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Abstract: In this paper, a modified Leslie-Gower Holling-type II two-predator one-prey stochastic
model in polluted environments with impulsive toxicant input is proposed where we use an Ornstein-
Uhlenbeck process to improve the stochasticity of the environment. The sharp sufficient conditions
for persistence in the mean and extinction are established. The results reveal that the persistence and
extinction of the species have close relationships with the toxicant and environmental stochasticity. In
addition, the theoretical results are verified by numerical simulation.
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1. Introduction

The relationship between predator and prey has long been one of the important topics concerned by
scholars. In recent years, several scholars have proposed more realistic models which should take the
functional response into account [1, 2]. As a result, Aziz-Alaoui and Okiye [3] proposed the famous
predator-prey model with modified Leslie-Gower and Holling-type II schemes, which is described as
follows:  dx(t)

dt = x(t)(r1 − ax(t) − cy(t)
h+x(t) ),

dy(t)
dt = y(t)(r2 −

f y(t)
h+x(t) ),

where x(t) and y(t) stand for the sizes of the prey population and the predator population respectively; a
represents the intraspecific competition strength; c means the per capita reduction rate of the prey due to
the capture of the predator; h stands for the safeguard of the environment; f has the like signification of
c. A growing number of scholars based on the above model have studied the possibility of a reciprocal
relationship between the decline of predator populations and the per capita availability of prey (see e.g.
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[4–9]).
In recent years, the world economy has grown rapidly with the development of industry and

agriculture. At the same time, environmental pollution is becoming more and more serious, and even
poses a threat to the survival of biological populations and human beings. For example, serious soil
erosion and exhaust emissions from cars on the road are destroying the biological population
structure. In order to better control and understand the effects of toxic substances on species, we must
assess the population survival risk of exposure to toxic substances.

Hallam and his colleagues [10–12] have opened the door to the study of environmental toxins by
publishing three papers in a row that suggest the effects of toxins on deterministic models of
ecosystems. From then on, many deterministic population models with toxic effects have been
proposed and studied (see e.g. [13–18]). Particularly, consider that toxins are often released into the
environment in pulses of regularity. For example, pesticides and heavy metals [19, 20]. Therefore,
based on the study of deterministic population models in polluted environments with impulsive toxin
inputs, several authors explored the effects of toxins on population (see e.g. [21–24]).

In particular, suppose that the living organisms absorb environmental toxicant into their bodies.
C10(t), C20(t) and Ce(t) denote the concentration of the toxicant in the organism of the prey species,
the predator species and the environment at time t, respectively. Suppose that the growth rate, ri, is an
affine function of Ci0:

ri → ri0 − ri1Ci0(t), i = 1, 2.

Therefore, the following model of predator and prey with modified Leslie-Gower and Holling-type II
schemes in the presence of toxins is proposed.

dx(t) = x(t)[r10 − r11C10(t) − ax(t) −
cy(t)

h + x(t)
]dt,

dy(t) = y(t)[r20 − r21C20(t) −
f y(t)

h + x(t)
]dt.

(1.1)

In fact, the rate of species growth is often disturbed by random perturbations [25]. In general,
random perturbations in the environment can be represented by white noise [26, 27]. Therefore, we
consider the perturbations of white noise to the population growth rate with ri0 → ri0 + σiḂi(t), we
obtain the following stochastic model:

dx(t) = x(t)[r10 − r11C10(t) − ax(t) −
cy(t)

h + x(t)
]dt + σ1x(t)dB1(t),

dy(t) = y(t)[r20 − r21C20(t) −
f y(t)

h + x(t)
]dt + σ2y(t)dB2(t),

(1.2)

where σ2
i , i = 1, 2 is the intensity of white noise; B1(t) and B2(t) are mutually independent Brownian

motions defined on a complete probability space (Ω,F ,P) with a filtration {Ft}t∈R+
. Liu et al. [28]

probed into several dynamical characteristics of model (1.2) and offered extinct and persistent
conditions for the model (1.2).

Model (1.2) assumes that the growth rate in the random environments is linear with respect to the
Gaussian white noise

r̂i0(t) = ri0 + σi
dBi(t)

dt
, i = 1, 2.
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Integrating on the interval [0,T ] results in

r̄i0 =
1
T

∫ T

0
r̂i0(t)dt → ri0 + σi

Bi(T )
T
∼ N(ri0, σ

2
i /T ).

Hence, the variance of the average per capita growth rate r̄i0 over an interval of length T tends to∞ as
T → 0. This is insufficient to describe the actual situation. Several authors [29, 30] have claimed that
using the mean-reverting Ornstein-Uhlenbeck process is a more appropriate approach to incorporate
the environment perturbations. On account of this method [31], one has

dr̂i0(t) = αi(ri0 − r̂i0(t))dt + ξidBi(t), i = 1, 2,

i.e.

r̂i0(t) = ri0 + (r̃i0 − ri0)e−αit + ξi

∫ t

0
e−αi(t−s)dBi(s)

= ri0 + (r̃i0 − ri0)e−αit + σi(t)
dBi(t)

dt
, i = 1, 2,

where r̃i0 = r̂i0(0), σi(t) =
ξi
√

2αi

√
1 − e−2αit, αi > 0 represents the speed of reversion, ξ2

i is the intensity
of stochastic perturbations. Based on the ideas above, a three-species predator-prey model can be
expressed as follows:



dy1(t) = y1(t)[r10 + (r̃10 − r10)e−α1t − r11C10(t) − ay1(t) − c2y2(t)
h2+y1(t) −

c3y3(t)
h3+y1(t) ]dt

+σ1(t)y1(t)dB1(t),
dy2(t) = y2(t)[r20 + (r̃20 − r20)e−α2t − r21C20(t) − f2y2(t)

h2+y1(t) ]dt
+σ2(t)y2(t)dB2(t),

dy3(t) = y3(t)[r30 + (r̃30 − r30)e−α3t − r31C30(t) − f3y3(t)
h3+y1(t) ]dt

+σ3(t)y3(t)dB3(t),

(1.3)

where y1(t) is the population size of the prey at time t, yi(t), i = 2, 3 is the population size of the predator
at time t.

Now let us introduce the model of the concentration of toxicant. Suppose that Ci0(t) satisfies the
following model:

dCi0(t)

dt
= kiCe(t) − liCi0(t),

where ki stands for the uptake rate of toxicant from the environment; li denotes the loss rate of the
toxicant from the species. Ce(t) denotes the concentrations of the toxicant in the environment at time t
and satisfies the following model:

dCe(t)
dt

= −hCe(t), t , nγ, n ∈ Z+,

4Ce(t) = q, t = nγ, n ∈ Z+,

where 4ζ(t) = ζ(t+)−ζ(t), h is the loss rate of toxicant from environment, q is the toxicant input amount
at every time, γ stands for the period of the impulsive input of toxicant.
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Therefore, we have the following one-prey two-predator system in polluted environments with pulse
toxicant input:

dy1(t) = y1(t)[r10 + (r̃10 − r10)e−α1t − r11C10(t) − ay1(t) − c2y2(t)
h2+y1(t) −

c3y3(t)
h3+y1(t) ]dt

+σ1(t)y1(t)dB1(t),
dy2(t) = y2[r20 + (r̃20 − r20)e−α2t − r21C20(t) − f2y2(t)

h2+y1(t) ]dt
+σ2(t)y2(t)dB2(t),

dy3(t) = y3[r30 + (r̃30 − r30)e−α3t − r31C30(t) − f3y3(t)
h3+y1(t) ]dt

+σ3(t)y3(t)dB3(t),
dCi0(t)

dt
= kiCe(t) − liCi0(t), i = 1, 2, 3,

dCe(t)
dt

= −hCe(t), t , nγ, n ∈ Z+,

4Ce(t) = q, t = nγ, n ∈ Z+.

(1.4)

Remark 1 In model (1.4), the parameters ri0, r̃i0, ki, li(i = 1, 2, 3), fi, hi, ci(i = 2, 3) and a satisfy 0 <

ri0, r̃i0, ki, li, fi, hi, ci, a ≤ 1. The parameter σ2
i is the intensity of the white noise on the growth rate of

species i, thus σ2
i > 0, i = 1, 2, 3. The parameter γ, q > 0. ri1 represents the decreasing rate of the

intrinsic growth rate associated with the uptake of the toxicant. Thus ri1 > 0. In addition, Ci0 and Ce

stand for the concentrations of the toxicant, therefore 0 ≤ Ci0(t) ≤ 1 and 0 ≤ Ce(t) ≤ 1 for t ≥ 0. As a
result, the following conditions need to be met: ki ≤ li, q ≤ 1 − e−hγ, i = 1, 2, 3.

To the best of our knowledge, Liu et al. [28] only studied the persistence and extinction of two
species system in polluted environment, little research has been done on the dynamics of corresponding
three species system. Therefore, we deeply analyze the properties of model (1.4) in the stochastic
environment improved by the Ornstein-Uhlenbeck process.

The arrangement of this paper is as follows. In section 2, the persistence and extinction threshold
for each species are proposed. In section 3, we carry out some numerical simulations to verify the
theoretical results. Finally, we give some conclusions in section 4.

2. Main results

For the sake of convenience and simplicity, we define the following notations:

R3
+ = {z ∈ R3|zi > 0, i = 1, 2, 3}, bi(t) = ri0 −

ξ2
i

4αi
+
ξ2

i

4αi
e−2αit − ri1Ci0(t),

Ki =
qki

hli
, bi(t) = lim

t→+∞
t−1
∫ t

0
bi(s)ds = ri0 −

ξ2
i

4αi
−

ri1Ki

γ
, i = 1, 2, 3.

Lemma 1 Consider the following subsystem of model (1.4) [32]:

dC10(t)
dt = k1Ce(t) − l1C10(t),

dC20(t)
dt = k2Ce(t) − l2C20(t),

dC30(t)
dt = k3Ce(t) − l3C30(t),

dCe(t)
dt = −hCe(t), t , nγ, n ∈ Z+,

∆Ci0(t) = 0,∆Ce(t) = q, t = nγ, n ∈ Z+,

0 ≤ Ci0(0) ≤ 1, 0 ≤ Ce(0) ≤ 1, i = 1, 2, 3.
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The model has a unique positive γ-periodic solution (C̃10(t), C̃20(t), C̃30(t), C̃e(t))T which satisfies

lim
t→+∞

t−1
∫ t

0
C̃i0(s)ds =

kiq
hliγ

=
Ki

γ
, i = 1, 2, 3.

Lemma 2 For arbitrary (y1(0), y2(0), y3(0)) ∈ R3
+, model (1.3) possesses a unique solution

(y1(t), y2(t), y3(t)) ∈ R3
+ for all t ≥ 0 a.s.(almost surely).

Proof. Pay attention to the following system:
du(t) = [b1(t) + (r̃10 − r10)e−α1t − aeu(t) −

c2ev(t)

h2+eu(t) −
c3ew(t)

h3+eu(t) ]dt
+σ1(t)dB1(t),

dv(t) = [b2(t) + (r̃20 − r20)e−α2t −
f2ev(t)

h2+eu(t) ]dt + σ2(t)dB2(t),

dw(t) = [b3(t) + (r̃30 − r30)e−α3t −
f3ew(t)

h3+eu(t) ]dt + σ3(t)dB3(t),

(2.1)

and u(0) = lny1(0), v(0) = lny2(0), w(0) = lny3(0). Due to the fact that the coefficients of model (2.1)
satisfy the local Lipschitz condition, model (2.1) possesses a unique local solution (u(t), v(t),w(t))T on
[0, τ∗), where τ∗ means the explosion time. From the Itô′s formula, we derive that (y1(t), y2(t), y3(t)) =

(eu(t), ev(t), ew(t)) is the unique local positive solution of model (1.3).
Now let us verify that τ∗ = +∞. Consider the following systems:

dφ(t) = φ(t)[r10 + (r̃10 − r10)e−α1t − r11C10(t) − aφ(t)]dt + σ1φ(t)dB1(t), φ(0) = y1(0); (2.2)

dn(t) = n(t)[r20 + (r̃20 − r20)e−α2t − r21C20(t) −
f2

h2
n(t)]dt + σ2n(t)dB2(t), n(0) = y2(0); (2.3)

dN(t) = N(t)[r20 + (r̃20 − r20)e−α2t − r21C20(t) −
f2

h2 + φ(t)
N(t)]dt + σ2N(t)dB2(t),N(0) = y2(0); (2.4)

dm(t) = m(t)[r30 + (r̃30 − r30)e−α3t − r31C30(t) −
f3

h3
m(t)]dt + σ3m(t)dB3(t), m(0) = y3(0); (2.5)

dM(t) = M(t)[r30 + (r̃30 − r30)e−α3t − r31C30(t) −
f3

h3 + φ(t)
M(t)]dt + σ3M(t)dB3(t),M(0) = y3(0).

(2.6)
On the basis of the comparison theorem for stochastic differential equations [33], we get for t ∈ [0, τ∗),

y1(t) ≤ φ(t), n(t) ≤ y2(t) ≤ N(t), m(t) ≤ y3(t) ≤ M(t), a.s. (2.7)

According to Theorem 2.2 in Jiang and Shi [34], we get

φ(t) =
e
∫ t

0 b1(s)ds− r̃10−r10
α1

(e−α1t−1)+
∫ t

0 σ1(s)dB1(s)

y−1
1 (0) + a

∫ t

0
e
∫ s

0 b1(τ)dτ− r̃10−r10
α1

(e−α1 s−1)+
∫ s

0 σ1(τ)dB1(τ)ds
, (2.8)

n(t) =
e
∫ t

0 b2(s)ds− r̃20−r20
α2

(e−α2t−1)+
∫ t

0 σ2(s)dB2(s)

y−1
2 (0) +

f2
h2

∫ t

0
e
∫ s

0 b2(τ)dτ− r̃20−r20
α2

(e−α2 s−1)+
∫ s

0 σ2(τ)dB2(τ)ds
, (2.9)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4894–4918.



4899

N(t) =
e
∫ t

0 b2(s)ds− r̃20−r20
α2

(e−α2t−1)+
∫ t

0 σ2(s)dB2(s)

y−1
2 (0) +

∫ t

0
f2

h2+φ(s)e
∫ s

0 b2(τ)dτ− r̃20−r20
α2

(e−α2 s−1)+
∫ s

0 σ2(τ)dB2(τ)ds
, (2.10)

m(t) =
e
∫ t

0 b3(s)ds− r̃30−r30
α3

(e−α3t−1)+
∫ t

0 σ3(s)dB3(s)

y−1
3 (0) +

f3
h3

∫ t

0
e
∫ s

0 b3(τ)dτ− r̃30−r30
α3

(e−α3 s−1)+
∫ s

0 σ3(τ)dB3(τ)ds
, (2.11)

M(t) =
e
∫ t

0 b3(s)ds− r̃30−r30
α3

(e−α3t−1)+
∫ t

0 σ3(s)dB3(s)

y−1
3 (0) +

∫ t

0
f3

h3+φ(s)e
∫ s

0 b3(τ)dτ− r̃30−r30
α3

(e−α3 s−1)+
∫ s

0 σ3(τ)dB3(τ)ds
. (2.12)

Due to the fact that φ(t), n(t),N(t),m(t) and M(t) are global, we can know that τ∗ = +∞.
Lemma 3 Let X(t) ∈ C(Ω × [0,+∞),R+), where C(Ω × [0,+∞),R+) denotes the family of all positive-
valued functions defined on Ω × [0,+∞). [35]
(i) If there exist three positive constants t0, β and β0 such that for all t ≥ t0,

ln X(t) ≤ βt − β0

∫ t

0
X(s)ds + F(t),

where F(t)/t → 0 as t → +∞, then
lim supt→+∞ t−1

∫ t

0
X(s)ds ≤ β/β0, a.s.

(ii) If there exist three positive constants t0,β and β0 such that for all t ≥ t0,

ln X(t) ≥ βt − β0

∫ t

0
X(S )ds + F(t),

where F(t)/t → 0 as t → +∞, then
lim inft→+∞ t−1

∫ t

0
X(s)ds ≥ β/β0 , a.s.

Lemma 4 Suppose that b̄1 > 0, then
(i) If b̄2 > 0, then limt→+∞

ln y2(t)
t = 0, a.s.

(ii) If b̄3 > 0, then limt→+∞
ln y3(t)

t = 0, a.s.

Proof (i). Choose sufficiently large T which fulfils that, for t ≥ T ,

(b̄i − ε)t ≤
∫ t

0
bi(s)ds ≤ (b̄i + ε)t, e(b̄i−ε)t ≥ 2e(b̄i−ε)T .

For t ≥ T , one can deduce from (2.8) that

φ(t) =
e
∫ t

0 b1(s)ds− r̃10−r10
α1

(e−α1t−1)+
∫ t

0 σ1(s)dB1(s)

y−1
1 (0) + a

∫ t

0
e
∫ s

0 b1(τ)dτ− r̃10−r10
α1

(e−α1 s−1)+
∫ s

0 σ1(τ)dB1(τ)ds

≤
e
∫ t

0 b1(s)ds− r̃10−r10
α1

(e−α1t−1)+
∫ t

0 σ1(s)dB1(s)

a
∫ t

0
e
∫ s

0 b1(τ)dτ− r̃10−r10
α1

(e−α1 s−1)+
∫ s

0 σ1(τ)dB1(τ)ds

≤
e(b̄1+ε)t− r̃10−r10

α1
(e−α1t−1)+

∫ t
0 σ1(s)dB1(s)

aemin0≤v≤t{
∫ v

0 σ1(τ)dB1(τ)− r̃10−r10
α1

(e−α1v−1)} ∫ t

T
e(b̄1−ε)sds
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=
(b̄1 − ε)e(b̄1+ε)t− r̃10−r10

α1
(e−α1t−1)+

∫ t
0 σ1(s)dB1(s)

a(e(b̄1−ε)t − e(b̄1−ε)T )emin0≤v≤t{
∫ v

0 σ1(τ)dB1(τ)− r̃10−r10
α1

(e−α1v−1)}

≤
2(b̄1 − ε)e(b̄1+ε)t− r̃10−r10

α1
(e−α1t−1)+

∫ t
0 σ1(s)dB1(s)

ae(b̄1−ε)temin0≤v≤t{
∫ v

0 σ1(τ)dB1(τ)− r̃10−r10
α1

(e−α1v−1)}

=
2(b̄1 − ε)

a
e2εtL1(t),

where

L1(t) =
e
∫ t

0 σ1(s)dB1(s)− r̃10−r10
α1

(e−α1t−1)

emin0≤v≤t{
∫ v

0 σ1(τ)dB1(τ)− r̃10−r10
α1

(e−α1v−1)}
.

Note that L1(t) ≥ 1, consequently,

∫ t

T

f2

h2 + φ(s)
e
∫ s

0 b2(τ)dτ− r̃20−r20
α2

(e−α2 s−1)+
∫ s

0 σ2(τ)dB2(τ)ds

≥

∫ t

T

f2e(b̄2−ε)s− r̃20−r20
α2

(e−α2 s−1)+
∫ s

0 σ2(τ)dB2(τ)

h2 +
2(b̄1−ε)

a e2εsL1(s)
ds

≥

∫ t

T

f2e(b̄2−ε)s− r̃20−r20
α2

(e−α2 s−1)+
∫ s

0 σ2(τ)dB2(τ)

(h2 +
2(b̄1−ε)

a )e2εsL1(s)
ds

=
a f2

ah2 + 2(b̄1 − ε)

∫ t

T
e(b̄2−3ε)s− r̃20−r20

α2
(e−α2 s−1)+

∫ s
0 σ2(τ)dB2(τ)L−1

1 (s)ds

≥
a f2

ah2 + 2(b̄1 − ε)
1

b̄2 − 3ε
(e(b̄2−3ε)t − e(b̄2−3ε)T ) min

0≤v≤t
{L2(v)}

= L3(t)(e(b̄2−3ε)t − e(b̄2−3ε)T ),

where

L2(t) = L−1
1 (t)e

∫ t
0 σ2(τ)dB2(τ)− r̃20−r20

α2
(e−α2t−1)

,

L3(t) =
a f2

ah2 + 2(b̄1 − ε)
1

b̄2 − 3ε
min
0≤v≤t
{L2(v)}.

Then (2.10) implies that

1
N(t)

≥ e−
∫ t

T b2(s)ds+ r̃20−r20
α2

(e−α2(t−T )−1)−
∫ t

T σ2(s)dB2(s)

×L3(t)(e(b̄2−3ε)t − e(b̄2−3ε)T )

≥ e−
∫ t

T b2(s)ds+ r̃20−r20
α2

(e−α2(t−T )−1)−
∫ t

T σ2(s)dB2(s)
×

1
2

L3(t)e(b̄2−3ε)t
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≥ L4(t) × e−4εt,

where

L4(t) =
1
2

L3(t)e
∫ T

0 b2(s)ds+ r̃20−r20
α2

(e−α2(t−T )−1)−
∫ t

T σ2(s)dB2(s)
.

Therefore,

t−1 ln N(t) < −t−1 ln L4(t) + 4ε. (2.13)

Note that limt→+∞ t−1
∫ t

0
σi(s)dBi(s) = 0(i = 1, 2, 3), we then deduce that if b̄2 > 0,

limt→+∞ t−1 ln L4(t) = 0 , a.s.

This together with (2.13), indicates

lim sup
t→+∞

t−1 ln y2(t) ≤ lim sup
t→+∞

t−1 ln N(t) ≤ 0, a.s.

Using Itô′s formula to (2.3) deduces

d ln n(t) = (b2(t) + (r̃20 − r20)e−α2t −
f2

h2
n(t))dt + σ2(t)dB2(t).

In other words,

t−1 ln n(t) = t−1 ln y2(0) + t−1
∫ t

0
b2(s)ds −

r̃20 − r20

α2t
(e−α2t − 1)

−
f2

h2
t−1
∫ t

0
n(s)ds + t−1

∫ t

0
σ2(s)dB2(s).

(2.14)

Clearly, for arbitrary ε > 0, there exists T > 0 such that , for t > T ,

b̄2 − 2ε ≤ t−1[ln y2(0) −
r̃20 − r20

α2
(e−α2t − 1) +

∫ t

0
b2(s)ds] ≤ b̄2 + 2ε.

Then,we derive from (2.14) that,for t ≥ T ,

t−1 ln n(t) ≤ b̄2 + 2ε −
f2

h2
t−1
∫ t

0
n(s)ds + t−1

∫ t

0
σ2(s)dB2(s), (2.15)

t−1 ln n(t) ≥ b̄2 − 2ε −
f2

h2
t−1
∫ t

0
n(s)ds + t−1

∫ t

0
σ2(s)dB2(s). (2.16)

Choose ε be sufficiently small such that 0 ≤ 2ε ≤ b̄2. Applying (i) and (ii) in Lemma 3 yields that

h2(b̄2 − 2ε)
f2

≤ lim inf
t→+∞

t−1
∫ t

0
n(s)ds ≤ lim sup

t→+∞

t−1
∫ t

0
n(s)ds
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≤
h2(b̄2 + 2ε)

f2
, a.s.

An application of the arbitrariness of ε ,we can obtain that

lim
t→+∞

t−1
∫ t

0
n(s)ds =

h2b̄2

f2
, a.s. (2.17)

Which implies that limt→+∞ t−1 ln n(t) = 0 a.s. Thanks to (2.7), one can derive that

lim inf
t→+∞

t−1 ln y2(t) ≥ lim
t→+∞

t−1 ln n(t) = 0, a.s. (2.18)

The proof of (i) is completed.

The proof of (ii) is similar to that of (i), so it is omitted here.

Theorem 1 For model (1.3), the following conclusions hold:
(I) If b̄1 < 0, b̄2 < 0 and b̄3 < 0, then y1, y2 and y3 become extinct, i.e. limt→+∞ yi(t) = 0, a.s.,

i = 1, 2, 3.
(II) If b̄1 < 0, b̄2 > 0 and b̄3 < 0, then y1 and y3 become extinct and y2 is persistent in the mean , i.e.

limt→+∞ t−1
∫ t

0
y2(s)ds = h2b̄2/ f2, a.s.

(III) If b̄1 < 0, b̄2 < 0 and b̄3 > 0, then y1 and y2 become extinct and y3 is persistent in the mean ,
i.e. limt→+∞ t−1

∫ t

0
y3(s)ds = h3b̄3/ f3, a.s.

(IV) If b̄1 > 0, b̄2 < 0 and b̄3 < 0, then y2 and y3 become extinct and y1 is persistent in the mean, i.e.
limt→+∞ t−1

∫ t

0
y1(s)ds = b̄1/a, a.s.

(V) If b̄1 < 0, b̄2 > 0 and b̄3 > 0, then y1 becomes extinct and y2 and y3 are persistent in the mean,
i.e. limt→+∞ t−1

∫ t

0
y2(s)ds = h2b̄2/ f2, limt→+∞ t−1

∫ t

0
y3(s)ds = h3b̄3/ f3, a.s.

(VI) If b̄1 > 0, b̄2 > 0 and b̄3 < 0, then y3 becomes extinct, and
(i) If b̄1

c2
< b̄2

f2
, then y1 becomes extinct and y2 is persistent in the mean, i.e. limt→+∞ t−1

∫ t

0
y2(s)ds =

h2b̄2/ f2, a.s.
(ii) If b̄1

c2
> b̄2

f2
, then limt→+∞ t−1

∫ t

0
y1(s)ds = b̄1/a − c2b̄2/a f2,

limt→+∞ t−1
∫ t

0
y2(s)

h2+y1(s)ds = b̄2/ f2, a.s.
(VII) If b̄1 > 0, b̄2 < 0 and b̄3 > 0, then y2 becomes extinct, and

(i) If b̄1
c3
< b̄3

f3
, then y1 becomes extinct and y3 is persistent in the mean, i.e. limt→+∞ t−1

∫ t

0
y3(s)ds =

h3b̄3/ f3, a.s.
(ii) If b̄1

c3
> b̄3

f3
, then limt→+∞ t−1

∫ t

0
y1(s)ds = b̄1/a − c3b̄3/a f3,

limt→+∞ t−1
∫ t

0
y3(s)

h3+y1(s)ds = b̄3/ f3, a.s.
(VIII) If b̄1 > 0, b̄2 > 0 and b̄3 > 0, then,

(i) If b̄1 <
c2
f2

b̄2 + c3
f3

b̄3, then y1 becomes extinct and y2 and y3 are persistent in the mean , i.e.

limt→+∞ t−1
∫ t

0
y2(s)ds = h2b̄2/ f2, limt→+∞ t−1

∫ t

0
y3(s)ds = h3b̄3/ f3, a.s.

(ii) If b̄1 > c2
f2

b̄2 + c3
f3

b̄3, then limt→+∞ t−1
∫ t

0
y1(s)ds = b̄1/a − c2b̄2/a f2 − c3b̄3/a f3,

limt→+∞ t−1
∫ t

0
y2(s)

h2+y1(s)ds = b̄2/ f2, limt→+∞ t−1
∫ t

0
y3(s)

h3+y1(s)ds = b̄3/ f3, a.s.
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Proof. Applying Itô′s formula to model (1.3) gives

d ln y1(t) = (b1(t) + (r̃10 − r10)e−α1t − ay1(t) −
c2y2(t)

h2 + y1(t)
−

c3y3(t)
h3 + y1(t)

)dt

+σ1(t)dB1(t),

d ln y2(t) = (b2(t) + (r̃20 − r20)e−α2t −
f2y2(t)

h2 + y1(t)
)dt + σ2(t)dB2(t),

d ln y3(t) = (b3(t) + (r̃30 − r30)e−α3t −
f3y3(t)

h3 + y1(t)
)dt + σ3(t)dB3(t).

As a consequence,

ln y1(t) − ln y1(0) =

∫ t

0
b1(s)ds −

r̃10 − r10

α1
(e−α1t − 1) − a

∫ t

0
y1(s)ds

− c2

∫ t

0

y2(s)
h2 + y1(s)

ds − c3

∫ t

0

y3(s)
h3 + y1(s)

ds

+

∫ t

0
σ1(s)dB1(s),

(2.19)

ln y2(t) − ln y2(0) =

∫ t

0
b2(s)ds −

r̃20 − r20

α2
(e−α2t − 1)

− f2

∫ t

0

y2(s)
h2 + y1(s)

ds +

∫ t

0
σ2(s)dB2(s),

(2.20)

ln y3(t) − ln y3(0) =

∫ t

0
b3(s)ds −

r̃30 − r30

α3
(e−α3t − 1)

− f3

∫ t

0

y3(s)
h3 + y1(s)

ds +

∫ t

0
σ3(s)dB3(s).

(2.21)

First, let us prove (I), we derive from (2.19) that, for sufficiently large t,

t−1 ln
y1(t)
y1(0)

≤ b̄1 + ε + t−1
∫ t

0
σ1(s)dB1(s) −

r̃10 − r10

tα1
(e−α1t − 1). (2.22)

Note that limt→+∞ t−1
∫ t

0
σ1(s)dB1(s) = 0 and b̄1 + ε < 0, thus limt→+∞ y1(t) = 0, a.s. In the same way,

b̄2 < 0 means that limt→+∞ y2(t) = 0, a.s., b̄3 < 0 means that limt→+∞ y3(t) = 0, a.s.
(II). Since b̄1 < 0, b̄3 < 0, we then deduce from (I) that limt→+∞ y1(t) = 0, limt→+∞ y3(t) = 0, a.s.

Then for sufficiently large t,

ln y2(t) ≤ (b̄2 + 2ε)t −
f2

h2 + ε

∫ t

0
y2(s)ds +

∫ t

0
σ2(s)dB2(s), (2.23)

ln y2(t) ≥ (b̄2 − 2ε)t −
f2

h2 − ε

∫ t

0
y2(s)ds +

∫ t

0
σ2(s)dB2(s). (2.24)
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Making use of Lemma 3 to (2.23) and (2.24) respectively, we obtain

lim sup
t→+∞

t−1
∫ t

0
y2(s)ds ≤ (h2+ε)(b̄2+2ε)

f2
,

lim inf
t→+∞

t−1
∫ t

0
y2(s)ds ≥

(h2−ε)(b̄2−2ε)
f2

.

Therefore, from the arbitrariness of ε, we can derive that limt→+∞ t−1
∫ t

0
y2(s)ds = h2b̄2/ f2, a.s.

The proof of (III) and (IV) is similar to that of (II), thus is omitted here.
Now let us prove (V). According to b̄1 < 0 , we have limt→+∞ y1(t) = 0. The proof is similar to (II), so
here is omitted.
(VI). First of all, b̄3 < 0 implies that limt→+∞ y3(t) = 0, a.s.

(i) Compute that (2.19) × f2 − (2.20) × c2, then we get

f2t−1 ln
y1(t)
y1(0)

=c2t−1 ln
y2(t)
y2(0)

+ t−1 f2

∫ t

0
b1(s)ds − t−1c2

∫ t

0
b2(s)ds

−
r̃10 − r10

α1t
(e−α1t − 1) f2 +

r̃20 − r20

α2t
(e−α2t − 1)c2

− a f2t−1
∫ t

0
y1(s)ds − f2c3t−1

∫ t

0

y3(s)
h3 + y1(s)

ds

+ f2t−1
∫ t

0
σ1(s)dB1(s) − c2t−1

∫ t

0
σ2(s)dB2(s)

≤c2t−1 ln
y2(t)
y2(0)

+ t−1 f2

∫ t

0
b1(s)ds − t−1c2

∫ t

0
b2(s)ds

−
r̃10 − r10

α1t
(e−α1t − 1) f2 +

r̃20 − r20

α2t
(e−α2t − 1)c2

− a f2t−1
∫ t

0
y1(s)ds + f2t−1

∫ t

0
σ1(s)dB1(s)

− c2t−1
∫ t

0
σ2(s)dB2(s).

(2.25)

In view of Lemma 4, for any ε > 0, there exists a T > 0 such that for t > T , we can see that

c2t−1 ln
y2(t)
y2(0)

≤ ε/4,

f2t−1 ln y1(0) ≤ ε/4,
r̃20 − r20

α2t
(e−α2t − 1)c2 −

r̃10 − r10

α1t
(e−α1t − 1) f2 ≤ ε/4,

f2t−1
∫ t

0
σ1(s)dB1(s) − c2t−1

∫ t

0
σ2(s)dB2(s) ≤ ε/4,

t−1 f2

∫ t

0
b1(s)ds − t−1c2

∫ t

0
b2(s)ds ≤ f2b̄1 − c2b̄2 + f2ε + c2ε.

As a consequence, for t > T ,

t−1 f2 ln y1(t) ≤ ( f2 + c2 + 1)ε + f2b̄1 − c2b̄2. (2.26)
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Let ε be sufficiently small such that 0 < ε < c2b̄2−b̄1 f2
f2+c2+1 . Consequently, limt→+∞ y1(t) = 0. The proof of

limt→+∞ t−1
∫ t

0
y2(s)ds = h2b̄2

f2
is similar to that of (II) and here is omitted.

(ii) It follows from (2.20) that

t−1 ln y2(t) − t−1 ln y2(0) = t−1
∫ t

0
b2(s)ds −

r̃20 − r20

α2t
(e−α2t − 1) − f2t−1

∫ t

0

y2(s)
h2 + y1(s)

ds

+ t−1
∫ t

0
σ2(s)dB2(s).

(2.27)

Making use of Lemma 4 and limt→+∞ t−1
∫ t

0
σ2(s)dB2(s) = 0, we can obtain

lim
t→+∞

t−1
∫ t

0

y2(s)
h2 + y1(s)

ds =
b̄2

f2
. (2.28)

Then, for any ε > 0, there is T > 0 such that for t > T ,

−
c2b̄2

f2
− ε ≤ −

r̃10 − r10

α1t
(e−α1t − 1) − c2t−1

∫ t

0

y2(s)
h2 + y1(s)

ds + t−1 ln y1(0) − c3t−1
∫ t

0

y3(s)
h3 + y1(s)

ds

≤ −
c2b̄2

f2
+ ε.

(2.29)
Substitute (2.29) into (2.19), and we can get that, for t ≥ T ,

t−1 ln y1(t) ≥ b̄1 −
c2b̄2

f2
− 2ε − at−1

∫ t

0
y1(s)ds + t−1

∫ t

0
σ1(s)dB1(s),

t−1 ln y1(t) ≤ b̄1 −
c2b̄2

f2
+ 2ε − at−1

∫ t

0
y1(s)ds + t−1

∫ t

0
σ1(s)dB1(s).

Let ε be sufficiently small such that 0 < ε < (b̄1 − c2b̄2/ f2)/2. Thanks to Lemma 3, we have

b̄1

a
−

c2b̄2

a f2
−

2ε
a
≤ lim inf

t→+∞
t−1
∫ t

0
y1(s)ds ≤ lim sup

t→+∞

t−1
∫ t

0
y1(s)ds

≤
b̄1

a
−

c2b̄2

a f2
+

2ε
a
.

We then derive from the arbitrariness of ε that limt→+∞ t−1
∫ t

0
y1(s)ds = b̄1/a − c2b̄2/(a f2).

The proof of (VII) is similar to that of (VI), so it is omitted here.
Now let us proof (VIII).

(i) Compute that (2.19) × f2 f3 − (2.20) × f3c2 − (2.21) × f2c3,

f2 f3t−1 ln
y1(t)
y1(0)

= f3c2t−1 ln
y2(t)
y2(0)

+ f2c3t−1 ln
y3(t)
y3(0)
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+ f2 f3t−1
∫ t

0
b1(s)ds − t−1c2 f3

∫ t

0
b2(s)ds

−c3 f2t−1
∫ t

0
b3(s)ds − f2 f3

r̃10 − r10

α1t
(e−α1t − 1)

+c2 f3
r̃20 − r20

α2t
(e−α2t − 1) + c3 f2

r̃30 − r30

α3t
(e−α3t − 1)

−a f2 f3t−1
∫ t

0
y1(s)ds + f2 f3t−1

∫ t

0
σ1(s)dB1(s)

−c2 f3t−1
∫ t

0
σ2(s)dB2(s) − c3 f2t−1

∫ t

0
σ3(s)dB3(s).

In view of Lemma 4, for any ε > 0, there exists a T > 0 such that for t > T , we can see that

f3c2t−1 ln
y2(t)
y2(0)

+ f2c3t−1 ln
y3(t)
y3(0)

≤ ε/4,

f2 f3t−1 ln y1(0) ≤ ε/4,

− f2 f3
r̃10 − r10

α1t
(e−α1t − 1) + c2 f3

r̃20 − r20

α2t
(e−α2t − 1) − c3 f2

r̃30 − r30

α1t
(e−α1t − 1) ≤ ε/4,

f2 f3t−1
∫ t

0
σ1(s)dB1(s) − c2 f3t−1

∫ t

0
σ2(s)dB2(s) − c3 f2t−1

∫ t

0
σ3(s)dB3(s) ≤ ε/4,

t−1 f2 f3

∫ t

0
b1(s)ds − t−1 f3c2

∫ t

0
b2(s)ds − t−1c3 f2

∫ t

0
b3(s)ds

≤ f2 f3b̄1 − c2 f3b̄2 − c3 f2b̄3 + ( f2 f3 + c2 f3 + c3 f2)ε.

As a consequence, for t > T ,

t−1 f2 f3 ln y1(t) ≤ (1 + f2 f3 + c2 f3 + c3 f2)ε + f2 f3b̄1 − c2 f3b̄2 − c3 f2b̄3. (2.30)

Let ε be sufficiently small such that 0 < ε < c3 f2b̄3+c2 f3b̄2− f2 f3b̄1
1+ f2 f3+c2 f3+c3 f2

, we have limt→+∞ y1(t) = 0. According to
the proof of (II), we derive that

lim
t→+∞

t−1
∫ t

0
y2(s)ds =

h2b̄2

f2
.

Similar to the proof of (II), we can obtain

lim
t→+∞

t−1
∫ t

0
y3(s)ds =

h3b̄3

f3
.

(ii) It follows from (2.20), (2.21), Lemma 4 and limt→+∞ t−1
∫ t

0
σi(s)dBi(s) = 0, i = 1, 2, 3 that

lim
t→+∞

t−1
∫ t

0

y2(s)
h2 + y1(s)

ds =
b̄2

f2
, lim

t→+∞
t−1
∫ t

0

y3(s)
h3 + y1(s)

ds =
b̄3

f3
.
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Then, for any ε > 0, there is T > 0 such that for t > T ,

−
c2b̄2

f2
−

c3b̄3

f3
− ε ≤ −

r̃10 − r10

α1t
(e−α1t − 1) − c2t−1

∫ t

0

y2(s)
h2 + y1(s)

ds

− c3t−1
∫ t

0

y3(s)
h3 + y1(s)

ds + t−1 ln y1(0)

≤ −
c2b̄2

f2
−

c3b̄3

f3
+ ε.

(2.31)

Substitute (2.31) into (2.19), we can get that, for t ≥ T ,

t−1 ln y1(t) ≥ b̄1 −
c2b̄2

f2
−

c3b̄3

f3
− 2ε − at−1

∫ t

0
y1(t)ds + t−1

∫ t

0
σ1(s)dB1(s),

t−1 ln y1(t) ≤ b̄1 −
c2b̄2

f2
−

c3b̄3

f3
+ 2ε − at−1

∫ t

0
y1(t)ds + t−1

∫ t

0
σ1(s)dB1(s).

Let ε be sufficiently small such that 0 < ε < (b̄1 − c2b̄2/ f2 − c3b̄3/ f3)/2. Thanks to Lemma 3, we have

b̄1

a
−

c2b̄2

a f2
−

c3b̄3

a f3
−

2ε
a
≤ lim inf

t→+∞
t−1
∫ t

0
y1(s)ds ≤ lim sup

t→+∞

t−1
∫ t

0
y1(s)ds

≤
b̄1

a
−

c2b̄2

a f2
−

c3b̄3

a f3
+

2ε
a
.

We then derive from the arbitrariness of ε that limt→+∞ t−1
∫ t

0
y1(s)ds = b̄1/a − c2b̄2/(a f2) − c3b̄3/(a f3).

The proof of Theorem 1 is completed.

3. Numerical simulations

Now we use the Milstein method offered in [36] to verify the theoretical results numerically (here
we only provide the functions of ξ2

i since the functions of αi can be proffered analogously).

In Figure 1–4, choose r10 = 0.5, r20 = 0.5, r30 = 0.3, r̃10 = 0.3, r̃20 = 0.25, r̃30 = 0.2, r11 = r21 =

r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 = h3 = 1, α1 = 0.31, α2 = 0.35,
α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.26 k3 = 0.21, l1 = 0.8, l2 = 0.7, l3 = 0.7, h = 0.9, q = 0.5. The only
difference between conditions of Figure1–4 is that the values of ξ2

1, ξ2
2 and ξ2

3 are different.
(I) In Figure 1, we choose ξ2

1 = 0.55, ξ2
2 = 0.9 and ξ2

3 = 0.5. Then b̄1 = −0.006 < 0, b̄2 = −0.2357 <
0, b̄3 = −0.0726 < 0. According to (I) in Theorem 1, y1, y2 and y3 die out.
Figure 1 confirms these.

(II) In Figure 2, we choose ξ2
1 = 0.55, ξ2

2 = 0.16 and ξ2
3 = 0.5. Then b̄1 = −0.006 < 0, b̄2 =

0.2929 > 0, b̄3 = −0.0726 < 0. On the basis of (II) in Theorem 1, y1 and y3 die out and

lim
t→+∞

t−1
∫ t

0
y2(s)ds =

h2b̄2

f2
= 0.5857.

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4894–4918.



4908

See Figure 2.

(III) In Figure 3, we choose ξ2
1 = 0.15, ξ2

2 = 0.9 and ξ2
3 = 0.5. Then b̄1 = 0.2915 > 0, b̄2 =

−0.2357 < 0, b̄3 = −0.0726 < 0. On the basis of (IV) in Theorem 1, y2 and y3 die out and

lim
t→+∞

t−1
∫ t

0
y1(s)ds =

b̄1

a
= 1.2661.

See Figure 3.

(IV) In Figure 4, we choose ξ2
1 = 0.55, ξ2

2 = 0.16 and ξ2
3 = 0.09. Then b̄1 = −0.006 < 0,

b̄2 = b̄2 = 0.2929 > 0, b̄3 = 0.1714 > 0. On the basis of (V) in Theorem 1, y1 dies out and

lim
t→+∞

t−1
∫ t

0
y2(s)ds =

h2b̄2

f2
= 0.5857,

lim
t→+∞

t−1
∫ t

0
y3(s)ds =

h3b̄3

f3
= 0.3647.

Figure 4 confirms these.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
1
(t)

y
2
(t)

y
3
(t)

Figure 1. Solutions of system (1.4) for r10 = 0.5, r20 = 0.5, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.31, α2 = 0.35, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.26, k3 = 0.21, l1 = 0.8, l2 =

0.7, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.55, ξ2

2 = 0.9, ξ2
3 = 0.5.
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Figure 2. Solutions of system (1.4) for r10 = 0.5, r20 = 0.5, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.31, α2 = 0.35, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.26, k3 = 0.21, l1 = 0.8, l2 =

0.7, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.55, ξ2

2 = 0.16, ξ2
3 = 0.5.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

y
1
(t)

y
2
(t)

y
3
(t)

t-1
0
t y

1
(s)ds

Figure 3. Solutions of system (1.4) for r10 = 0.5, r20 = 0.5, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.31, α2 = 0.35, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.26, k3 = 0.21, l1 = 0.8, l2 =

0.7, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.15, ξ2

2 = 0.9, ξ2
3 = 0.5.
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Figure 4. Solutions of system (1.4) for r10 = 0.5, r20 = 0.5, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.31, α2 = 0.35, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.26, k3 = 0.21, l1 = 0.8, l2 =

0.7, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.55, ξ2

2 = 0.16, ξ2
3 = 0.09.

In Figures 5 and 6, we choose r10 = 0.6, r20 = 0.8, r30 = 0.3, r̃10 = 0.3, r̃20 = 0.25, r̃30 = 0.2,
r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 = h3 = 1, α1 = 0.81,
α2 = 0.65, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.23 k3 = 0.45, l1 = 0.4, l2 = 0.8, l3 = 0.7, h = 0.9,
q = 0.5. The only difference between conditions of Figures 5 and 6 is that the values of ξ2

1, ξ2
2 and ξ2

3
are different.

(V) In Figure 5, we choose ξ2
1 = 0.5, ξ2

2 = 0.06 and ξ2
3 = 0.5. Then b̄1 = 0.3207 > 0, b̄2 = 0.7050 >

0, b̄3 = −0.1583 < 0 and b̄1 < c2b̄2/ f2 = 0.5076 . On the basis of (VI) in Theorem 1, y1 and y3 die out
and

lim
t→+∞

t−1
∫ t

0
y2(s)ds =

h2b̄2

f2
= 1.4101.

See Figure 5.
(VI) In Figure 6, we choose ξ2

1 = 0.5, ξ2
2 = 0.86 and ξ2

3 = 0.5. Then b̄1 = 0.3207 > 0, b̄2 = 0.3974 >
0, b̄3 = −0.1583 < 0 and b̄1 > c2b̄2/ f2 = 0.2861. On the basis of (VI) in Theorem 1, y3 dies out and

lim
t→+∞

t−1
∫ t

0
y1(s)ds =

b̄1

a
−

c2b̄2

a f2
= 0.1383,

lim
t→+∞

t−1
∫ t

0

y2(s)
h2 + y1(s)

ds =
b̄2

f2
= 0.7947.

See Figure 6.
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Figure 5. Solutions of system (1.4) for r10 = 0.6, r20 = 0.8, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.81, α2 = 0.65, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.23, k3 = 0.45, l1 = 0.4, l2 =

0.8, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.5, ξ2

2 = 0.06, ξ2
3 = 0.5.
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Figure 6. Solutions of system (1.4) for r10 = 0.6, r20 = 0.8, r30 = 0.3, r̃10 = 0.3, r̃20 =

0.25, r̃30 = 0.2, r11 = r21 = r31 = 0.9, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.5, f3 = 0.47, h2 =

h3 = 1, α1 = 0.81, α2 = 0.65, α3 = 0.42, γ = 2, k1 = 0.2, k2 = 0.23, k3 = 0.45, l1 = 0.4, l2 =

0.8, l3 = 0.7, h = 0.9, q = 0.5, and ξ2
1 = 0.5, ξ2

2 = 0.86, ξ2
3 = 0.5.

In Figures 7 and 8, we choose r10 = 0.6, r20 = 0.6, r30 = 0.4, r̃10 = 0.3, r̃20 = 0.15, r̃30 = 0.3,
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r11 = r21 = r31 = 0.1, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.75, f3 = 0.77, h2 = h3 = 1, α1 = 0.61,
α2 = 0.85, α3 = 0.89, γ = 2, k1 = 0.32, k2 = 0.05 k3 = 0.25, l1 = 0.9, l2 = 0.7, l3 = 0.8, h = 0.9,
q = 0.6. The only difference between conditions of Figures 7 and 8 is that the values of ξ2

1, ξ2
2 and ξ2

3
are different.

(VII) In Figure 7, we choose ξ2
1 = 0.5, ξ2

2 = 0.006 and ξ2
3 = 0.009. Then b̄1 = 0.3832 > 0,

b̄2 = 0.5959 > 0, b̄3 = 0.3871 > 0 and b̄1 < c2b̄2/ f2 + c3b̄3/ f3 = 0.4871. On the basis of (VIII) in
Theorem 1, y1 dies out and

lim
t→+∞

t−1
∫ t

0
y2(s)ds =

h2b̄2

f2
= 0.7945,

lim
t→+∞

t−1
∫ t

0
y3(s)ds =

h3b̄3

f3
= 0.5027.

See Figure 7.
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Figure 7. Solutions of system (1.4) for r10 = 0.6, r20 = 0.6, r30 = 0.4, r̃10 = 0.3, r̃20 =

0.15, r̃30 = 0.3, r11 = r21 = r31 = 0.1, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.75, f3 = 0.77, h2 =

h3 = 1, α1 = 0.61, α2 = 0.85, α3 = 0.89, γ = 2, k1 = 0.32, k2 = 0.05, k3 = 0.25, l1 = 0.9, l2 =

0.7, l3 = 0.8, h = 0.9, q = 0.6, and ξ2
1 = 0.5, ξ2

2 = 0.006, ξ2
3 = 0.009.

(VIII) In Figure 8, we choose ξ2
1 = 0.0002, ξ2

2 = 0.006 and ξ2
3 = 0.009. Then b̄1 = 0.5881 > 0,

b̄2 = 0.5959 > 0, b̄3 = 0.3871 > 0 and b̄1 > c2b̄2/ f2 + c3b̄3/ f3 = 0.4871. On the basis of (VIII) in
Theorem 1, we have

lim
t→+∞

t−1
∫ t

0
y1(s)ds =

b̄1

a
−

c2b̄2

a f2
−

c3b̄3

a f3
= 0.4040,

lim
t→+∞

t−1
∫ t

0

y2(s)
h2 + y1(s)

ds =
b̄2

f2
= 0.7945,
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lim
t→+∞

t−1
∫ t

0

y3(s)
h3 + y1(s)

ds =
b̄3

f3
= 0.5027.

See Figure 8.
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Figure 8. Solutions of system (1.4) for r10 = 0.6, r20 = 0.6, r30 = 0.4, r̃10 = 0.3, r̃20 =

0.15, r̃30 = 0.3, r11 = r21 = r31 = 0.1, a = 0.25, c2 = 0.36, c3 = 0.4, f2 = 0.75, f3 = 0.77, h2 =

h3 = 1, α1 = 0.61, α2 = 0.85, α3 = 0.89, γ = 2, k1 = 0.32, k2 = 0.05, k3 = 0.25, l1 = 0.9, l2 =

0.7, l3 = 0.8, h = 0.9, q = 0.6, and ξ2
1 = 0.0002, ξ2

2 = 0.006, ξ2
3 = 0.009.

In Figures 9 and 10, we choose r10 = 0.2, r20 = 0.1, r30 = 0.2, r̃10 = 0.1, r̃20 = 0.05, r̃30 = 0.13,
r11 = 2, r21 = 1, r31 = 2.6, a = 0.5, c2 = 0.2, c3 = 0.2, f2 = 0.95, f3 = 0.97, h2 = h3 = 1, α1 = 0.81,
α2 = 0.86, α3 = 0.8, k1 = 0.11, k2 = 0.12 k3 = 0.125, l1 = 0.6, l2 = 0.7, l3 = 0.7, h = 0.9, q = 0.12,
ξ2

1 = 0.02, ξ2
2 = 0.006, ξ2

3 = 0.009. The only difference between conditions of Figures 9 and 10 is that
the values of γ are different.

(IX) In Figure 9, we choose γ = 4. Then b̄1 = 0.1816 > 0, b̄2 = 0.0925 > 0, b̄3 = 0.1817 > 0 and
b̄1 > c2b̄2/ f2 + c3b̄3/ f3 = 0.0569. On the basis of (VIII) in Theorem 1, we have

lim
t→+∞

t−1
∫ t

0
y1(s)ds =

b̄1

a
−

c2b̄2

a f2
−

c3b̄3

a f3
= 0.2493,

lim
t→+∞

t−1
∫ t

0

y2(s)
h2 + y1(s)

ds =
b̄2

f2
= 0.0974,

lim
t→+∞

t−1
∫ t

0

y3(s)
h3 + y1(s)

ds =
b̄3

f3
= 0.1873.

See Figure 9.
In Figure 10, choose γ = 0.23. Then b̄1 = −0.0187 < 0, b̄2 = −0.0011 < 0 and b̄3 = −0.0720 < 0.

On the basis of (I) in Theorem 1, y1, y2 and y3 die out.
See Figure 10.
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Figure 9. Solutions of system (1.4) for r10 = 0.2, r20 = 0.1, r30 = 0.2, r̃10 = 0.1, r̃20 =

0.05, r̃30 = 0.13, r11 = 2, r21 = 1, r31 = 2.6, a = 0.5, c2 = 0.2, c3 = 0.2, f2 = 0.95, f3 =

0.97, h2 = h3 = 1, α1 = 0.81, α2 = 0.86, α3 = 0.8, k1 = 0.11, k2 = 0.12, k3 = 0.125, l1 =

0.6, l2 = 0.7, l3 = 0.7, h = 0.9, q = 0.12, ξ2
1 = 0.02, ξ2

2 = 0.006, ξ2
3 = 0.009 and γ = 4.
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Figure 10. Solutions of system (1.4) for r10 = 0.2, r20 = 0.1, r30 = 0.2, r̃10 = 0.1, r̃20 =

0.05, r̃30 = 0.13, r11 = 2, r21 = 1, r31 = 2.6, a = 0.5, c2 = 0.2, c3 = 0.2, f2 = 0.95, f3 =

0.97, h2 = h3 = 1, α1 = 0.81, α2 = 0.86, α3 = 0.8, k1 = 0.11, k2 = 0.12, k3 = 0.125, l1 =

0.6, l2 = 0.7, l3 = 0.7, h = 0.9, q = 0.4, ξ2
1 = 0.02, ξ2

2 = 0.006, ξ2
3 = 0.009 and γ = 0.23.

By comparing Figure 9 with Figure 10, one can observe that with the decrease of toxicant impulsive
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period γ, species tends to die out.

4. Conclusions

In this paper, we take advantage of a mean-reverting Ornstein-Uhlenbeck process to portray the
random perturbations in the environment and assume that the toxicants are released in regular pulses.
Based on the classical deterministic predator-prey model with modified Leslie-Gower Holling-type
II schemes, we present a three-species predator prey stochastic model with modified Leslie-Gower
Holling-type II schemes, and use more appropriate methods to describe random perturbations in the
environment. We obtain sharp sufficient conditions for persistence in the mean and extinction for each
species of model (1.4).

Theorem 1 has some interesting biological interpretations. By Theorem 1, we can see that each
species is either extinct or persistent in the mean, relying on the sign of b̄i(i = 1, 2, 3), b̄1 f2 − c2b̄2,
b̄1 f3 − c3b̄3, and f2 f3b̄1 − c2 f3b̄2 − c3 f2b̄3.

We note that the intensity of the perturbation ξ2
i and the speed of reversion αi are two key parameters

in the Ornstein-Uhlenbeck process. Obviously,

db̄i

dαi
> 0,

d(b̄1 f2 − c2b̄2)
dα1

> 0,
d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)

dα1
> 0,

d(b̄1 f3 − c3b̄3)
dα1

> 0,
d(b̄1 f2 − c2b̄2)

dα2
< 0,

d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)
dα2

< 0,

d(b̄1 f3 − c3b̄3)
dα3

< 0,
d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)

dα3
< 0,

db̄i

dξ2
i

< 0,

d(b̄1 f2 − c2b̄2)
dξ2

1

< 0,
d(b̄1 f3 − c3b̄3)

dξ2
1

< 0,
d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)

dξ2
1

< 0,

d(b̄1 f2 − c2b̄2)
dξ2

2

> 0,
d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)

dξ2
2

> 0,

d(b̄1 f3 − c3b̄3)
dξ2

3

> 0,
d(b̄1 f2 f3 − c2 f3b̄2 − c3 f2b̄3)

dξ2
3

> 0.

Therefore, with the increase of αi (respectively, ξ2
i ), species yi tends to be persistent (respectively,

extinct), i = 1, 2, 3. Furthermore, with the increase of α2 or α3 (respectively, ξ2
2 or ξ2

3), the prey
population y1 tends to die out (respectively, be persistent) provided b̄i > 0, i = 1, 2, 3.

Some interesting topics remain to be solved. For example, it would be interesting to dissect other
random noises such as the telephone noise (see [37]), the Lévy noise (see [38]) or reaction diffusion
(see [39]) etc. We leave these questions for future research.
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