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Abstract: In this paper, a modified Leslie-Gower Holling-type II two-predator one-prey stochastic
model in polluted environments with impulsive toxicant input is proposed where we use an Ornstein-
Uhlenbeck process to improve the stochasticity of the environment. The sharp sufficient conditions
for persistence in the mean and extinction are established. The results reveal that the persistence and
extinction of the species have close relationships with the toxicant and environmental stochasticity. In
addition, the theoretical results are verified by numerical simulation.
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1. Introduction

The relationship between predator and prey has long been one of the important topics concerned by
scholars. In recent years, several scholars have proposed more realistic models which should take the
functional response into account [1,2]. As a result, Aziz-Alaoui and Okiye [3] proposed the famous
predator-prey model with modified Leslie-Gower and Holling-type II schemes, which is described as
follows:

d il
o= 00— B,

) ®
B = X0 - ax(t) - £,
h+x(1)

where x(¢) and y(¢) stand for the sizes of the prey population and the predator population respectively; a
represents the intraspecific competition strength; ¢ means the per capita reduction rate of the prey due to
the capture of the predator; & stands for the safeguard of the environment; f has the like signification of
c. A growing number of scholars based on the above model have studied the possibility of a reciprocal
relationship between the decline of predator populations and the per capita availability of prey (see e.g.
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[4-9]).

In recent years, the world economy has grown rapidly with the development of industry and
agriculture. At the same time, environmental pollution is becoming more and more serious, and even
poses a threat to the survival of biological populations and human beings. For example, serious soil
erosion and exhaust emissions from cars on the road are destroying the biological population
structure. In order to better control and understand the effects of toxic substances on species, we must
assess the population survival risk of exposure to toxic substances.

Hallam and his colleagues [10-12] have opened the door to the study of environmental toxins by
publishing three papers in a row that suggest the effects of toxins on deterministic models of
ecosystems. From then on, many deterministic population models with toxic effects have been
proposed and studied (see e.g. [13—18]). Particularly, consider that toxins are often released into the
environment in pulses of regularity. For example, pesticides and heavy metals [19, 20]. Therefore,
based on the study of deterministic population models in polluted environments with impulsive toxin
inputs, several authors explored the effects of toxins on population (see e.g. [21-24]).

In particular, suppose that the living organisms absorb environmental toxicant into their bodies.
Cio(t), Cy(t) and C,.(¢) denote the concentration of the toxicant in the organism of the prey species,
the predator species and the environment at time ¢, respectively. Suppose that the growth rate, r;, is an
affine function of Cjy:

ri = rig—raCp(t), i=1,2.

Therefore, the following model of predator and prey with modified Leslie-Gower and Holling-type 11
schemes in the presence of toxins is proposed.

cy(t)

dx(t) = x(t)[r10 — r11Cio(t) — ax(t) — T t)]dt,
(1.1)
dy(t) = Y10 — a1 Con(t) - hfj f()t)]dz

In fact, the rate of species growth is often disturbed by random perturbations [25]. In general,
random perturbations in the environment can be represented by white noise [26,27]. Therefore, we
consider the perturbations of white noise to the population growth rate with ry — rig + 0:B;(¢), we
obtain the following stochastic model:

cy(t)

dx(t) = x()[r10 — r11Cio(t) — ax(t) — Pan x(t)]dt + 01 x(1)dB (1),
(1.2)
dy(t) = YD — 21 Cao(f) — hfj f()t)]dr + y()dBa(1),

where a’?, i = 1,2 is the intensity of white noise; B;(¢) and B,(¢) are mutually independent Brownian
motions defined on a complete probability space (2, F,%) with a filtration {#;},cg,. Liu et al. [28]
probed into several dynamical characteristics of model (1.2) and offered extinct and persistent
conditions for the model (1.2).

Model (1.2) assumes that the growth rate in the random environments is linear with respect to the

Gaussian white noise
dB;(1)

dt ’

Fio(t) = rip + 0 i=1,2.
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Integrating on the interval [0, 7'] results in
I Y Bi(T) 2
Fio == | Fo@®dt — rig+oi——— ~ N(rig,0;/T).
T Jo T

Hence, the variance of the average per capita growth rate 7, over an interval of length 7" tends to co as
T — 0. This is insufficient to describe the actual situation. Several authors [29, 30] have claimed that
using the mean-reverting Ornstein-Uhlenbeck process is a more appropriate approach to incorporate
the environment perturbations. On account of this method [31], one has

dii(t) = ai(rip — Fio(D))dt + EdBi(1),  i=1,2,
i.e.

!
Fo(t) = rio+ (Fio — rio)e™ ™ + fif e™ " IdB(s)
0

dB(1)
dr

= rio+ (Fo — rip)e " + oi(1) i=1,2,

where 7y = 7,(0), o(¢) = \/% V1 — e2% a; > 0 represents the speed of reversion, fl.z is the intensity
of stochastic perturbations. Based on the ideas above, a three-species predator-prey model can be
expressed as follows:

dyi(t) = yi(®Olrio + (Fro — rio)e™™" = rinCio(®) — ayi (1) — hiziyzl(g) - h?f;l(z)]dt
+o1(Dy1(DdB, (1),

dy)(t) = yaOlrao + (Fao — r20)e™ ' = 1y Ca(?) — %]dt (1.3)
+0a2(t)y2()dBs (1), '

dy;(t) = yi(Olrso + (F30 — r30)e™ " — r31C30() — %]dr
+03(D)y3(D)dBs(1),

where y;(?) is the population size of the prey at time 7, y;(¢), i = 2, 3 is the population size of the predator
at time ¢.

Now let us introduce the model of the concentration of toxicant. Suppose that Cj(f) satisfies the
following model:

dt

where k; stands for the uptake rate of toxicant from the environment; /; denotes the loss rate of the
toxicant from the species. C,() denotes the concentrations of the toxicant in the environment at time ¢
and satisfies the following model:

= k;C.(2) — [;Cio(1),

dC,(t
% = _hC.D), t#ny, nez,
AC(t) = q, t=ny, neZt,

where AL(t) = {(t")—{(2), h is the loss rate of toxicant from environment, ¢ is the toxicant input amount
at every time, y stands for the period of the impulsive input of toxicant.
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Therefore, we have the following one-prey two-predator system in polluted environments with pulse
toxicant input:

dy,(t) = yi@®lrio+ Fro —ri0)e™™ = riCio(t) — ay(t) - %2.(2) - f;ry—;f?t)]dt
+o1(Dy1(DdB; (1), }

dy (1) = yalrao + (Fao — ra0)e™ " — 1 Coo(2) — %]dt
+02(D)y2(D)d By (1),

dys(1) = yalrso + (F30 = r30)e™ ™" = r31C30(1) — ﬁiﬁf&ldt (1.4)
+03(0)y3(D)dBs(1), .

dCioq = kC,(t) - LCo(0),i=1,2,3

dt e =0kt 2595
dc;t(t) = —hC/r), t#ny, neZt,
AC(t) = q, t=ny, neZ'.

Remark 1 In model (1.4), the parameters ry, 7y, ki, L;(i = 1,2,3), fi, hi,c;(i = 2,3) and a satisfy 0 <
10, Ti0» kis iy fi5 hiy ciya < 1. The parameter 0'? is the intensity of the white noise on the growth rate of
species i, thus (Tf > 0,i = 1,2,3. The parameter y,q > 0. r; represents the decreasing rate of the
intrinsic growth rate associated with the uptake of the toxicant. Thus r;; > 0. In addition, C;y and C,
stand for the concentrations of the toxicant, therefore 0 < Cip(r) < 1 and 0 < C.(r) < 1 fort > 0. As a
result, the following conditions need to be met: k; <, g<1—-e,i=1,2,3.

To the best of our knowledge, Liu et al. [28] only studied the persistence and extinction of two
species system in polluted environment, little research has been done on the dynamics of corresponding
three species system. Therefore, we deeply analyze the properties of model (1.4) in the stochastic
environment improved by the Ornstein-Uhlenbeck process.

The arrangement of this paper is as follows. In section 2, the persistence and extinction threshold
for each species are proposed. In section 3, we carry out some numerical simulations to verify the

theoretical results. Finally, we give some conclusions in section 4.
2. Main results

For the sake of convenience and simplicity, we define the following notations:

3 3 . & &
R, ={z€R|z;>0,i=1,2,3}, b(t)=rp——+—e

—2a;t
T —=rianCi(t),
40’1‘ 4a’i il 10()

ki - . ' ; 1K
K= b= lim flf bi(s)ds = ri — ST i=1,2,3.
hl; t—-+0o 0 4a; Y

Lemma 1 Consider the following subsystem of model (1.4) [32]:
TD = Jy Colt) = L Cro(0),

40 1o C (1) — BCa(0),

dCy() _ kzC,(1) — I3C50(2),

L = —pC(1),t # ny.n € Z°,
ACa(t) = 0,AC.(1) = gt = ny,n € Z,

0<Cp0)<1,0<C(00<1,i=1,2,3.
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The model has a unique positive y-periodic solution (5 10(0), 520(0, Ego(t), 5e(t))T which satisfies

'~ ki K;
lim t‘lf Colsyds = 4 _ 2 123
f—+00 0 hll’y 0%

Lemma 2 For arbitrary (y;(0),y,(0),y3(0)) € Ri, model (1.3) possesses a unique solution
1(2), y2(1), y3(2)) € R? for all t > 0 a.s.(almost surely).

Proof. Pay attention to the following system:

du(t) = [bi(t) + (Fro — rig)e™" — ae"® — 250 — By
+o1()dB (1), o
- _ ev(t .
dv(t) = [bat) + (Fao — rao)e ™ — 25 1dt + 5 (1)dBa(1),
dw(t) = [bs(t) + (Fyo — rao)e™ — L Ndt + o5(D)d By (1),

h3+et®

and u(0) = Iny;(0), v(0) = Iny,(0), w(0) = Iny;(0). Due to the fact that the coefficients of model (2.1)
satisfy the local Lipschitz condition, model (2.1) possesses a unique local solution (u(t), v(t), w(t))" on
[0, 7.), where 7, means the explosion time. From the 1td’s formula, we derive that (y, (), y»(?), y3(¢)) =
("D, '™ " ") is the unique local positive solution of model (1.3).

Now let us verify that 7, = +00. Consider the following systems:

de(t) = ¢(0)[rio + (Fio — rio)e” ™" — riCio(t) — ag(t)ldt + o1¢()dBi (1),  ¢(0) = y1(0); (2.2)

dn(t) = n(t)[rx + (F20 — r20)e” " — r21Coo(t) — }]:—in(t)]dt + oon(D)dB (1),  n(0) = y2(0); (2.3)

dN(1) = N(t)[ry + (F20 — r20)e™ " — r21Coo(t) — hg%;(t)N(t)]dt + 0o N(1)dB,(1), N(0) = y2(0); (2.4)
dm(t) = m(0)[r3o + (F30 — r3p)e” " — r31C3(1) — i—zm(f)]df + o3m(D)dBs(1), m(0) = y3(0); (2.5)
dM(t) = M(0)[r30 + (F30 — r30)e” " = r31C30(1) — %%%M(l)]df + 03M(1)dBs(1), M(0) = y3(0).

(2.6)
On the basis of the comparison theorem for stochastic differential equations [33], we get for ¢ € [0, 7.),

Vi) <),  n@) <) < N(@), m(r) <ys(t) < M@), a.s. 2.7
According to Theorem 2.2 in Jiang and Shi [34], we get

efo’ bl(s)ds—“‘{t%(e*w—mfo’ o 1(5)dB1(s)

@) = (2.8)

ro(s _T10="10 [ —ay s_ s ’
y]‘l(O) +af0 efo bi()dr=~CH e 1 =) [ TIDdBI() 7

¢ Jy ba(5)ds =220 (e 1)+ [ a(8)dBa(s)

n(t) =

X Fr—T" —ans S ’ (2‘9)
yil 0) + % fo[ e b by(r)dr— 2020 (7025~ 1)+ Jy 2@dBa(7) ds
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oh ba(s)ds =220 (=2~ 1)+ [ a(5)dBas)

N(t) = — , (2.10)
! s _ 1207720 ¢ ,—ays_ S °
¥,1(0) + fo hzﬁﬁ(x) el 2T RGO [ B g
ef()r b3(s)ds— 7;30(;;30 (e’“3’—1)+f0t 03(8)dB3(s)
m(t) = — ; (2.11)
3 t s _ 7307130 (,~a3s _ S
y;‘ 0) + {Tz fo e 5 b3(@ydr (e 1)+ Jy 3(mdBs(7) ds
¢ Jy b3(s)ds=00 (=031~ 1)+ [ or3(5)dBs(s)
M(t) = (2.12)

_ r by (T)dr— 0130 (=035 1)t [ o3 (B (7) g
y31(0) + fo hsf;(S)efO ’ o b s

Due to the fact that ¢(), n(z), N(t), m(t) and M(t) are global, we can know that 7, = +oo.

Lemma 3 Let X(¢) € C(Q X [0, +0), R,), where C(Q X [0, +0), R, ) denotes the family of all positive-
valued functions defined on Q X [0, +c0). [35]

(i) If there exist three positive constants ty, B and By such that for all t > t,,

In X(¢) <t —ﬁof X(s)ds + F(t),
0

where F(1)/t = 0 ast — +oo, then

limsup, ., ¢ fot X(s)ds < B/Bo, a.s.
(ii) If there exist three positive constants t,,3 and By such that for all t > t,,

InX(®®) > Bt - Bo f X(S)ds + F(p),
0

where F(t)/t = 0 as t — +oo, then
liminf,,.co ™" [ X(5)ds > B/Po . as.

Lemma 4 Suppose that by > 0, then

(i) If by > 0, then lim,, oo "2 = 0, a.s.

(ii) If by > 0, then lim,_ oo “2¢ = 0, a.s.

Proof (i). Choose sufficiently large T which fulfils that, fort > T,

t R -
(Bi —er < f bi(s)ds < (1_91' + o, ebi=ot > 9 bi=e)T
0

For ¢t > T, one can deduce from (2.8) that

o N bl(s)ds—m’a%(e*w—m iy o1(5)dBi(s)

¢(1)

t [ _T10="10 [ —ary s_ s
yl_l(O)+af0 efo bi()dr=~CH e 1 =) [ TI@dBI() 7

ol D1 (9)ds=EH @ -1 [ (5)dBy ()

IA

a fot ef(; bi()dr-1000 (m1s— )4 [ TIDdBI() g o

e +)i= 100 (et - 1)+ [ oy () B (5)

IA

v

. Fl0—r —av _
ge" Moy o1@dBy (- e =) th eB1-9)s g
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where

(b, - 8)6(131+g)z—”({1%(e-f’1f—1)+f0’ol(s)dBl(s)

a(eBr-o0 — plbi-e)T) Minoss! o1 @By (@)-1G0 -1
2(b; - 8)6(51+8)t—w(67“1’—1)+£o'l(s)dBl(s)
S Flo-r
aeBr=eygMimasd [y 1B (M=AGHE e =1))
2(b

= —_8)6’2&141(0,
a

Jy 1) ()= LN (=11

L) =

iyl [ o1 (DB (D=0 - 1))

Note that L,(7) > 1, consequently,

\%

\%

where

Then (2.10) implies that

Mathematical Biosciences and Engineering

e o L2 270 (025 1)+ [ 2 (1) B (7) ds
hy + ¢(s)
ft 5 e 20720 (=025 1)+ [ 2 (1) B (7)
T

hy + 20D e2es ) ()

ds

ds

ft febron 20 (=025 1)+ [ 2 (1) B (7)
T

(hy + X2y p2es ()

4 T P01 _ans S
af f P30 BB D [ B0 <1 3
Clhz + 2(b1 —&)Jr

a‘f% _ 1 (6(52—36)t _ e(Bz—3€)T) mln{Lz(v)}
ah, + 2(by — €) b, — 3¢ O<v<t

Ls(6)( 6(1_72—38)t _ e(Bg—Bs)T)’

! _ 720720 (pmai _
L) = Lfl(t)efo T2ADdBy )~
af 1 ]
L) = L min{L,()}.
ahy, +2(b; — €) by — 3¢& O=vst
> e th bz(s)dx+72%%(@*02(14)_1)_[; 02(8)dBs(s)

X Ls(1)( 6(1_72—38)[ _ 6(1_72—38)T)

> e le bz(S)dS+%(efaz(lin—l)—f; o2(s)dBa(s) % lL}(t)e(52_38)[
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> Ly(f) x e,

where

L(t) = SLy(t)els s B D) L a(oiaBats)
2
Therefore,

' InN@) < =1 n Ly(2) + 4e. (2.13)

Note that lim,_, e ¢! fot oi(8)dB;(s) = 0(i = 1,2, 3), we then deduce that if b, > 0,
lim, .00t ' InLs(£) = 0, a.s.

This together with (2.13), indicates

lim sup ny,(r) < lim sup 1 InN(r) <0, a.s.

t—+00 t—+0o

Using 1t6’s formula to (2.3) deduces

dln n(t) = (bg(l) + (Fpp — l’zo)e_azt - %n([))dl‘ + O'Q(l)ng(l).
2

In other words,

t 7 —
i = inya@ + [ - e )
’ « (2.14)

—éz—l f tn(s)ds+t_1 f taz(s)de(s).
h2 0 0

Clearly, for arbitrary € > 0, there exists 7 > O such that , forr > T,

~ ! ~
by — 26 < 1 [Inys(0) — 2220 pmear _ 1y 4 f by(s)ds] < by + 2e.
a 0

Then,we derive from (2.14) that,forr > T,

! 1nn(r)s152+2s—£—2f1 f n(s)ds + 1! f o2 (8)dBy(s), (2.15)
2 0 0

! 1nn(z)252—2a—£—2f‘ f n(s)ds + ! f (8)dBs(s). (2.16)
2 0 0

Choose ¢ be sufficiently small such that 0 < 2¢ < b,. Applying (i) and (ii) in Lemma 3 yields that

ho(Br —2 ' l
1202228 i ot f n(s)ds < limsup " f n(s)ds
0 0

f2 t—+00 f—s+00

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4894-4918.
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hz(Bz + 2¢&)
ﬁ )

An application of the arbitrariness of € ,we can obtain that

lim 7' f n(s)ds = hab, a.s. (2.17)
t—+00 0 f2

Which implies that lim,_, ., ! Inn(¢) = 0 a.s. Thanks to (2.7), one can derive that
liminf ' Iny,(r) > lim ' Inn@) =0, a.s. (2.18)
t—+0co —>+00
The proof of (i) is completed.

The proof of (i) is similar to that of (i), so it is omitted here.

Theorem 1 For model (1.3), the following conclusions hold:
(1) If by < 0,b, < 0 and by < 0, then y,,y, and y; become extinct, i.e. lim,_,, yi(f) = 0, a.s.,
i=1,2,3.
(II) If by < 0,b, > 0 and b; < 0, then y, and y; become extinct and y, is persistent in the mean , i.e.
lim, 00 7! fot yo(8)ds = hyby/ fo, a.s.
(I11) If by < 0,b, < 0 and bz > 0, then y, and y, become extinct and ys is persistent in the mean ,
ie. lim, ot} fot y3(s)ds = h3bs/ f3, a.s.
(IV) If by > 0,b, < 0 and b < O, then y, and y; become extinct and y, is persistent in the mean, i.e.
lim, 00 t7! fotyl(s)ds =by/a, a.s.
(V)If by < 0,by, > 0 and by > 0, then y, becomes extinct and y, and y; are persistent in the mean,
e limy oo 7 [ ¥2(5)ds = hoba/ fo, limyseo 7 ) y3(5)ds = hsbs/ f5, a.s.
(VI) If by > O bz > 0 and b; < 0, then y; becomes extinct, and
(i) If b < , then y, becomes extinct and y, is persistent in the mean, i.e. lim,_, oo t " fot ya(s)ds =
hzbz/ fa as.
(ii) Ifb1 > 2 then lim,_, 400 ! fotyl(s)ds =bi/a— cyby/afs,
limy e 7! f[ hzyfiio = bz/]fz, a.s.
(VII) If by > 0 b, < 0 and bsy > 0, then y, becomes extinct, and
(i) If b < then y1 becomes extinct and ys is persistent in the mean, i.e. lim,_, o ™! fot y3(s)ds =
hsbs/ f3, a.s.
(ii) Ifb’ > 3 then lim,_ o0 17! fotyl(s)ds =bi/a - c3b3/afs,
lim, e 7! L h;jﬁzi)ds = bg/fg_, a.s.
(VIII) If by > 0,b, > 0 and bs > O, then,
(i) If by < %1_92 + %1_93, then y; becomes extinct and y, and y; are persistent in the mean , i.e.

iMoo £ [ y2(8)ds = haba/ fo, iMoo £ [ 3(8)ds = h3bs/ f3, a.s.
(ii) If by > c—zl_? + 0—3[73, then lim,_, o 1! fotyl(s)ds = bi/a - cb/af, — c3bs/afs,
1M, e 71 [ 20 ds - ba/ fo. limy e t7! [ 720 ds = b3/ fi, a.s.

2+y1($) h3+y1(s)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4894-4918.
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Proof. Applying Itd’s formula to model (1.3) gives

oy (1) c3y3(1)

dliny,(t) = (bi(0) + (F1o — rio)e ™" —ay (1) — Ity a4y
+01(D)dB, (1),

diny (1) = (by(t) + (Fo0 — rap)e * — }Jiy—;(ltzt))df + 02 (1)d B (1),

dlny;(t) = (bs(t) + (F30 — r30)e” ™ — }Ziy—;(ll‘zt))dt + 03(0)dB;(1).

As a consequence,
' 10 — "o '
Iny(#) — Iny(0) =f bi(s)ds — ——— (" - 1) - af yi(s)ds
0 a, 0
! !
y2(s) f y3(s)
—-c ——ds—c¢ ——ds (2.19)
zfo by O Jy ()
!
+ f o1(s)dB;(s),
0

Iny,(7) — Iny,(0) —f by(s)ds — ﬂ(e—dzf -1

2() !
- fH f h2+y1(s)ds+f(; o> (8)dB(s),

(2.20)

Inys(t) — Iny3(0) = f b(s)ds — 00 (st _ 1)
@ 2.21)

" () '
—ffmd +f0'3(S)dB3(S).

First, let us prove (1), we derive from (2.19) that, for sufficiently large t,

-1 21D <bhb +e+t fal(s)dB (s)— ”0( o _ ), (2.22)
0

»(©0)

Note that lim,_, o ! fot o1(8)dB;(s) = 0 and by + & < 0, thus lim,_, ., y;(f) = 0, a.s. In the same way,
b, < 0 means that lim,_,.., y2(¢) = 0, a.s., b3 < 0 means that lim,_,,, y3(¢) = 0, a.s.

(IT). Since b, < 0, b3 < 0, we then deduce from (I) that lim,_,,c y1(£) = 0,1im,, .« y3(t) = 0, a.s.
Then for sufficiently large t,

Iny,(¢) < (b, + 2&)t — ——— f yo(s)ds + f 0(8)dB,(s), (2.23)

f2

22— &

Iny,(¢) > (b, — 2&)t — 7 yo(s)ds + f 05(8)dB,(5). (2.24)
0 0

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4894-4918.
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Making use of Lemma 3 to (2.23) and (2.24) respectively, we obtain

t
lim sup ! f ya(s)ds
0

t—+00

(ha+€) (1_72 +2¢)
2 ’

IA

[ -
liminf 7' | yy(s)ds > Le=odba2e)
t—+00 0 H

Therefore, from the arbitrariness of &, we can derive that lim,_, o £ fot y2(8)ds = hyby/ f>, as.
The proof of (III) and (IV) is similar to that of (II), thus is omitted here.
Now let us prove (V). According to b; < 0, we have lim,_,,, y; () = 0. The proof is similar to (II), so
here is omitted.
(VI). First of all, b3 < 0 implies that lim,_, .o, y3(f) = 0, a.s.
(i) Compute that (2.19) x f, — (2.20) X ¢,, then we get

O NI S S f L f
Lt In ) =cot  In y2(0)+t b | bi(s)ds —t "¢, | by(s)ds

Fio — 10 ot _ =720, _gv
-— DH+——E " -1y
o Vo + agt ( )

—afzt_ljo\)q(s)dS—sz?,t_lfO ]13)_)’_3—(;1)(”

+ for ! f o1(s)dB(s) — cat ™! f (5)dBs(5)
0 0 (2.25)

<o 2D 41 ftbl(s)ds—t_lczftbz(s)ds
2(0) 0 0

7 r r
Z DO TR0 gy fy g O ey,
aqt ant

—afzt_lfyl(s)ds+f2t_1f0'1(s)dB1(s)
0 0

— ot f 02(5)dB ().

0
In view of Lemma 4, for any € > 0, there exists a 7 > 0 such that for > T, we can see that

_11 y2( )
yz(O) a
£t Iny(0) < /4,

Foo — o (e — D)oy —
ant

prt [ ossis - et [ ouana < o4
0 0

e/4,
Fio —

=0 ot _ yf, < g/,
apt

! !
t_lfgf b](S)dS - t_1C2 f by(s)ds < fz[)] - C2[)2 + f28 + crE.
0 0

As a consequence, fort > T,

' HIny () < (o + ey + De+ foiby — crby. (2.26)
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cby-bif

Let & be sufficiently small such that 0 < & < ol

Consequently, lim,_,,., y;(#) = 0. The proof of

lim, 00 £~ fo ya(s)ds = sz is similar to that of (II) and here is omitted.

(i1) It follows from (2.20) that

! = '
' Inyy(t) — ' Iny,(0) = 1! f ba(s)ds — %( e 1)~ for! f 0 yj(;)(s)
2 2tV
. 0 (2.27)
+1! f 0 2(5)dBs(s).
0
Making use of Lemma 4 and lim,_, o, 1! fot 05(5)dB,(s) = 0, we can obtain

, -

- (s) by
lim ¢ lf yz—ds = =, 228
t—+00 0 h2 + yl(s) f2 ( )

Then, for any & > 0, there is T > O such that forz > T,

by Flo=1o, _an . ft y2(s) -1 -1 ft 3(s)
———g < —(e™ 1) — ¢t ————ds+1t Iny(0) —cst —— = ds
P ’ o ha+yi(s) ! ’ o h3+yi(s)

(2.29)
Substitute (2.29) into (2.19), and we can get that, forr > T,

_ Z) ! !
'ny () > by - % —2e—at™! f yi(s)ds + 17! f o1(s)dBi(s),
0 0

2

_ l_? ! !
'ny () < b, - % +2e—at™! f yi(s)ds + 1! f o1(s)dB(s).
0 0

2

Let & be sufficiently small such that 0 < & < (b; — ¢2b>/ f>)/2. Thanks to Lemma 3, we have

b b, 2 ! !
_en < liminfs! f yi(s)ds < limsupt f yi(s)ds
a t—+00 0

—>+00

Z)l CQEZ 28

a af

We then derive from the arbitrariness of & that lim,_, o, ¢! fot yi(8)ds = by Ja — c:by/(af>).
The proof of (VII) is similar to that of (VI), so it is omitted here.
Now let us proof (VIII).

(i) Compute that (2.19) X f>f; — (2.20) X fz3c2 — (2.21) X frc3,

L2 o g 20 gty 250

y1(0) y2(0) y3(0)
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+hft! f bi(s)ds —t ' crfs f by(s)ds

e f ba(s)ds — fofs MO 110 (et _ 1y

7 r
+eo fs —2°a t D — 1) + C3f2—a t e ® 1)
2 3

—afzﬁf_lfyl(s)dS‘Ffzfﬂ_lfUl(S)dBl(S)
0 0

—sz%f_lfUz(S)de(S)—C.?fzf_lf0'3(S)dB3(S)-
0 0

In view of Lemma 4, for any € > 0, there exists a 7 > 0 such that for > T, we can see that

y2(0) i y3(1)

et 'n + st — <¢g/4,
heat ey TRAT N T o)
Lfst ' Iny(0) < £/4,
DO ity T e gy o TOTI0 ety ¢ g,
apt zl agt

Lt f o 1(5)dBy(s) = cafst™! f 02(5)dBa(s) = c3 fot ™! f o3(s)dBs(s) < /4,
0 0

0

61 f bi(s)ds —t fzcn f by(s)ds —t ' csfy f by(s)ds
0 0 0
< ffsbi — cafsby — c35b3 + (fofs + cofs + 3 o)e.

As a consequence, fort > T,

' ALy ) < (1+ fifs + aofs + 3 f)e + fafsbi — cafsby — ¢3 fobs. (2.30)

c3fobs+ca f3br—fo b
l+f2f3 +C2f3+C3f2

Let £ be sufficiently small such that 0 < € <
the proof of (II), we derive that

, we have lim,_,,, y;(¢¥) = 0. According to

! hyb
lim ¢! f Yo(s)ds = —2=.

t—+00 f2

Similar to the proof of (II), we can obtain

hsb
lim ¢! f y3(s)ds = ==
t—+00 0 fé

(ii) It follows from (2.20), (2.21), Lemma 4 and lim,_, o ¢~ fot oi(s)dBi(s) =0,i =1,2,3 that

! T ! -
lim r-lf R O ST l_lf )b
1>+ 0 ha+yi(s) fo e o hs+yi(s) 5
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Then, for any € > 0, there is T > 0 such that forz > T,

b b 10 — !
_Cby G303 e 1o rlO(e_m[_ 1)—Czl_lf y2(s) ds
0

f VE B ait hy + y1(s)
!
_ y3(S) 1
— 3t 1f —2__ds+t"1ny(0) (2.31)
’ o h3+yi(s) V!
ngz C3E3
- h E
Substitute (2.31) into (2.19), we can get that, forr > T,
_ B B t t
iy () 2 by - 22 8% _ge gt f y(Ods + 1! f o1(5)dB (s),
e} E 0 0
B B B t t
Finy () < by — 22 82 L oear! f yi(Ods + 1! f o1(5)dBi (s).
f2 f3 0 0

Let & be sufficiently small such that 0 < & < (b; — ¢2b>/ f> — ¢3b3/ f3)/2. Thanks to Lemma 3, we have

by by csby 2 ' f
2A_82%2 5% 2 o liminfr! f yi(s)ds < limsup ! f yi(s)ds
af, afs a t—+00 0 400 0
< Bl C252 C3B3 2e
- afp afs a

We then derive from the arbitrariness of & that lim,_, e ¢! fot yi(8)ds = bi/a — c:by/(afs) — c3bs/(afs).
The proof of Theorem 1 is completed.
3. Numerical simulations

Now we use the Milstein method offered in [36] to verify the theoretical results numerically (here
we only provide the functions of ¢7 since the functions of @; can be proffered analogously).

In Figure 1—4, choose rip = 05, ryo = 05, r3p = 03, 710 = 03, 720 = 025, 7'3() = 02, ryy =rnr; =
r3; = 09, a = 025, Cy = 036, Cy = 04, f2 = 05, f3 = 047, ]’l2 = I’l3 = l, ) = 031, p = 035,
a3 =042,y =2,k =02,k =026 k3 =0.21,1, =0.8,, =0.7,13 = 0.7, h = 0.9, g = 0.5. The only
difference between conditions of Figure1—4 is that the values of &2, §§ and f% are different.

(D) In Figure 1, we choose & = 0.55, & = 0.9 and &7 = 0.5. Then b, = —0.006 < 0, b, = —0.2357 <
0, b3 = —0.0726 < 0. According to (I) in Theorem 1, y;, y, and y;3 die out.

Figure 1 confirms these.

(1) In Figure 2, we choose & = 0.55, & = 0.16 and & = 0.5. Then b; = —-0.006 < 0, b, =

0.2929 > 0, b3 = —0.0726 < 0. On the basis of (II) in Theorem 1, y; and y; die out and

! hyb
lim ¢! f yo(s)ds = % = 0.5857.
0

t—+00 2
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See Figure 2.

(1) In Figure 3, we choose & = 0.15, & = 0.9 and & = 0.5. Then b; = 0.2915 > 0, b, =
—-0.2357 < 0, b3 = —0.0726 < 0. On the basis of (IV) in Theorem 1, y, and y; die out and

t
b
lim 7! f yi(s)ds = = = 1.2661.
t—+o0 0 a

See Figure 3.

(IV) In Figure 4, we choose & = 0.55, & = 0.16 and & = 0.09. Then b; = -0.006 < 0,
by = by =0.2929 > 0, b3 = 0.1714 > 0. On the basis of (V) in Theorem 1, y, dies out and

! haob
lim ¢! f ya(s)ds = % = 0.5857,
0

—+00 2

. -1 ' h3B3
lim ¢ y3(s)ds = — = 0.3647.
0 f3

t—+00

Figure 4 confirms these.

1

v, 0| |
Y,
Y5 |

0.9

0.8 [

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300 350 400 450 500

0

Figure 1. Solutions of system (1.4) for rjp = 0.5, = 0.5,r30 = 0.3,79 = 0.3,7
0.25,17‘30 = 02, rygy =ry =rg = 0.9,(1 = 0.25,C2 = 036, C3 = O4,f2 = 05,‘](‘3 = 047,]12
hs = 1,a; = 031,a; = 035,53 =042,y =2,k; =02,k; = 0.26,k; = 0.21,1; = 0.8,1,
0.7,1=0.7,h =0.9,9 = 0.5, and ff = O.55,§§ =0.9, §§ =0.5.
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y,®
¥,
—_—,0)

251

—tfly,e)ds |

0 100 200 300 400 500 600 700 800 900 1000

Figure 2. Solutions of system (1.4) for rig = 0.5, = 0.5,r3 = 0.3,7 = 0.3,7 =
0.25,7’30 = 02, rygy =nrny =rg = 0.9,61 = 0.25,6’2 = 036, C3 = 04,f2 = 05,f3 = 047,]’12
hy = 1,a; =031, =035, a3 =042,y = 2,k; =0.2,k, = 0.26,k; = 0.21,1; = 0.8,1,
0.7,15=0.7,h=0.9,4 = 0.5, and «;—“f = O.55,§-‘§ = 0.16, §§ =0.5.

I
y,(®
¥,
— ()

— t'lfz)yl(s)ds

[y

800 900 1000

0

T
", | Hu

0 100 200 30

o | l' I" i

400 5

Figure 3. Solutions of system (1.4) for rjp = 0.5, = 0.5,r30 = 0.3,79 = 0.3,7y
0.25,730 = 02,1y =121 =131 =0.9,a =0.25,¢;, = 0.36,c3 =04, 1, =0.5, 5 =047, h,
hy = 1,a; =031, =035, a3 =042,y = 2,k; =02,k = 0.26,k; = 0.21,1; = 0.8,1,
0.7,15=0.7,h = 0.9, = 0.5, and ff = 0.15,§-‘§ =0.9, §§ =0.5.
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y,®
v,
A0
ity (s)ds | |
—— 1y, (e)ds

0 100 200 300 400 500 600 700 800 900 1000

Figure 4. Solutions of system (1.4) for rjp = 0.5, = 0.5,r30 = 0.3,79 = 0.3,7 =
0.25,730 = 02, rygy =nrny =rg = 0.9,(1 = 0.25,6’2 = 036, C3 = 04,f2 = 05,f3 = O47,h2
hy = 1,a; =031, =035, a3 =042,y = 2,k; =0.2,k, = 0.26,k; = 0.21,1; = 0.8,1,
0.7,15=0.7,h=0.9,4 = 0.5, and ff = O.55,§§ = 0.16, §§ = 0.09.

In Figures 5 and 6, we choose rjp = 0.6, r,o = 0.8, r3p = 0.3, 7o = 0.3, 79 = 0.25, 750 = 0.2,
rygy =nry =r3 = 09, a = 025, Cy = 036, C3 = 04, f2 = 05, f3 = 047, h2 = h3 = 1, ) = 081,
a, =065 a3 =042,y =2, k; =02,k =023 ks =045,1, =04,1, =08, =0.7, h = 0.9,
g = 0.5. The only difference between conditions of Figures 5 and 6 is that the values of &2, fg and f%
are different.

(V) In Figure 5, we choose & = 0.5, £ = 0.06 and &7 = 0.5. Then b; = 0.3207 > 0, b, = 0.7050 >

0, by = —0.1583 < 0 and b; < c2b,/f>, = 0.5076 . On the basis of (VI) in Theorem 1, y; and y; die out
and

t—+00

b,
lim t_lfyz(s)ds— 7 = 1.4101.
2

See Figure 5.

(VD) In Figure 6, we choose &7 = 0.5, & = 0.86 and &7 = 0.5. Then b, = 0.3207 > 0, b, = 0.3974 >
0, b3 = —0.1583 < 0 and b; > c,b,/f>» = 0.2861. On the basis of (VI) in Theorem 1, y; dies out and

bi cob
lim ¢! f n(s)ds = 2 = 222 = 0.1383,
t—+00 a

ajs

t
- (5) by
lim 1! f 22y = 2 2 0.7947.
f=+oo 0 M2+ yi(s) fz

See Figure 6.
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251

y,®
¥,
AU

— t'lj:)yz(s)ds

0 100 200 300 400 500 600 700 800 900 1000

Figure 5. Solutions of system (1.4) for rjp = 0.6, = 0.8,1r30 = 0.3,79 = 0.3,7 =

0.25,730 = 02, rygy =nrny =rg = 0.9,(1 = 025, Cyr = 036, C3 = O4,f2 = 05,]% = 047,]’12
hy = 1,a; = 081,a; = 0.65,a3 =042,y =2,k; =0.2,k, = 0.23,k; = 045,/ = 04,1,

0.8,5=0.7,h = 09,4 =0.5,and & = 0.5,2 = 0.06,£2 = 0.5.

9

y,®
8 ¥,

A
r i t

— joyl(s)ds

6 Ly, (S, +y  ())ds | -
5

4

w

N

1

1'|]lll ! u |

0

0 100 200 300 400 500 600 700 800

. . .: 1 l . I .J’ l I‘ | - . \'
bbb o, s 230w 0, Gk b A LR L MRB i L "aW
900 1000

Figure 6. Solutions of system (1.4) for rjp = 0.6, = 0.8,1r30 = 0.3,79 = 0.3,7 =

0.25,730 = 02, rygy =nrny =rg = 0.9,(1 = 025, Cyr = 036, C3 = O4,f2 = 05,]% = 047,]’12
hy = 1,a; = 081,a; = 0.65,a3 =042,y =2,k; =0.2,k, = 0.23,k; = 045,/ = 04,1,

0.8,5=0.7,h = 09,4 =0.5,and & = 0.5,2 = 0.86,£2 = 0.5.

In Figures 7 and 8, we choose r;gp = 0.6, r,p = 0.6, r3p = 0.4, 7o = 0.3, 79 = 0.15, 730 = 0.3,
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ry =ry =r3 = 01, a = 025, Cy) = 036, C3 = 04, f2 = 075, fg, = 077, h2 = h3 = 1, ) = 061,
a, =085 a3 =089,y =2,k =032, kb =005k =025, =09,, =0.7,13 =0.8, h = 0.9,
g = 0.6. The only difference between conditions of Figures 7 and 8 is that the values of £}, & and &
are different.

(VID) In Figure 7, we choose & = 0.5, & = 0.006 and & = 0.009. Then b; = 0.3832 > 0,
Ez = 0.5959 > 0, 53 = 0.3871 > 0 and El < ngz/fz + 031_93/f3 0.4871. On the basis of (VHI) in
Theorem 1, y; dies out and

. -1 ! h2[_92
lim ¢ vo(s)ds = T = 0.7945,
0

t—+00 )
! hsb

lim ¢ f y3(s)ds = —— = 0.5027.

t—+00 0 fz

See Figure 7.

y,(®
Y,(1)
A

— [y, (s)ds

0.9 '

0.8 “

0.7 L
——ttfly (s)ds

ks

0.6

0.5

0.4

0.3

0.2

0.1

o L . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000

Figure 7. Solutions of system (1.4) for rjp = 0.6, = 0.6,r30 = 0.4,79 = 0.3,7 =
0.15,7’30 = 0.3,1"11 =ry =r= 0.1,61 = 0.25,6‘2 = 036, C3 = 0.4,f2 = 075,‘]‘}, = 077,]12 =
hs; = 1,a; =0.61,a;, =0.85,a3 = 0.89,y = 2,k; =0.32,k; = 0.05,k3 = 0.25,1; = 09,1, =
0.7,13=0.8,h=0.9,g = 0.6, and ff = 0.5,5% = 0.0006, §§ = 0.009.

(VIII) In Figure 8, we choose & = 0.0002, & = 0.006 and & = 0.009. Then b; = 0.5881 > 0,
Ez = 0.5959 > 0, 53 = 0.3871 > 0 and Bl > ngz/fz + C3Bg/f3 = 0.4871. On the basis of (VIH) in
Theorem 1, we have

! b b b
lim 7! f yi(s)ds = = — 222 83 _ 0 4040,
t—+00 0 a af2 af3

, _
lim 7! f 0 P2 9045
1—+00 o ha +yi(s) h
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t—+00

, -
L (5) bs

lim ! f Y gg= 2 = 05027,
o h3+y1(s) J3

See Figure 8.

G

¥,

VAU

iy, (s)ds

e Ly, (S)/ (0 5y, (5))dS |
1y, (S)/(h,+y, (s))ds

Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000

Figure 8. Solutions of system (1.4) for rjp = 0.6, = 0.6,r30 = 0.4,79 = 0.3,7 =
0.15,17'30 = 0.3,1’11 =ry) =r= 0.1,61 = 0.25,6‘2 = 036, C3 = 0.4,f2 = 075,]% = 077,]12 =
hs; = 1,a; =0.61,a;, =0.85,a3 = 0.89,y = 2,k; =0.32,k; = 0.05,k3 = 0.25,1; = 09,1, =
0.7,13 =0.8,h =0.9,9 = 0.6, and ff = 0.0002, f% = 0.006, .f% = 0.009.

In Figures 9 and 10, we choose riyp = 0.2, ryp = 0.1, r3p = 0.2, 79 = 0.1, 79 = 0.05, 73 = 0.13,
ryg = 2, = 1, r3; = 26, a = 05, Cy = 02, C3 = 02, f2 = 095, f3 = 097, h2 = h3 = 1, ) = 081,
ar = 0.86, a3 = 0.8, ky =0.11, k, =0.12 k3 = 0.125,1;, = 06,1, = 0.7, 13 = 0.7, h = 0.9, g = 0.12,
£ =0.02, & = 0.006, & = 0.009. The only difference between conditions of Figures 9 and 10 is that
the values of y are different.

(IX) In Figure 9, we choose y = 4. Then b; = 0.1816 > 0, b, = 0.0925 > 0, b; = 0.1817 > 0 and
by > c:by/ f> + ¢3b3/ f3 = 0.0569. On the basis of (VIII) in Theorem 1, we have

! b b b
lim 7! f yi(s)ds = = — 272 8% _ 2493,
t—+00 0 a afz af3

t i
lim 7! f 0 P2 60974
=400 o ha +yi(s) h

. -~
lim r—lf ) 4o P 873,
=0 Jo hs + yi(s) f
See Figure 9.

In Figure 10, choose v = 0.23. Then b, = —0.0187 < 0, b, = —0.0011 < 0 and b3 = —0.0720 < 0.
On the basis of (I) in Theorem 1, y;, y, and y3 die out.
See Figure 10.
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y,(®)

Y, (t)

y5(t)

t1fly,(s)ds
e [y, (S)/N Y, (5)dS

Ly, (s)h ty, (s)ds

05

0.45

0.4y

035}

0.3
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Figure 9. Solutions of system (1.4) for rjp = 0.2, = 0.1,r30 = 0.2,79 = 0.1,7 =
0.05,730 = 0.13,}"11 = 2,}’21 = 1,7’31 = 2.6,(1 = 0.5,C2 = 0.2,03 = 0.2,f2 = 095,f3
097,hy = hs = 1,a; = 0.81,a, = 0.86,a3 = 0.8,k; = 0.11,k, = 0.12,k3 = 0.125,/,
0.6,,=0.7,13=0.7,h =0.9,9g = 0.12, ff = 0.02, f% = 0.006, §§ =0.009 and y = 4.

0.4

Yy,
Y, | 7
y4(t)

035}

03¢

0.25 |

0.2

0.15

0.1

0.05

0
0 100 200 300 400 500 600 700 800 900 1000

Figure 10. Solutions of system (1.4) for rjp = 0.2, = 0.1,r3 = 0.2,79 = 0.1,7 =
0.05,7’30 = 0.13,1"]1 = 2,1"21 = 1,1’31 = 2.6,61 = 0.5,C2 = O.2,C3 = 0.2,f2 = 095,f3
0.97,]’12 = h3 = 1,a1 = 0.81,0,’2 = 0.86,&’3 = 0.8,](1 = 011,](2 = 012,k3 = 0125,11
0.6, =0.7,13=0.7,h = 0.9, = 04,8 = 0.02,£ = 0.006,£2 = 0.009 and y = 0.23.

By comparing Figure 9 with Figure 10, one can observe that with the decrease of toxicant impulsive
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period vy, species tends to die out.
4. Conclusions

In this paper, we take advantage of a mean-reverting Ornstein-Uhlenbeck process to portray the
random perturbations in the environment and assume that the toxicants are released in regular pulses.
Based on the classical deterministic predator-prey model with modified Leslie-Gower Holling-type
IT schemes, we present a three-species predator prey stochastic model with modified Leslie-Gower
Holling-type II schemes, and use more appropriate methods to describe random perturbations in the
environment. We obtain sharp sufficient conditions for persistence in the mean and extinction for each
species of model (1.4).

Theorem 1 has some interesting biological interpretations. By Theorem 1, we can see that each
species is either extinct or persistent in the mean, relying on the sign of b;(i = 1,2,3), b, f>» — c2b»,
b, 3~ 03133, and f2f31_71 - sz3[52 - C3f253-

We note that the intensity of the perturbation £ and the speed of reversion «; are two key parameters
in the Ornstein-Uhlenbeck process. Obviously,

d_l;i 0. d(byfr — c2by) >0, dbifofs — c2fsby — c32b3) >0,
dai dcn dal
d(b, f3 — c3b3) S d(b fr — c2by) - d(by fof3 — c2fsby — 3 f2D3) <0

0, 0,

’

da; da, da,
d(b, f5 — c3b3) <o, d(by fofs — c2fsby — c3f2b3) <o, d_Ez <o,
das das dfl.z
d(Blfz - 0252) <0, d(51f3 - 0353) <0, d(51f2f3 - szﬂ_?z - C3f2133) <0,
d&? dé; dé;
db f> —26252) >0, db fofs — sz325_72 - c3fob3) >0,
d§2 dfz
d(b: f3 —anbz) >0, dbfofs — sz32bz — c3f2b3) S o.
d§3 d§3

Therefore, with the increase of ; (respectively, &), species y; tends to be persistent (respectively,
extinct), i = 1,2,3. Furthermore, with the increase of a, or a3 (respectively, f% or f%), the prey
population y; tends to die out (respectively, be persistent) provided b; > 0,i = 1,2, 3.

Some interesting topics remain to be solved. For example, it would be interesting to dissect other
random noises such as the telephone noise (see [37]), the Lévy noise (see [38]) or reaction diffusion
(see [39]) etc. We leave these questions for future research.
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