advantages and disadvantages can be summarized as:

Advantages:
Model does not require any preprocessing or segmentation steps.
Proved the generalization capability by testing on multiple datasets.
The model proved success for not falling into overfitting problem.
Superiority in results over previous research trials.
Disadvantages:

e Complex model contains multiple models.

e Hard to maintain in production environment.

The concept of “Uncertainty quantification” is a key factor in uncertainties reduction whether
in optimization or decision making processes. UQ can be exploited to resolve a diverse set of
practical applications hence, in will be addressed in focus in future while exploring well-
established techniques [51,52]

6. Conclusions

In this research, different deep learning pre-trained models were exploited in combination with
PCNNs to classify breast cancer candidate images. The model was trained and tested on different
datasets, achieving 0.99 AUC and 98.77% accuracy. The implementation of the proposed model
proves that using PCNNs can eliminate the segmentation preprocessing step, and the PCNN image
signature presents an important discriminant feature to classify. The model was tested on a completely
unseen dataset to ensure it does not fall to the overfitting problem due to limited dataset size. One of
the major beneficial aspects of the proposed model is that it can be generalized to any computer vision
application. PCNN and CNN merging can be used as complementary feature extractors for images and
videos. In future work, new ideas to enhance the performance can be introduced. One of them is
exploring other datasets and expand the merged dataset. Also, another idea is introduce other complex
and deeper models. The last thing the authors will keep eyes on, is to ensure that the model avoids to
fall in overfitting.
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