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Abstract: Aims: The main purpose of this study is to explore whether the new variant SARS-CoV-2
VOC 202012/01 in the UK is equipped with some leading or underlying features. Methods: We apply
a systematic and persuasive approach to reveal the underlying dynamical features of this variant. The
approach utilises extracting the main features, which consist of 3-valued features, via the time-series
data for new cases, 28-day deaths and 60-day deaths. The experimental samples chosen rely on the
the rolling sets of regional data vectors whose dimensions are all 7 days. These data sets are projected
onto the 3-valued features to yield the vector rejections. Then the minimal features are thus extracted
by the minimal total norms. Then we map out the traces of the similarities between all the extracted
time-varying features. Results: Our findings, no matter in preliminary or follow-up study, clearly show
there is no consistent and substantial shift in the 3-valued features even after the occurrence of this
new variant - this might validate the efficacy of the current vaccines against this variant. Conclusions:
Since the underlying features of the mutant is unchanged, and the leading feature of B1.1.7 is not yet
present, it might help us make the lockdown decision “choose the lesser of the two evils: pandemic
and economic woes”, and validate vaccine developments or adopt preventive measures.

Keywords: mutant variants; UK COVID-19; distance tensor product; 3-valued features; feature
extraction

1. Introduction

In 14th December 2020, the UK has found a new variant of SARS-CoV-2 or SARS-CoV-2 VOC
202012/01 (Variant of Concern, year 2020, month 12, variant 01) [1-3] or B.1.1.7. There are some
researches on the emergence of this SARS-CoV-2 variant [4,5]. The variant [6] has caused a huge
concern across the globe [7] and has spread across other continents. Based on known epidemiologic,
scientific modellings, and clinical findings, it suggests this variant has indeed increased the overall
transmissibility.
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On the other hand, it also indicates that there is no change in severity [8] - measured by length
of hospitalization and 28-day case fatality - or occurrence of reinfection in the UK [9], despite some
scientists’ dire warnings [10]. Even though the evaluation of variant is still going on [11], we need
to find a systematic method to delve into the fundamental features of this mutant variant. This might
concern whether 202012/01 diminishes the potency of the developed vaccines [12].

To trace the fundamental features of this new variant, we sample 9 regional daily COVID-19 data
in the UK from 27th March, 2020 to 8th, January, 2021 [13] as the preliminary study and sample data
from 28th July 2020 to 11th May 2021 as the follow-up study. Then we create a set of batches of data
vectors whose dimensions are decided by the days chosen. In our research, we choose 7 days as the
datum dimension. Furthermore, to find the fundamental features of B1.1.7, we introduce the 3-valued
featured vectors whose elements consist of only —1, 0 and 1. These features are easy to apply and
would serve as our fundamental database for further feature recognition. We then utilise the concept of
vector rejection to measure the similarities between the set of data vectors and the features based on the
total norms for the vector rejections. Afterwards, we obtain distance tensor products which record such
similarities. By choosing the minimal total norms regarding the features, we retrieve the minimal total
norms and their corresponding features. Since these extracted features vary, we trace their paths via
cosine values for the dynamical features. This path would reveal the fundamental trend and dynamical
structures of the features for B1.1.7 in the UK. The preliminary focuses on comparing the dynamical
structures of COVID-19 with respect to data with London (9 regions), where it is supposed to be the
onset of B1.1.7., and without London (8 regions).

Our results show there is no obvious shift for the main features before and after the variant - this
confirms there is no fundamental change in the behaviour of the variant. These findings indicate B1.1.7
contain no leading features, and, in principle, shall bolster the efficacy of the vaccines.

2. Methodology

We devise rejection distance which derives from the concept of vector rejections and three-valued
featured database. Both shall serve as our fundamental methods in tracking the features of B1.1.7.

2.1. Distance tensor product

@Bz =(@by?
(i4]l-Iblh=—(a-b) or

. . . . . . e .
Claim 1. (rejection distance) The norm of ¢, a vector rejection of d on b, is ||¢]| = i

specifically the rejection distance between d and b

a1 - @- By
RejDist(a,b) := - )
1ol

Proof. By the property that ¢ = @ — ||d]| - cosf - = = d — 2 - b and the operation of the inner product

-, the result follows immediately. O

Rejection distance acts as a role for measuring the distances between features, including empirical
features or theoretical features (3-valued features, for example). This measurement will serve our
optimal feature findings.
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Definition 2.1. (Distance Tensor Product, DTP) For any ordered set of vectors, whose dimension are
the same, V. = (Vi,V5, -+ , V) and W = (Wi, Wa, - -+ ,W,), we define their distance tensor product by a
m-by-n matrix DT P(V, W) whose (i, j) element is Re jDist(V;, W;).

DTP shows the norms of the vector rejections, which reveal the distances between a set of given
datum vectors and the featured vectors or the distance between feature vectors.

2.2. 3-valued features

Unlike Principal Component Analysis, or PCA [14], which heavily relies on the statistical property,
the 3-valued features are applied directly to trace the trend of mutant variants of COVID-19. 3-valued
features consist of a set of value {—1,0, 1}, which is also used in wavelet analysis [15]. In total, there
are 3" — 1 features (or vectors) - the 0 vector is excluded from the whole potential features, where n
denotes the dimension of the datum vector.

3. Implementation procedures

3.1. Preliminary settings

In this section, we specify the implementation processes mentioned in section 3. From the database,
we select three metrics: newCasesBySpecimenDate (M1, or 1), newDeaths28DaysByDeathDate (M2,
or 2), and newDeaths60DaysByDeathDate (M3, or 3) - there indexes 1,2,3 will be used later on; and
Area Type "Region” (there are 9 regions: Yorkshire and The Humber (R1), East of England (R2),
North East(R3), North West(R4), South East(R5), East Midlands(R6), South West(R7), London(R8),
West Midlands(R9)). The data are sorted by date, from 27th, March, 2020 to 8th, January, 2021. The
data are stored in three matrices, according to M1, M2, and M3. The we calculate their first difference
(change) of the new cases, 28-day deaths, and 60-day deaths, as shown in the following (the length for
each vector is 287, since we sample 288 points of time). The value in interval i is the original value
in i + 1 minus the one in i. When compared with the original data, these values are the second-order
difference.

3.2. Data description

The data come from two main parts. One is for the preliminary study for the onset of the variant
spread in the UK. The periods cover from 27th, March, 2020 to 8th, January, 2021. It lists the daily
new cases, 28-day deaths and 60-day deaths of COVID-19 for 9 regions in the UK. Specifically, the
metrics (or indicators) from the database are M1, M2, and M3. M2 is a variable for the new increase
of people who had a positive test result for COVID-19 and died within 28 days of the first positive test,
up to the date of death. M3 is a variable for the new increase of people who had a positive test result
for COVID-19 and died within 60 days of the first positive test, up to the date of death.

This imported data are further separated into two sets of data - the preliminary study - one covers
only 8 regions by excluding London and the other covers 9 regions which contain London. The second
part is a follow-up study covering a period from 28th, July, 2020 to 11th, May, 2021 [16]. The data are
not separated and are treated as a whole, i.e., the 9 regions.
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3.3. Procedures

Then we set every 7 days as the dimension of one datum vector and 9 regions as the number of data
vectors. In other words, there are 287/7 = 41 ordered batches of data sets - each set contains 9 points
(or datum sub-vectors, or simply datum vectors), and each point is a 7-dimensional datum vector. We
form these data with respect to cases, 28-day deaths and 60-day deaths for the 287 intervals. There
are several steps in the implementation. These procedures are designed for preliminary study, but the
follow-up study would also follow suit.

1.
2.

Download the data related to daily COVID-19 cases and deaths.

Sort the data by the 288 dates, 9 regions and 3 metrics, according to our analytical purposes. The
results are presented in Table 1. Let us still call them raw data, though they are actually processed
to fit our purpose.

. Compute the 287 first-order difference of the 288 time-series data, according to the 9 regions and

3 metrics. This will reveal the accelerated spreading trend of B.1.1.7. Let us call them difference
data. Then the data are further extracted by regions and we name them difference datum vectors.
The results are presented in Appendix B: difference datum vectors.

. Split each 287 difference datum vector into 41 sub-vectors - each of which contains 7 elements

(or daily data). Let us use {I?f.‘j} to denote the j’th 7-day sub-vector for region i, where k € {1, 2, 3}
(k =1 to denote “cases”, k = 2 to denote “28-day deaths”, and k = 3 to denote “60-day deaths”),
1 <i<9and1 < j<4l1. For example 13}1 = (54,21,57,34,-22,-55,51).

. Specify the 3-valued features (7-element vectors), which is described in section 2.2, as our poten-

tial feature database. For 7-day period, there are 3’ — 1 = 2186 three-valued features. The one
being excluded is the zero vector. The resulting feature database goes as follows ( f? stands for i’th
feature):

fi=(-1,1,1,-1,-1,-1,-1); o = (0, 1,—-1,-1,—1, -1, - 1);
f=,-1,-1,-1,-1,-1,-1); fs = (=1,0,-1,-1,=1,=1,=1); ---; fugz = (1,0,1,1,1,1,1);
Brsa = (=1L1,1,1,1,1,1); frygs = (0, 1,1,1,1,1,1); fouge = (1,1,1,1,1,1, 1). Let us use FDB to
denote the 3-valued feature database, i.e., FDB = { f_f , ﬁ, e f;l%}.

. Calculate the distance tensor product (DTP) which is defined in Definition 2.1, where each ele-

ment is defined by

DTP};, := RejDist(R};, fy),
where 1 < i < 9;1 < j <41;1 < h < 2186, and k € {1,2,3}. The generated DTP could
be regarded as three (regarding k) three-dimensional matrices (regarding i, j, 4). The results are
presented in Table 2.

9
Compute DTP’J‘.,h = Z DTPﬁj’h, forall 1 < j<4land 1 < h < 2186. The results are shown in
i=1

Table 3.

Compute max’}‘. = max{DTP’J‘.’h 1<h< 2186},min’; = min{DTP’;’h 1 <h< 2186},argmax’j‘. =
argmax{DTP’;h c1<h< 2186},argmin’;. = argmin{DTP'J‘.’h 11 <h<2186}forall 1 < j <41,
The results are shown in Table 4. Meanwhile, plot {minﬁ :1<j<4l}and {max’j‘. 1 < j <41}

for k € {1,2, 3} as presented in Figure 1.

. Compute {cos(argmin’v‘,argminﬁﬂ) :1 < v <40} and {cos(argmax’v‘,argmax’V‘H) 1 <v <

40} for k € {1,2,3}, i.e., the similarity indexes (cosine values) between the extracted minimal
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Figure 1. Min/max rejection distances between datum vectors and featured vectors for new
cases (left), 28-day deaths (middle) and 60-day deaths (right).

(or maximal) features to yield a dynamical trend of the representative features. The results are
presented in Figures 2—4.

4. Results

In this article, we explore the trend of underlying features of the COVID-19 new cases, 28-day
deaths and 60-day deaths to reveal whether the new mutant variants of COVID-19 in the UK have
caused fundamental features, which are based on 3-valued featured vectors. The results are presented
in two parts: preliminary study and follow-up study.

4.1. Preliminary results

It covers the period from 27th, March, 2020 to 8th, January, 2021. The onset of the mutant vari-
ant spreads mainly in London. By comparing the dynamical trend of time-series of COVID-19 with
London and without London, we shall see the role of B1.1.7 in the preliminary stage.

1. From Figure 1, we observe that the maximal and minimal rejection distance go almost together
— an indication that the features chosen are qualified to capture their B.1.1.7’s dynamical be-
haviours. Furthermore, no matter in the new cases, 28-day death, or 60-day deaths, when the time
mutant variant takes place (around the tail of the three graphs), the diluting features are reverted in
comparison to previous intervals. This indicates the new mutant variant changes the usual course
of the collective viruses. In some sense, at this stage, it has not yet created a lead role in the
pandemic, but it did affect the course of the development.

2. From the left-hand sides of Figures 2—4, the raw data for the minimal similarities almost reach 1,
while the maximal similarities are pretty random. This indicates the optimal features are repre-
sentative of the behaviour of B.1.1.7.

3. From the right-hand side of graphs in Figures 2 and 3, there is no obvious shift in the features when
comparing the eight regions (without London) and the 9 regions (with London). This preliminary
indication shows there is no clear feature from B.1.1.7 in terms of leading the pandemic. Since
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in the very beginning, the mutant variant is located mainly in London [18]. If there is no clear
feature change between the two situations, it shows the variant is still gaining momentum and not
yet to produce a leading feature. This might also provide a good indication that the vaccines for
other COVID-19 viruses should be working for this mutant variant.

4.2. Follow-up results

From Figure 4, we observe that feature similarities fluctuates around 0. This indicates the leading
features are pretty independent of each other. In some sense, the underlying behaviour of B.1.1.7 is
versatile and less predictable. Combining the preliminary results and the follow-up ones, we shall reach
a conclusion that B.1.1.7 has no clear feature and might be very easy in adopting new environments.

5. Conclusions and future work

In this study, we devise 3-valued features to track the dynamical behaviours of SARS-CoV-2 VOC
202012/01. There features serve as the feature database for matching. By preliminary study and
follow-up research, our study shows there is no clear leading features for B1.1.7. It also indicates that
the virus is hard to pin down its properties and is versatile and hard to predict. The advantages for this
study on the features are
a. It is a complete set features and serve as a matching database;

b. It could couple with machine learning and big data analysis to train and locate the features;
c. It could server as the pilot study to understand the potential features of the virus.

There are also some disadvantages:

a. As the length of each datum vector increases, the complexity of computation also exponentially
increases;
b. It is hard to practically link the 3-valued features with real natural or scientific properties.

As for the future research, we could apply machine learning techniques on searching and selecting
the optimal datum dimension. We could even lift the 3-valued features by adding more features into
the candidate featured vectors. We could also associate the 3-valued features with other variables to
yield a meaning interpretation of the extracted optimal features or associate them with randomness

of genetic codes [17]. Another issue is whether a virus contains a leading feature would increase the
severity of death rate of COVID-19 [18].
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Appendix
Appendix A: Time-series raw data for 9 regions and 3 metrics

Table 1. Time-series sorted data for 9 regions and 3 metrics.

date H region area label ‘ Ml ‘ M2 ‘ M3 ‘
2020/3/27 || Yorkshire and The Humber 1 153 20 20
2020/3/28 || Yorkshire and The Humber 1 207 23 23
2020/3/29 || Yorkshire and The Humber 1 228 29 29
2021/1/6 || Yorkshire and The Humber 1 2287 | 36 39
2021/1/7 Yorkshire and The Humber 1 1508 | 31 36
2021/1/8 Yorkshire and The Humber 1 281 18 20
2020/3/27 East of England 2 244 | 40 | 40
2020/3/28 East of England 2 183 | 37 | 37
2020/3/29 East of England 2 208 | 49 | 49
2021/1/6 East of England 2 4621 | 89 90
2021/1/7 East of England 2 3527 | 79 | 85
2021/1/8 East of England 2 394 | 20 | 22
2020/3/27 London 8 817 | 126 | 126
2020/3/28 London 8 577 | 120 | 120
2020/3/29 London 8 597 | 141 | 142
2021/1/6 London 8 8985 | 110 | 122
2021/1/7 London 8 5906 | 106 | 110
2021/1/8 London 8 912 | 40 | 43
2020/3/27 West Midlands 9 279 | 54 | 54
2020/3/28 West Midlands 9 323 | 71 71
2020/3/29 West Midlands 9 366 | 71 71
2021/1/6 West Midlands 9 4758 | 71 78
2021/1/7 West Midlands 9 2232 | 64 | 69
2021/1/8 West Midlands 9 271 20 | 24
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Appendix B: Difference datum vectors

(1) Difference datum vector for cases: (the length of each Ri.‘ is 287)

e R} =(54,21,57,34,--- ,-742,-386,-779,-1227)

e R} =(-61,25,92,22,---,-2407,-2193,-1094, -3133)
o

e Ry = (—240,20,271,66,-- ,-3310,-4615,-3079, —4994)
o Ry =(44,43,65,-18, - ,—1429,-871,-2526,-1961)
(2) Difference datum vector for 28-day death:

e R2=(3,6,1,7,---,-3,2,-5,-13)

e R3=(-3,12,0,24,--- ,-2,-9,-10,-59)

°:

° Ré =(-6,21,10,27,--- ,-4,-25,—-4,-606)

i RS = (17’ 05 47 17’ T O’ 6a _7’ _44)

(3) Difference datum vector for 60-day death:

e R=(3,6,1,7,---,-7,1,-3,-16)

g R; = (_3$ 125 09 24’ e 9_5’_125 _5’ _63)
o:

¢ R =(~6,22,9,27, - ,—4,-20,~12, ~67)
b Rg = (17’ Oa 47 17,' o 7_7’ 67 _9’ _45)

Appendix C: Distance tensor product matrices DTPi.‘ "
5S>
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Table 2. Distance tensor product matrices DTPfj .

’ H ﬁ ‘ fz ‘ ‘ f_2)185 ‘ f;186 H H ‘ ﬁ ‘ fz ‘ ‘ f_2)185 ‘ f&ss ‘
R, [ 4796 | 4841 [--- | 4841 | 47.96 |--- [ R', | 1026 10.58 | --- [ 10.58 [ 10.26
R [ 7879 [ 79.71 79.71 | 78.79 R, [ 10.80 | 10.59 10.59 | 10.80
R, [ 3825 | 3871 3871 | 3825 R, |12.09]12.26 12.26 | 12.09
R, [ 77427 7775 7775 | 77.42 R, | 112410381 10.81 | 11.24
RL, [790.03 | 91.10 91.10 | 90.03 R, [1421]1430 1430 | 14.21
R, | 54.87 | 55.26 5526 | 54.87 R, | 1179 | 11.96 11.96 | 11.79
R ][ 52.00 | 52.60 5260 | 52.00 R', | 892 | 8.94 8.94 | 8.92
R!, [105.40 | 106.39 106.39 | 105.40 RL, 19.67]19.45 19.45 [ 19.67
R, 77033 | 71.01 71.01 | 70.33 R, | 11.00 | 10.26 10.26 | 11.00
R, | 345 | 3.8 3.82 | 3.45 R2, | 2.84 [ 3.39 339 | 2.84
R [ 761 | 793 793 | 7.6l R, | 514 | 540 540 | 5.14
R, | 354 | 365 3.65 | 3.54 R, | 516 | 5.29 529 | 5.16
R, 695 | 7.05 705 | 695 R2, | 6.08 | 591 591 | 6.08
R2, | 949 | 9.64 9.64 | 9.49 R, 5327532 532 | 532
R, | 495 | 501 501 | 495 R2, | 3.60 | 3.91 391 | 3.60
R, | 507 | 511 511 | 5.07 R, 339|337 337 | 3.39
R2, | 845 | 871 871 | 845 R, | 548 | 513 513 | 5.48
R, 697 | 7.06 7.06 | 697 R2, | 661 | 607 6.07 | 6.61
R 472 | 491 491 | 472 R, | 284|339 339 | 2.84
R, |79 | 825 825 | 7.96 Ry, | 514 [ 540 540 | 5.14
R}, | 386 | 3.99 399 | 3.86 R, | 516 | 529 529 | 5.16
R 718 | 735 735 | 7.18 R, | 608 [ 591 591 | 6.08
R ][ 9.88 | 10.05 10.05 | 9.88 R}, | 532 | 532 532 | 532
R} | 498 | 5.05 505 | 4.98 R}, | 347 | 378 378 | 3.47
R, | 514 | 520 520 | 5.14 R}, | 339 | 337 337 | 3.39
R}, | 846 | 875 875 | 846 Ry, | 5527518 518 | 5.52
R, 723 | 732 732 | 723 R}, | 661 | 6.07 6.07 | 6.61
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Appendix D: List of DTP.’;’h

Table 3. DT P}, (top block), DTPi , (middle block), DTPih (bottom block).

’sub—vectors H h=1 ‘ h=2 ‘ h=3 ‘

| h=2184 | h=2185| h =2186 |

j=1 615.04 | 620.94 | 616.95 616.95 620.94 615.04
j=2 17.57 | 605.54 | 589.53 589.53 605.54 617.57
Jj=40 122.02 | 122.34 | 121.67 121.67 122.34 122.02
Jj=41 109.98 | 109.15 | 109.18 109.18 109.15 109.98
j=1 56.47 | 57.97 | 56.70 56.70 57.97 56.47

j=2 45.67 | 45.53 | 45.15 45.15 45.53 45.67

j=40 57.48 | 57.57 | 56.99 56.99 57.57 57.48

j=41 43.63 | 43.80 | 44.03 44.03 43.80 43.63

j=1 59.39 | 60.87 | 59.59 59.59 60.87 59.39

j=2 4822 | 48.15 | 47.86 47.86 48.15 48.22

Jj=40 57.52 | 57.60 | 57.02 57.02 57.60 57.52
Jj=41 43.54 | 43.72 | 43.96 43.96 43.72 43.54

Appendix E: Optimal rejection distances and features

Table 4. Min/max rejection distances and features: cases (top block), 28-day deaths (middle

block) and 60-day deaths (bottom block).

| j=39]j=40] j=41]

| bgdl\\jzl\ j=21j=3

mm} 348.79 | 382.57 | 303.97 9498 | 99.11 | 97.85
ar gmin}. f_3)24 ﬁ42 ]Czss ﬁsz f:t)45 ﬁ013
max;. 621.16 | 620.42 | 477.92 112.05 | 122.57 | 114.38
ar, gmax}. f:% ﬁ 12 f;3s fgs J§42 fTS)78
min? 44.07 | 40.88 | 40.74 47.60 | 51.45 | 41.48
ar gmin? ﬁ093 ﬁ046 ﬁoz f_1)092 f_s)ss f; 14
max? 58.10 | 45.98 | 45.87 54.89 | 57.74 | 47.76
argmax; for foos frxo fesi fai fra
mm; 47.13 | 41.33 | 42091 47.41 | 51.45 | 41.40
ar gmin; ﬁ093 ﬁ046 fZ6O ﬁoez ﬁss fg 14
max? 60.88 | 48.36 | 47.07 5490 | 57.77 | 47.72
ar gmax; ﬁm ﬁ3o f;32 fg51 f_7)31 f;24
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