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Abstract: Radiology experts often face difficulties in mammography mass lesion labeling, which may 

lead to conclusive yet unnecessary and expensive breast biopsies. This paper focuses on building an 

automated diagnosis tool that supports radiologists in identifying and classifying mammography mass 

lesions. The paper’s main contribution is to design a hybrid model based on Pulse-Coupled Neural 

Networks (PCNN) and Deep Convolutional Neural Networks (CNN). Due to the need for large 

datasets to train and tune CNNs, which are not available for medical images, Transfer Learning (TL) 

was exploited in this research. TL can be an effective approach when working with small-sized datasets. 

The paper’s implementation was tested on three public benchmark datasets: DDMS, INbreast, and 

BCDR datasets for training and testing and MIAS for testing only. The results indicated the 

enhancement that PCNN provides when combined with CNN compared to other methods for the same 

public datasets. The hybrid model achieved 98.72% accuracy for DDMS, 97.5% for INbreast, and 

96.94% for BCDR. To avoid overfitting, the proposed hybrid model was tested on an unseen MIAS 

dataset, achieving 98.77% accuracy. Other evaluation metrics are reported in the results section. 
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1. Introduction 

In 2018, approximately 18 million cancer cases entered the existing population living with cancer 

worldwide, and over half of them resulted in death [1]. According to statistical evidence, breast cancer 
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is one of the most common types of cancer among women. Around 1 in 8 women in the USA, 

approximately 12%, will belong to the breast cancer population over the course of their lifetime [2]. 

Studies and statistics indicate that if breast cancer patients can be diagnosed at an early stage, the rate 

of five-year survival may reach 90%, while it would not exceed 20% in the terminal stage [1]. 

Generally, “mammography” provides high-resolution, clear, and accurate imaging for the purpose of 

breast cancer examination. Accordingly, an intelligent computer-aided diagnosis system assists 

radiologists in benefiting from mammography to make a precise diagnosis. Previous research trials 

indicate that computer-aided diagnosis systems can enhance the diagnostic success rate and eliminate 

the probability of misdiagnosis [2–5]. The main goal for most computer-aided diagnosis platforms is 

to perform labeling and to differentiate between malignant and benign lesions. 

Recently, Deep Learning (DL) systems have outperformed other Machine Learning (ML) systems 

in computer vision problems [6–9]. This is especially the case for Convolutional Neural Networks 

(CNN) [10,11]. DL techniques have been exploited in diverse medical domains and applications, 

including pulmonary peri-fissural classification [12] and interstitial lung disease lymph node 

identification [13]. Most of the implemented systems that have used CNN have applied a “vanilla” 

approach. In particular, the extracted CNN features are used solely or in combination with other hand-

crafted descriptors to perform the classification [14,15]. Meanwhile, the most effective characteristic 

of employing CNNs is to neutralize feature engineering in the classification process and use raw 

images. CNN architecture is specially designed to benefit from the 2D structure of the input image. 

However, more importantly, it can generalize to other recognition problems [14,15]. To benefit from 

the characteristics of CNNs, large annotated datasets should be used in training, which are not available 

in the medical field, especially in breast cancer. Furthermore, when training CNNs from scratch, the 

training process consumes intensive computational power and memory. To overcome this issue, 

Transfer Learning (TL) may be used [16], where the idea is to leverage a pre-trained model from 

available images and exploit a fine-tuning for in-hand classes [17]. TL is widely applied in DL 

applications and it has shown effectiveness in the medical field, particularly in domains where data are 

normally limited. Another neural network that can be used as a transformation, which expresses image 

contents without segmentation, is known as the Pulse-Coupled Neural Network (PCNN) [18]. The PCNN 

can convert a 2D image into a 1D signal that can be perceived as an “Image Signature” [19]. The 

PCNN is a neural network model that was first proposed by Eckhorn [19] at the beginning of that 

century. The core idea of PCNN comes from the study of synchronous pulse bursts in the cat’s 

visual cortex. 

1.1. Why PCNN? 

• Models involving only CNNs may be sensitive to image acquisition setting, scanning type, and 

pre-processing steps. PCNNs can neutralize these effects through the iterative pulses. 

• PCNNs offer a method for prioritizing the features and can act as a feature selector. The main 

contributions of our work are as follows: 

• To extract mammogram features more precisely, capturing both local and global features, and 

use different filter scales. 
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• Combining a PCNN model with a CNN pre-trained model to extract and select features before 

classification in the dense layer. 

• The proposed model neutralizes the problem of overfitting due to relatively small size datasets. 

• The proposed model guarantees the generalization by being exposed to multiple datasets. 

The rest of this paper is organized as follows: Section 2 discusses related work published in 

the scientific community; Section 3 presents the scientific background and describes the datasets; 

Section 4 discusses the proposed system; and Section 5 presents the experimental results and 

concludes the findings. 

2. Related work 

In the medical community, examinations and screening tests for detecting and diagnosing breast 

cancer by domain experts are parts of an extremely sensitive, time-consuming, and costly process. The 

efficiency of the diagnosis procedure can be increased by exploiting technology and intelligent 

software components. Hence, using these tools causes direct cost reduction, along with eliminating 

diagnosing effort. Accordingly, a substantial number of studies have been undertaken based on AI and 

ML approaches. One of these approaches, presented in Akay [20], used Support Vector Machines 

(SVM) based on a feature selection algorithm to detect breast cancer. The implemented system 

achieved 99.51% classification accuracy. Karabatak [21–25] proposed a hybrid system using an expert 

system, association rules, and feed forward neural network to detect breast cancer. The role of the 

association riles was to eliminate the neural network input features, while the neural network was 

trained for the classification task. The system’s overall classification accuracy was greater  than 

95%. A hybrid approach was proposed in [26] combining both evolutionary techniques and fuzzy 

systems. One advantage of this system was that it provided explainable rules for the domain experts. 

Recently, Deep Neural Networks (DNNs) have been introduced in the biomedical field to detect 

cancers, including breast cancer. Table 1 illustrates previous trials that have been undertaken using 

deep learning. 

In past few years, exploiting ML and DL in breast cancer is world widely shining, many 

researchers have used different techniques and achieved a competitive results [29–34]. 

Transfer Learning (TL) is needed in the medical field because data are rare and costly, and few 

datasets are publicly available. Furthermore, it is a very time-consuming task for radiology experts to 

collect and annotate datasets [35]. At the same time, the task of training a CNN from scratch is 

computationally extensive and costly in terms of memory resources. Extracting features from the first 

layers of a pre-trained CNN should embrace generic features such as edge detectors. Those are useful 

for many requirements, but in the later layers, these features are merged in such a way as to become 

more focused on the details of the label classes in the training set. 

Until a solution is devised to the problem of limited availability of large-scale medical datasets 

for mammography, the methodology of merging Transfer Learning and data augmentation seems to 

be a promising approach for CNN training.  

The extracted features can show whether a model has successfully learned or not, allowing a 

decision to be made about whether to halt the training process early. This is referred to as early stopping. 
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Table 1. Sample of deep neural network research in cancer diagnosis. 

Authors Description Results 

Dontchos et 

al. [27] 

It uses CNN vanilla architecture to identify the existence of breast 

cancer. The model outputs are verified by neurology experts from 

both Academia and Community. 

94.9% (academic acceptance) 

90.7(community acceptance) 

(p< 0.001) 

Spanhol et al 

[28] 

Two tissue types: Epithelial and stromal have been segmented in 

histological images. The segmentation was performed using CNN. 

The classification also was performed using pre-trained CNN model 

named as AlexNet. Multiple experiments were executed on multiple 

datasets. 

90% accuracy 

F. F. Ting et 

al [10] 

A modified training algorithm for convolutional neural network 

It detects breast cancer. 

90.50% accuracy 

Lee. et al [11] They proposed incremental boosting CNN for providing an accurate 

fast diagnosis for breast cancer from histopathological. images. The 

model. 

Accuracy of 96.4 and 99.5% for 

4 and 2 classes classification 

jobs 

3. Methods and datasets 

3.1. Datasets 

 

Figure 1. Image samples from DDMS dataset (a) Benign masses; and (b) Malignant masses. 

In this work, four publicly available datasets were used: 1 for testing only and 3 for training and testing. 

The main reason why one uses a dataset for testing only is to ensure that the proposed model does not 

overfit. One way to boost the learning task is to merge all 3 datasets into a single one, DDMS [36]. The 

DDMS dataset includes more than 2650 instances ordered by the severity degree of the case findings. Each 
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case instance has 4 view mammograms for the same person with the associated ground truth (Figure 1), 

along with other related information on the following: 

• Patient’s age. 

• Exact exam timestamp. 

• Breast density (determined by the specialist both for benign and malignant cases). 

3.1.1. INbreast  

INbreast contains a total of 115 cases [37]. Both craniocaudal and mediolateral oblique views are 

included (Figure 2). Overall, it contains a total of 410 images. INbreast contains the following 

information: 

• Acquisition date. 

• Patient’s age. 

• Existence of previous cases in family. 

• Breast density. 

INbreast contains a wide diversity of cases, including different types of lesions. In this work, we 

focus on benign and malignant cases. 

 

Figure 2. Image samples from INbreast dataset (right breast views) (a) Mediolateral 

oblique view; and (b) Craniocaudal view. 

BCDR is a new database of film mammography. It contains 736 lesions in 344 patients. The 

lesions were verified by biopsy (Figure 3). The available pieces of information for each case are 

the following: 

• Clinical data. 

• Craniocaudal. 

• Mediolateral oblique. 

• Lesion contour coordinates. 
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Figure 3. Image samples from BCDR dataset (a) Benign masses; and (b) Malignant masses. 

3.1.2. MIAS 

Mammographic Image Analysis Society (MIAS) is a commonly known dataset that includes 322 

film mammograms [38]. It also contains expert validation ground truth (Figure 4). 

 

Figure 4. Image samples from MIAS dataset (a) Benign masses; and (b) Malignant masses. 

3.2. Convolutional neural network (CNN) 

Convolutional Neural Networks (CNN) were proposed by Yann LeCun et al. in 1998 [39]. A 

CNN is a multistage combination of convolutional layers and fully-connected layers. Generally, a 

convolution process is used to minimize the memory required, and it is computed on limited regions 

to enhance performance. 

There are four main operations in a CNN [15]: 

• Convolution. 

• Non-linearity. 
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• Pooling (subsampling). 

• Classification (fully-connected layer). 

Starting from a 2D input matrix such as an image, a CNN is composed of layers. Each layer 

contains various filters (kernels) (Figure 5). Input through the forward pass, it is convolved with each 

filter and dot products between the entries of the filters and the input are computed.  

 

Figure 5. Example of CNN architecture. 

A feature map is obtained by repeatedly applying a function across sub-regions of the entire image 

(convolution) with a linear filter, adding a bias term, and then applying a non-linear function. If we 

denote the 𝐾𝑡ℎ feature map at a given layer as , whose filters are determined by the weights  and 

bias , then the feature map  is obtained as follows [40]: 

CNN Architecture Example 

𝒉𝒊𝒋
𝒌 = 𝒕𝒂𝒏𝒉(𝑾𝒌 ∗ 𝒙)𝒊𝒋 + 𝒃𝒌                                                     (1) 

To capture a richer representation of the input, each hidden layer is composed of many feature 

maps, {ℎ(𝑘) , 𝑘 = 0. . 𝐾} 

3.3. Transfer learning 

Most computer vision studies that have used TL have customized the ImageNet dataset for 

pre-training tasks [41]. There are several commonly known pre-trained CNN models, including 

Alex-Net [42], VGG16 [43], ResNet50 [44], and Goog LeNet [45]. Each model was pre-trained 

using ImageNet, and each one is tended for a 1K-class classification job. Until high volume 

datasets for mammography medical images are available, the concept of combining TL and data 

augmentation is an extremely promising CNN training methodology.  

AlexNet: 
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• Proposed in 2012 

• 8 layers (5 convolution-pool layers and 3 fully-connected) 

• Filter sizes are 3, 5, and 11 

• 96-384 filters 

• 4096-4096-1000 fully-connected layer sizes respectively 

• Input is 227 x 227 

VGG-Net 

• Proposed in 2014 

• 19 layers (16 convolution-pool layers and 3 fully-connected) 

• Filter size is 3 

• 64-512 filters 

• 4096-4096-1000 fully-connected layers sizes respectively 

• Input is 224 x 224 

Res-Net 

• Proposed in 2015. 

• 152 layers (151 convolution-pool layers and 1 fully connected) 

• Filter sizes are 1, 3, and 7 

• 64-2048 filters 

• 1000 fully-connected layer size is 1000 

• Input is 224 x 224 

Google-Net 

• Proposed in 2014. 

• 22 layers (21 convolution-pool layers and 1 fully connected) 

• Filter sizes are 1, 3, 5, and 7 

• 64-384 filters 

• 1000 fully-connected layer size is 1000 

• Input is 224 x 224 

As mentioned before, these TL architectures were trained on the 1 K object type identification on 

the ImageNet database. ImageNet includes 1.2 million images as a training set, 50,000 images for 

validation purposes, and 100,000 images as a test set. All of these models use a data augmentation 

methodology besides dropout layers to minimize the probability of overfitting. 

3.4. Pulse-coupled neural networks 

PCNNs constitute a biologically-inspired model based on a cat’s sight model. The model consists 

of a single layer of neurons, each of which is connected directly to one input image pixel. The neuron 

accepts 2 different inputs: the linking and the feeding inputs. The feeding input embraces an external 

signal besides an internal one meanwhile the linking only accepts local signal [18]. The internal 

stimulus is perceived from the feeding cycle radius around the neurons. Meanwhile, the external 

stimulus comes from the intensity of the associated pixel in the input image. Afterward, the linking 

and feeding inputs are combined to construct the internal potential that determines the output firing of 

the neuron (Figure 6) [18]. 
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Figure 6. Original PCNN neuron [18]. 

3.4.1. Modified PCNN  

There are many variations for PCNN training algorithms. These variations seek to mimic the 

physiological pulse-coupled neuron. They express different simplifications made to the computations 

and still retain the main features of the theory. One of these variations is “Modified PCNN”. In this 

model, each neuron is governed by the following sequence of equations [18,19]: 

𝐿(𝑖) = 𝐿(𝑖 − 1)𝑒−∝𝐿 + 𝑉𝑙. (𝑊 ∗ 𝑌𝑠𝑢𝑟(𝑖 − 1))               (2) 

𝐹(𝑖) = 𝑃 + 𝐹(𝑖 − 1) + 𝑒−∝𝐹 + 𝑉𝐹. (𝑊 ∗ 𝑌𝑠𝑢𝑟(𝑖 − 1))         (3) 

𝑌(𝑖) = 𝐹(𝑖). [1 + 𝛽. 𝐿(𝑖)         (4) 

𝜃(𝑖) = 𝜃(𝑖 − 1)𝑒−𝛼𝑞 + 𝑉𝜃. 𝑌𝑂(𝑖 − 1)      (5) 

   Y(i) > 𝜃 (i)  then Yo(i) = 1  

                               otherwise : Yo(i) = 0                                                  (6) 

where L(i) represents input linking, F(i) represents feeding, P is the image’s pixel intensity, U(i) is the 

neuron activation potential, and (i) is the neuron threshold. There are multiple hyperparameters, 

including (L, F and q, as well as the decay coefficients besides () which represent the linking 

coefficient. Finally, VL and VF are the linking and threshold potential hyperparameters. Regarding 

the neuron output, Y presents the firing information regarding the surrounding neurons, while Yo 

conveys the neuron firing information. Additionally, W is the weight matrix. The “Modified PCNN” 

neuron architecture is illustrated in Figure 7 [18]. 
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Figure 7. Modified model for PCNN neuron [18]. 

The output of each iteration (the firing status of each neuron) is used to form a time-series-like 

signature. The standard feature generation formula G(n) for iteration (i) is computed as [46–48]: 

 G(n)=∑ 𝑌(𝑖)𝑛
𝑖=0               (7) 

In this work, we use the enhanced formula proposed by Elons [18]. This improves signature 

quality by adding a weighting factor known as a “Continuity Factor”. 

4. Proposed system 

The aim of this system is to build a classification model to classify the input images based on one 

of the following possible labels: Normal, Abnormal Benign, and Abnormal Malignancy. Different 

Transfer Learning (TL) models will be exploited to provide enhanced features for dense layers to 

classify the input image. The main challenge is to neutralize the effect of acquisition quality on the 

model, which is the main motivation for using PCNNs. PCNNs generate image signatures without the 

need for segmentation or pre-processing steps. This signature is fed into feedforward neural layers 

besides CNN features (Figure 8). As mentioned above, different TL models were tested on different 

datasets. Both models represent a feature extractor models, both features vectors are fused to represent 

a unified feature vector. 
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Figure 8. Proposed system modules. 

The fused feature vector is embraced into a deep feedforward network for the purpose of 

classification. 

Most previous researchers have used a segmentation step to identify the Region of Interest (ROI). 

The main motivation for this is to reduce the computational effort of the CNN and eliminate the impact 

of limited training data size. Meanwhile, the proposed system accepts the complete image without 

segmentation or any pre-processing steps. This idea mainly depends on the PCNN’s ability to generate 

image signatures that are invariant to acquisition quality, scaling, rotation, and translation.  

The initial layers of a CNN seek to capture generic features and typically conduct tasks such as edge 

detectors. At the same time, the successive layers pay attention to more specific details in the classes.  

Due to differences between the ImageNet dataset and the hand-crafted datasets, model fine-tuning 

is proposed to adjust the features and to consider the designated datasets. 

The superiority of DL and PCNN compared to the other ML methods stems from the capability 

of multi-level feature representation in any hidden layer. Additionally, DL and PCNN can significantly 

neutralize the effects of low-quality imaging resolution and expected noise. 

5. Results and configurations 

This research was conducted using the PyTorch platform and the Python environment. For the DDMS 

dataset, this was a subset of 900 images from 450 patients, including 150 malignant cases, 150 benign 

cases, and 150 are normal cases. Meanwhile, we selected 75 cases from INbreast containing a total of 300 

images, 100 images from 25 normal cases, 25 benign cases, and 100 from malignant. From BDCR, a subset 

of 450 patients was selected with the same distribution. The final dataset was a combination of all the 

subsets selected. The input was “augmented” using a sequence of random transformations, ensuring that 

the designated models would never receive the same image as an input multiple times. Shifting was 
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conducted with a fraction of 0.3 from the image’s overall height and width. Also, a rotation was randomly 

applied in a range between 0 degrees and 45 degrees. Shear and zoom were applied in the ranges of 0.5 

(0.5 1.5) respectively. In the preparation phase, the training procedure considered balanced class preserving, 

and the dataset was separated into a training set (80%) and a test set (20%). 

Since the data has no impactful imbalance, accuracy can be represent a key performance indicator. 

The simulation environment can be represented as a grid search process to select the optimal set of 

hyper-parameters. The model is evaluated for each dataset separately and on the merged dataset. 

Since the model final output is a probability distribution and the data do not suffer from severe 

imbalance so we count on the default classification certain threshold. Meanwhile, we should consider 

the model uncertainty for biased or imbalance classes situation.  

Selecting the correct hyperparameters when conducting fine-tuning is a sensitive process. The 

optimization step was performed using Stochastic Gradient Descent (SGD) rather than any other 

optimizer. The main motivation for this was to ensure that the learning rate magnitude was limited. 

The feedforward layers exploited adaptive ADAM. Optimizer as a training algorithm.  

Moreover, to enhance the experimental results and to neutralize the probability of overfitting, 

data augmentation was exploited with L2 regularization, and dropout was added. At the outset, the 

dataset (training and testing) was got encoded on the label using one-hot encoding. This meant that the 

last layer in the feedforward layers consisted of 3 neurons. A softmax activation function was used in 

that layer, while ReLU was used in all hidden layers. Selecting hyperparameters for a PCNN is a 

complex process; the experiments simulations were conducted on the setting multiple values for hyper-

parameters as following: 

- = (0.05,0.1, 0.5, 0.9) 

-L = (0.1, 0.2, 0.5, 0.9, 1) 

-q = (0.1,0.4,0.8,0.85,0.86,0.9) 

-VL = (0.1,0.3,0.5,0.9) 

-VF = (0.1,0.2,0.5,0.7,1)  

-V = (1,3,5,7,10,12) 

After running grid search and evaluating the results over validation and testing sets, the optimal 

combinations of hyper-parameters are: 

- = 0.1 

-L = 0.9 

-q = 0.86 

-VL = 0.3 

-VF = 0.7  

-V = 10. 

𝑊 = [
1    1    1
1     0    1
1     1    1

]  

To perform the model performance evaluation, it was tested both on the test split from the merged 

dataset and the completely unseen dataset, the MIAS dataset.   

To perform the model performance evaluation, it was tested both on the test split from the merged 

dataset and the completely unseen dataset, the MIAS dataset. Models were trained and tested using 
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stratified 10-fold cross-validation. Different measurements were collected, including mean accuracy, 

standard deviation, and training time for each TL model. Results on a merged dataset testing set are 

illustrated in Table 2. To verify the main idea of this research, the experiments were conducted twice: one 

does not consider segmentation before the model (the main idea) and the second conducts segmentation 

before the model.  

Table 2. Merged dataset testing results. 

Without Segmentation 

Model Accuracy % Standard Deviation 

AlexNet 97.3 0.3 

VGG-Net 97.7 0.32 

Res-Net 97.92 0.52 

Google-Net 98.9 0.76 

With Segmentation 

AlexNet 97.24 0.38 

VGG-Net 97.81 0.3 

Res-Net 97.73 0.53 

Google-Net 98.81 0.81 

Table 2 illustrates that the model can operate without any pre-processing steps better and the 

standard deviation optimal value lays in VGG-Net and AlexNet. 

When the proposed model was trained for each dataset separately, it achieved 98.72% accuracy 

for DDMS, 97.5% for INbreast, and 96.94% for BCDR. 

These results were obtained when 3 hidden layers were used in the feedforward network and the 

sizes were 1000×1000×200. After the first experiment was conducted, the TL models were scored and 

tested on an unseen dataset, MIAS. Table 3 provides an overview of the results. 

The parameters of a PCNN are difficult to optimize and the grid search operation is a very intensive 

computation process. Therefore, the values were set based on the best practices established in other studies. 

Table 3. MIAS dataset results. 

Without Segmentation 

Model Accuracy % Standard Deviation 

AlexNet 97.1 0.26 

VGG-Net 97 0.4 

Res-Net 98.1 0.45 

Google-Net 98.77 0.7 

With Segmentation 

AlexNet 97.11 0.24 

VGG-Net 97.06 0.38 

Res-Net 97.92 0.55 

Google-Net 98.76 0.74 
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One method for assessing the proposed breast cancer diagnosis performance involves 

calculating both the AUC and accuracy for the MIAS unseen dataset. In this test, the results were 

0.99 and 98.77% respectively.  

Meanwhile, an evaluation of the same dataset by Peng et al. [9] yielded 96% accuracy and 

0.92 AUC. Also, Alxander et al [49] worked on Molecular predictions reach balanced accuracies 

up to 78%, whereas accuracies of over 95% can be achieved for subgroups of patients. Yu-Dong 

Zhang et al [50] ran BDR-CNN-GCN algorithm 10 times on the breast mini-MIAS dataset and 

achieved an accuracy of 96.1%. 

The experimental results lead to two important insights: 

• Using PCNN can neutralize the effect of image differences and can eliminate any preprocessing 

steps. 

• GoogleNet outperforms other TL models as a pre-trained model due to its ability to generalize. 

Based on the hyperparameter values, the overall system training time was measured between 20 

and 30 hours, considering the grid search process to optimize model hyper-parameters. 

Finally, the advantages and disadvantages can be summarized as: 

Advantages: 

• Model does not require any preprocessing or segmentation steps. 

• Proved the generalization capability by testing on multiple datasets. 

• The model proved success for not falling into overfitting problem. 

• Superiority in results over previous research trials. 

Disadvantages: 

• Complex model contains multiple models. 

• Hard to maintain in production environment. 

The concept of “Uncertainty quantification” is a key factor in uncertainties reduction whether 

in optimization or decision making processes. UQ can be exploited to resolve a diverse set of 

practical applications hence, in will be addressed in focus in future while exploring well-

established techniques [51,52]  

6. Conclusions 

In this research, different deep learning pre-trained models were exploited in combination with 

PCNNs to classify breast cancer candidate images. The model was trained and tested on different 

datasets, achieving 0.99 AUC and 98.77% accuracy. The implementation of the proposed model 

proves that using PCNNs can eliminate the segmentation preprocessing step, and the PCNN image 

signature presents an important discriminant feature to classify. The model was tested on a completely 

unseen dataset to ensure it does not fall to the overfitting problem due to limited dataset size. One of 

the major beneficial aspects of the proposed model is that it can be generalized to any computer vision 

application. PCNN and CNN merging can be used as complementary feature extractors for images and 

videos. In future work, new ideas to enhance the performance can be introduced. One of them is 

exploring other datasets and expand the merged dataset. Also, another idea is introduce other complex 

and deeper models. The last thing the authors will keep eyes on, is to ensure that the model avoids to 

fall in overfitting. 
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