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Abstract: We investigate the propagation of uncertainties in the Aw-Rascle-Zhang model, which be-
longs to a class of second order traffic flow models described by a system of nonlinear hyperbolic
equations. The stochastic quantities are expanded in terms of wavelet-based series expansions. Then,
they are projected to obtain a deterministic system for the coefficients in the truncated series. Stochastic
Galerkin formulations are presented in conservative form and for smooth solutions also in the corre-
sponding non-conservative form. This allows to obtain stabilization results, when the system is relaxed
to a first-order model. Computational tests illustrate the theoretical results.
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1. Introduction

Nowadays traffic models have become an indispensable tool in the urban and extraurban manage-
ment of vehicular traffic. Understanding and developing an optimal transport network, with efficient
movement of traffic and minimal traffic congestions, will have a great socio-economical impact on the
society, in particular in pandemics situations.

Besides guaranteeing optimal transport in the presence of pandemic situations, there is a second
major aspect, where our work on traffic flow modelling may contribute. It is clear that in a pandemic
situation the spreading of possible infections correlates with the number of contacts as e.g., modelled
in SIR dynamics [1,2]. Traffic flow provides valuable information on possible contacts and on possible
points of high population density in urban and extraurban areas. The prediction of the flow into and
from those areas can help to calibrate the transmission coefficients in typical SIR models for disease
propagation. Here, however, deterministic predictions are of little to no use in an a priori assessment of
possible critical points of high traffic density. Therefore, it is mandatory to expand the current theory
on macroscopic deterministic traffic flow models towards realistic but uncertain models. The current
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paper precisely tackles this point.
A vast amount of literature about vehicular traffic modeling has flourished in the last decades. Nev-

ertheless, there are still several limitations for obtaining trustful traffic forecasts. This is possibly due
to the fact that the evolution of traffic is described by highly nonlinear dynamics that is also exposed
to the presence of various sources and types of uncertainties [3–6]. For example, the uncertainty may
stem from real data affected by errors in the measurements or the reaction time of drivers. A pan-
demic scenario adds additional uncertainties, but needs reliable estimates. In particular, in view of
the discussion of possible measures to reduce traffic and accumulation in certain areas, the reliable and
quantifiable prediction is of high importance. The approach presented in this paper allows to quantify
the complete statistics of the uncertain solution and hence it also allows to compute e.g., rare events.
Quantifying the propagation of uncertainty in nonlinear models is therefore of interest and the purpose
of this paper.

Uncertainty quantification in the sense used here is concerned with the propagation of input uncer-
tainty through traffic models. Several approaches are presented in the literature and can be classified
in non-intrusive and intrusive methods. The main idea underlying the former approach is to solve the
model for fixed number of samples using deterministic numerical algorithms. Then, the statistics of
the quantities of interest are determined by numerical quadrature. Typical examples are Monte-Carlo
and stochastic collocation methods [7].

In contrast, we consider the intrusive stochastic Galerkin method. Here, stochastic processes are
represented as piecewise orthogonal functions, for instance Legendre polynomials or multiwavelets.
These representations are known as generalized polynomial chaos (gPC) expansions [8–12]. Expan-
sions of the stochastic input are substituted into the governing equations and a Galerkin projection is
used to obtain deterministic evolution equations for the coefficients of the series expansions.

Results for nonlinear hyperbolic systems are only partial, since desired properties like hyperbolicity
are not necessarily transferred to the intrusive formulation [13,14]. A problem is posed by the fact that
the deterministic Jacobian of the projected system differs from the random Jacobian of the original
system. We refer the interested reader to [15] for examples of the Euler as well as shallow water
equations. Furthermore, it is remarked in [16, Sec. 5] that simulations for Euler equations may break
down for high Mach numbers unless auxiliary variables and wavelet-based expansions are used.

Still, stochastic Galerkin methods applied to hyperbolic equations is an active field of research.
Those can be successfully applied to scalar conservation laws, since the resulting Jacobian is symmet-
ric. In the scalar case, well-balanced schemes have been developed [17] and a maximum-principle can
be ensured [18].

Furthermore, entropy-entropy flux pairs and hence hyperbolicity can be transferred to a stochastic
Galerkin formulation by introducing auxiliary variables [13], which require expensive variable trans-
forms. Although there are many attempts to make the transform more efficient and stable [19, 20], the
computational cost remain a drawback of this approach. To this end, an expansion in Roe variables has
been proposed [16]. Since it exploits quadratic relationships, the necessary transforms are numerically
cheap and stable. These auxiliary variables enable also a hyperbolic stochastic Galerkin formulation
for isothermal Euler equations for arbitrary gPC expansions. Moreover, it has been observed that the
shallow water equations allow for a hyperbolic stochastic Galerkin formulation which neither requires
auxiliary variables nor any transform [21].

Additional results are available for certain wavelet-based gPC expansions, including the Wiener-
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Haar basis and piecewise linear multiwavelets [16, 22]. These wavelet expansions are motivated by a
robust expansion for solutions that depend on the stochastic input in a non-smooth way and are used
for stochastic multiresolution as well as adaptivity in the stochastic space [23–25].

In this paper, we consider hyperbolic systems used in vehicular traffic modeling, namely second
order macroscopic models [26, 27]. The main feature is that they take into account the non-equilibria
states, assuming that accelerations are not instantaneous. They are able to recover typical traffic phe-
nomena as generating capacity drop, hysteresis, relaxation, platoon diffusion, or spontaneous conges-
tions like stop-and-go waves [28–30].

The first results in this direction were proposed by Payne and Whitham [31] taking into account
that the speed of each car does not change instantaneously. However, their model has the drawback
that the driver’s decision is influenced by the road conditions behind. A second order model is due to
Aw, Rascle [26] and Zhang [27]. By taking into account the differences between traffic and fluid flows,
they designed models to simulate the anisotropic traffic behaviour.

The inhomogeneous Aw-Rascle-Zhang (ARZ) model includes a relaxation term that allows drivers
to achieve the equilibrium speed [32]. In the small relaxation limit the ARZ model approaches to the
Lighthill-Whitham-Richards (LWR) model [33, 34], which can be obtained by means of a Chapman-
Enskog-type expansion. Here, the stability and well-posedness of solutions to the hyperbolic ARZ
model is governed by the study of the sign of the diffusion coefficient, which requires the so-called
sub-characteristic condition [35, 36]. The diffusion term vanishes in the zero-relaxation limit and the
LWR model is recovered [30, 37, 38].

This paper analyzes stochastic Galerkin formulations for the Aw-Rascle-Zhang model in conser-
vative and non-conservative form. The non-conservative form allows to state eigenvalues and hence
ensures hyperbolicity. Furthermore, the stability of the system is investigated if it is relaxed to a first-
order model. As basic tool we follow the approach in [30, 37, 38] and study definiteness properties of
the corresponding diffusion coefficient by using a Chapman-Enskog-type expansion.

Section 2 introduces the deterministic Aw-Rascle-Zhang model in conservative and non-
conservative form. Section 3 presents stochastic Galerkin formulations. For a special class of wavelet-
based gPC expansions an auxiliary variable that does not cause any computationally expensive trans-
forms is introduced to ensure hyperbolicity. Section 4 is devoted to a stability analysis of the inho-
mogeneous ARZ model. The theoretical results are derived only for classical smooth solutions with
deterministic relaxation. Riemann problems to weak solutions are illustrated numerically in Section 5.

2. Second order traffic flow models with relaxation

Typical macroscopic traffic flow models describe the density ρ = ρ(t, x) and the mean velocity
v = v(t, x) of vehicles at a location x ∈ R and time t > 0. The natural assumption that the total mass is
conserved leads to impose that the density ρ satisfies the continuity equation

∂tρ + ∂x(ρv) = 0 with initial values ρ(0, x) = ρ0(x). (2.1)

In first-order models the velocity v = v(ρ) is given as a function of the density alone, e.g., the LWR
model [33, 34]. Second-order models describe the velocity by an additional differential equation. In
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particular, we consider the inhomogeneous Aw-Rascle-Zhang model [26, 32] with relaxation
∂tρ + ∂x(ρv) = 0,

∂t
(
v + h(ρ)

)
+ v∂x

(
v + h(ρ)

)
=

1
τ

(
Veq(ρ) − v

)
.

(2.2)

Here, h(ρ) : R+ → R+ is called hesitation or traffic pressure [39]. It is a smooth, strictly increasing
function of the density. The relaxation term with parameter τ > 0 on the right hand side makes the
drivers tend to a given equilibrium velocity Veq(ρ). This is important, since the homogeneous ARZ
model without relaxation has no mechanism to move drivers when initially are at rest. By introducing
the variable z = ρ

(
v + h(ρ)

)
, the system (2.2) can be written in conservative form as ∂tρ + ∂x

(
z − ρh(ρ)

)
= 0,

∂tz + ∂x
(

z2/ρ − zh(ρ)
)

=
ρ

τ

(
Veq(ρ) − v(ρ, z)

) for v(ρ, z) = z/ρ − h(ρ). (2.3)

Here, the velocity v(ρ, z) is a driver dependent property. The conservative formulation (2.3) is abbrevi-
ated as

∂tu + ∂xf(u) =
1
τ

S(u) with unknowns u =

(
ρ

z

)
and

f(u) =

(
fρ(ρ, z)
fz(ρ, z)

)
=

(
z − ρh(ρ)

z2/ρ − zh(ρ)

)
, S(u) =

(
0

Sz(ρ, z)

)
=

(
0

ρ
(
Veq(ρ) − v(ρ, z)

)).
The eigenvalues of the Jacobian

Duf(u) =
(
∂αfβ(u)

)
α,β∈{ρ,z}

=

(
−h(ρ) − ρh′(ρ) 1
−
( z
ρ

)2
− zh′(ρ) 2 z

ρ
− h(ρ)

)
(2.4)

are λ1(ρ, z) = v(ρ, z) − ρh′(ρ) and λ2(ρ, z) = v(ρ, z). Hence, the ARZ model is strictly hyperbolic under
the assumption ρ > 0. The (local) equilibrium velocity Veq(ρ) satisfies the scalar conservation law

∂tρ + ∂xfeq(ρ) = 0 for feq(ρ) = ρVeq(ρ) and f′eq(ρ) = Veq(ρ) + ρV ′eq(ρ). (2.5)

Stability requires that the full system propagates information faster than the local equilibrium,
i.e. the sub-characteristic condition

λ1

(
ρ, ρ

(
Veq(ρ) + h(ρ)

))
≤ f′eq(ρ) ≤ λ2

(
ρ, ρ

(
Veq(ρ) + h(ρ)

))
with V ′eq(ρ) < 0 (SC)

is satisfied. It is shown in [35, Th. 3.1] for general 2×2 systems that the sub-characteristic condition
holds if and only if the first-order correction

v = Veq(ρ) + τv(1) + O
(
τ2)

leads to a dissipative advection-diffusion equation. For the deterministic ARZ model [27, 38], this
reads as

∂tρ + ∂xfeq(ρ) = τ∂x
(
µ(ρ)∂xρ

)
with diffusion coefficient µ(ρ) B − ρ2V ′eq(ρ)

(
V ′eq(ρ) + h′(ρ)

)
. (DI)

In the sequel, we will extend these results to the stochastic case.
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3. Stochastic Galerkin formulation

We extend the hyperbolic balance law (2.3) to account for uncertainties that arise from random
initial conditions. The hesitation function and the equilibrium velocity, however, remain given de-
terministic functions. Uncertainties are summarized in a random variable ξ, defined on a probability
space

(
Ω,F (Ω),P

)
, and propagated by the random system

∂tu(t, x, ξ) + ∂xf
(
u(t, x, ξ)

)
=

1
τ

S
(
u(t, x, ξ)

)
. (3.1)

For fixed time and space coordinates we expand the solution in terms of the generalized polynomial
chaos (gPC) expansion

GK[u](t, x, ξ) B
K∑

k=0

ûk(t, x)φk(ξ) with gPC modes û B
(
ρ̂

ẑ

)
∈ R2(K+1). (gPC)

The piecewise polynomial functions φk(ξ) form an orthonormal basis with respect to the weighted inner
product 〈

φi(·), φ j(·)
〉

=

∫
φi(ξ)φ j(ξ) dP = δi, j.

If the random solution u(t, x, ξ) is known, the gPC modes can be determined by the orthonormal projec-
tion

〈
u(t, x, ·), φk(·)

〉
. Under mild conditions on the probability measure the truncated expansion (gPC)

converges in the sense
∥∥∥GK[u](t, x, ·) − u(t, x, ·)

∥∥∥→ 0 for K → ∞ [8, 40, 41].
A challenge occurs, since only the gPC modes û(0, x) corresponding to the initial data are known.

To determine them for t > 0, we derive a differential equation, called stochastic Galerkin formulation,
that describes their propagation in time and space.

3.1. A semi-intrusive approach as introductory example

A naive approach would be to substitute the truncated expansion (gPC) into the random system (3.1)
and then use a Galerkin ansatz to project it onto the space spanned by the basis functions. The resulting
system, without relaxation term, reads as ∂tû + ∂xf̂(û) = ~0 for ~0 ∈ R2(K+1)

with flux function f̂
(
û(t, x)

)
=

〈
f
( K∑

k=0

ûk(t, x)φk(·)
)
, φi(·)

〉
i=0,...,K

(3.2)

and Jacobian Dûf̂
(
û(t, x)

)
=

(
f̂ρ,ρ

(
û(t, x)

)
f̂ρ,z

(
û(t, x)

)
f̂z,ρ

(
û(t, x)

)
f̂z,z

(
û(t, x)

)) (3.3)

consisting of block matrices f̂α,β
(
û(t, x)

)
=

〈
∂αfβ

( K∑
k=0

uk(t, x)φk(·)
)
, φi(·)φ j(·)

〉
i, j=0,...,K

.

Here, the Jacobian Dûf̂(û) consists of the projected entries of the deterministic Jacobian (2.4). The
Jacobian (3.3), however, has not necessarily real eigenvalues and a full set of eigenvectors. In the
case of the Aw-Rascle-Zhang model, the flux function (3.2) and its Jacobian (3.3) are not even directly
specifiable, since the deterministic expressions (2.3) and (2.4) envolve the terms z2/ρ, z/ρ and the possibly
nonpolynomial hesitation function h(ρ). Computing numerically the integrals in Eq (3.2) and (3.3)
would lead to an expensive, non-hyperbolic, semi-intrusive scheme.
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3.2. Intrusive formulation for general gPC expansions

Instead, we follow the approaches [14,21] to handle the terms z2/ρ and z/ρ. We introduce the Riemann
invariant w B z/ρ in the original ARZ model [26]. While the semi-intrusive approach in Section 3.1
computes the gPC modes ŵ by the orthonormal projection 〈w, φk〉, we project the product ρw and
determine the modes by the pseudo-spectral Galerkin product

〈
GK[ρ]GK[w], φk

〉
= ẑk. Similarly to [7,

42, 43], we express it by

ρ̂ ∗ ŵ B P(ρ̂)ŵ = ẑ ∈ RK+1 for P(ρ̂) B
K∑

k=0

ρ̂kMk and Mk B 〈φk, φiφ j〉i, j=0,...,K . (3.4)

The matrix P(ρ̂) is strictly positive definite and hence invertible provided that the gPC expan-
sion GK[ρ̂] > 0 is strictly positive [44–46]. The strict positive definiteness of the matrix P(ρ̂) is
assumed throughout this paper. This assumption excludes vacuum states. We have for the inverse
terms the pseudo-spectral gPC approximations ŵ = P−1(ρ̂)ẑ and ẑ ∗ ŵ, i.e.,∥∥∥∥∥z2(ξ)

ρ(ξ)
−

K∑
k=0

(
ẑ ∗ ŵ

)
kφk(ξ)

∥∥∥∥∥→ 0 and
∥∥∥∥∥ z(ξ)
ρ(ξ)

−

K∑
k=0

ŵkφk(ξ)
∥∥∥∥∥→ 0 for K → ∞.

This yields for general gPC bases a stochastic Galerkin formulation for the homogeneous ARZ model,
without relaxation, as  ∂tρ̂ + ∂x

(
ẑ − ρ̂ ∗ ĥ(ρ̂)

)
= ~0,

∂tẑ + ∂x

(
ẑ ∗

(
P−1(ρ̂)ẑ

)
− ẑ ∗ ĥ(ρ̂)

)
= ~0,

(3.5)

where ĥ(ρ̂) ∈ RK+1 denotes a given gPC formulation of a hesitation function. For example, the linear
hesitation function h(ρ) = ρ has the gPC modes ĥ(ρ̂) = ρ̂. By using the following calculation rules, see
e.g., [14, 16, 47],

ρ̂ ∗ ẑ = ẑ ∗ ρ̂, Dρ̂

[
ρ̂ ∗ ẑ

]
= P(ẑ), Dρ̂

[
P−1(ρ̂)ẑ

]
= −P−1(ρ̂) P

(
P−1(ρ̂)ẑ

)
(3.6)

we obtain the Jacobian of the gPC formulation (3.5) as

Dûf̂(û) =

(
−P

(
ĥ(ρ̂)

)
− P(ρ̂)ĥ′(ρ̂) 1

−P(ẑ)P−1(ρ̂)P(P−1(ρ̂)ẑ) − P(ẑ)ĥ′(ρ̂) P(ẑ)P−1(ρ̂) + P
(
P−1(ρ̂)ẑ) − P

(
ĥ(ρ̂)

)) ,
where 1 B diag{1, . . . , 1} denotes the identity matrix. The matrices Mk and hence the linear opera-
tor P : RK+1 → R(K+1)×(K+1), defined in Eq (3.4), are exactly computable in an offline stage. Therefore,
the stochastic Galerkin formulation (3.5) is intrusive and no numerical quadrature is needed during
a simulation. Furthermore, the eigenvalues can be exactly computed. However, eigenvalues are not
proven real which motivates the following subsection.

3.3. Hyperbolic and intrusive formulation for wavelet-based gPC expansions

Under additional assumptions on the bases functions, hyperbolicity can be guaranteed. We consider
basis functions φk that satisfy the following properties:
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(A1) The precomputed matricesM` andMk commute for all `, k = 0, . . . ,K.
(A2) There is an eigenvalue decomposition P(α̂) = VD(α̂)VT with constant eigenvectors.
(A3) The matrices P(α̂) and P(β̂) commute for all α̂, β̂ ∈ RK+1.

These properties have been proven equivalent in [47, Lem. 4.1]. Property (A1) allows for a nu-
merical verification in a precomputation step such that basis functions satisfy also the other properties,
which may be difficult to prove analytically. Property (A2) has been shown directly for the Wiener-
Haar basis in [16, Appendix B], which we will consider in Section 5. This property allows for an
efficient numerical implementation, since the eigenvalues D(α̂) = VTP(α̂)V are directly computable
by a numerically cheap and stable matrix multiplication. Property (A3) has a technical benefit, needed
for the following theoretical results. Following [47, 48], polynomial functions h(ρ) = ργ, γ ∈ N and
their Jacobians are expressed as

ĥ(ρ̂) B Pγ−1(ρ̂)ρ̂ = VD(ρ̂)γ−1VTρ̂, ĥ′(ρ̂) = Dρ̂ĥ(ρ̂) = γPγ−1(ρ̂) = γVD(ρ̂)γ−1VT. (3.7)

Furthermore, the equality P
(
P−1(ρ̂)ẑ

)
= P−1(ρ̂)P(ẑ) is satisfied provided that properties (A1) – (A3)

hold. Equation (3.7) and [46, Remark 1], where the representation of nonpolynomial functions is
discussed, motivate to assume possibly nonpolynomial hesitation functions for γ ≥ 1 and a Jacobian of
the form ĥ′(ρ̂) = VDh′(ρ̂)VT with strictly positive eigenvalues Dh′(ρ̂) > 0. Under these assumptions,
we have the stochastic Galerkin formulation ∂tû + ∂xf̂(û) = ~0 for the homogeneous ARZ model

with flux function f̂(û) =

(
ẑ − P(ρ̂)ĥ(ρ̂)

P(ẑ)P−1(ρ̂)ẑ − P(ẑ)ĥ(ρ̂)

)
(3.8)

and Jacobian Dûf̂(û) =

 −P(ĥ(ρ̂)
)
− P(ρ̂)ĥ′(ρ̂) 1

−P2(ẑ)P−2(ρ̂) − P(ẑ)ĥ′(ρ̂) 2P(ẑ)P−1(ρ̂) − P
(
ĥ(ρ̂)

) .
3.4. Stochastic Galerkin formulation for the inhomogeneous ARZ model

The hyperbolic formulation, presented in Subsection 3.3, is directly extendable to a stochastic
Galerkin formulation for the inhomogeneous ARZ model. To this end, we assume an arbitrary, but
consistent gPC expansion V̂eq(ρ̂) of the random equilibrium speed Veq

(
ρ(ξ)

)
, satisfying∥∥∥∥∥Veq

(
ρ(ξ)

)
−

K∑
k=0

V̂eq(ρ̂)kφk(ξ)
∥∥∥∥∥→ 0 for K → ∞.

Then, we introduce a stochastic Galerkin formulation of the relaxation term in the conservative formu-
lation (2.3) by

Ŝẑ(û) B ρ̂ ∗
(
V̂eq(ρ̂) − v̂(ρ̂, ẑ)

)
with auxiliary variable v̂(ρ̂, ẑ) = P−1(ρ̂)ẑ − ĥ(ρ̂). (3.9)

This auxiliary variable also allows to obtain a stochastic Galerkin formulation for the non-conservative
formulation (2.2). Altogether we have the hyperbolic stochastic Galerkin formulations for the in-
homogeneous ARZ model in a

conservative form

 ∂tρ̂ + ∂x

(
ẑ − P(ρ̂)ĥ(ρ̂)

)
= ~0,

∂tẑ + ∂x

(
P(ẑ)P−1(ρ̂)ẑ − P(ẑ)ĥ(ρ̂)

)
=
ρ̂

τ
∗
(
V̂eq(ρ̂) − v̂(ρ̂, ẑ)

)
,

(C)

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4372–4389.
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non-conservative form

 ∂tρ̂ + ∂x

(
P(ρ̂)v̂

)
= ~0,

∂t

(
v̂ + ĥ(ρ̂)

)
+ P(v̂) ∂x

(
v̂ + ĥ(ρ̂)

)
=

1
τ

(
V̂eq(ρ̂) − v̂

)
.

(N)

We show in Theorem 3.1 that these two formulations are equivalent for smooth solutions, as it holds
in the deterministic case [26]. However, if there is a jump in the solution, the non-conservative form
contains the product of the discontinuous matrix-valued function P(v̂) with the distributional derivative
of the term v̂ + ĥ(ρ̂), which may contain a Dirac mass at the point of the jump. In general, such a
product is not well-defined [49, Sec. 1]. Theorem 3.1 ensures that the system is strongly hyperbolic,
which means that eigenvalues of the Jacobian Dûf̂(û), i.e., the characteristic speeds of the hyperbolic
system are real. Moreover, the Jacobian Dûf̂(û) admits a complete set of eigenvectors which implies
that classical solutions are well-posed [50].

Theorem 3.1. Let a gPC expansion with the properties (A1) – (A3), a stochastic Galerkin formulation
of a hesitation function ĥ(ρ̂) and a Galerkin formulation of an equilibrium velocity V̂eq(ρ̂) be given.
Assume further a Jacobian of the hesitation function

ĥ′(ρ̂) B Dρ̂ĥ(ρ̂) = VDh′(ρ̂)VT

with constant eigenvectors. Then, for smooth solutions the conservative (C) and non-conservative (N)
stochastic Galerkin formulations to the inhomogeneous ARZ model are equivalent. The characteristic
speeds are

λ̂1(ρ̂, ẑ) = D
(
v̂(ρ̂, ẑ)

)
−Dh′(ρ̂)D(ρ̂) and λ̂2(ρ̂, ẑ) = D

(
v̂(ρ̂, ẑ)

)
for v̂(ρ̂, ẑ) = P−1(ρ̂)ẑ − ĥ(ρ̂),

where D(v̂) denote the eigenvalues of the matrix P(v̂). Furthermore, the stochastic Galerkin formula-
tions (N) and (C) are strongly hyperbolic in the sense that the characteristic speeds are real and the
Jacobian Dûf̂(û) admits a complete set of eigenvectors.

Proof. Provided that properties (A1) – (A3) hold, we have P
(
P(v̂)ρ̂

)
= P(v̂)P(ρ̂) and the Galerkin

product is symmetric (3.6). Hence, we obtain(
ρ̂ ∗ v̂

)
∗
(
v̂ + ĥ(ρ̂)

)
= P

(
P(v̂)ρ̂

)
P−1(ρ̂)ẑ = P(v̂)ẑ = P(ẑ)v̂ = P(ẑ)P−1(ρ̂)ẑ − P(ẑ)ĥ(ρ̂).

Since the opertor P(ρ̂) is linear, the homogeneous part of the non-conservative formulation can be
rewritten as

~0 =
(
v̂ + ĥ(ρ̂)

)
∗
[
∂tρ̂ + ∂x

(̂
ρ ∗ v̂

)]
+ ρ̂ ∗

[
∂t
(
v̂ + ĥ(ρ̂)

)
+ v̂ ∗ ∂x

(
v̂ + ĥ(ρ̂)

)]
= ∂tẑ + ∂x

((
ρ̂ ∗ v̂

)
∗
(
v̂ + ĥ(ρ̂)

))
= ∂tẑ + ∂x

(
P(ẑ)P−1(ẑ)ẑ − ẑ ∗ ĥ(ρ̂)

)
.

Here, we have used the equality ρ̂ ∗ (v̂ ∗ ∂x) = (ρ̂ ∗ v̂) ∗ ∂x, which is satisfied provided that the as-
sumptions (A1) – (A3) hold, but not for general gPC bases, since the Galerkin product is typically
not associative [42, 43]. Likewise, the relaxation term in the conservative formulation is obtained by
multiplying P(ρ̂), i.e., by applying the Galerkin product to the relaxation term of the non-conservative
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form. Therefore, the two formulations (C) and (N) are equivalent. To state the eigenvalues, we rewrite
the first equation of the non-conservative form as

~0 = ĥ′(ρ̂)
[
∂tρ̂ + ∂x

(
ρ̂ ∗ v̂

)]
= ∂tĥ(ρ̂) + v̂ ∗ ĥ(ρ̂)x + ĥ′(ρ̂)(ρ̂ ∗ v̂x), (3.10)

where we have used the symmetry of the Galerkin product. By subtracting Eq (3.10) from the second
equation in the non-conservative form and by using property (A2), i.e., an eigenvalue decomposition
with constant, orthonormal eigenvectors VT = V−1, we obtain

∂t

(
ρ̂

v̂

)
+

(
P(v̂) P(ρ̂)
O P(v̂) − ĥ′(ρ̂)P(ρ̂)

)
∂x

(
ρ̂

v̂

)
= ~0

⇐⇒ ∂t

(
VTρ̂

VTv̂

)
+

(
D(v̂) D(ρ̂)
O D(v̂) −Dh′(ρ̂)D(ρ̂)

)
∂x

(
VTρ̂

VTv̂

)
= ~0 (3.11)

for ~0 ∈ R2(K+1) and O ∈ R(K+1)×(K+1). Due to the sparsity structure in the quasilinear form (3.11) a
complete set of eigenvectors exists and eigenvalues λ̂1, λ̂2 are obtained.

�

4. Stability analysis of the inhomogeneous ARZ model

The parameter τ > 0 determines the relaxation of the velocity v̂(ρ̂, ẑ), given by Eq (3.9) as auxiliary
variable, towards the gPC modes V̂eq(ρ̂) of the equilibrium velocity, which is a function of the density
alone. We study in this section small, but positive values of the relaxation paramter τ > 0, when the
ARZ model is close to the

equilibrium model ∂tρ̂ + ∂xf̂eq(ρ̂) = ~0, f̂eq(ρ̂) = ρ̂ ∗ V̂eq(ρ̂) (4.1)

with Jacobian Dρ̂

(
ρ̂ ∗ V̂eq(ρ̂)

)
= P

(
V̂eq(ρ̂)

)
+ P(ρ̂)Dρ̂V̂eq(ρ̂). (4.2)

We observe from the Jacobian (4.2) that an eigenvalue decomposition of the equilibrium velocity of
the form

V̂ ′eq(ρ̂) B Dρ̂V̂eq(ρ̂) = VDV′eq(ρ̂)VT with negative eigenvalues DV′eq(ρ̂) < ~0

should be assumed such that all waves of the equilibrium model propagate at the characteristic speeds

λ̂eq(ρ̂) B D
(
V̂eq(ρ̂)

)
+D(ρ̂)DV′eq(ρ̂)

not exceeding the equilibrium velocity. This is identified by the eigenvalues of the matrix P
(
V̂eq(ρ̂)

)
.

Analogously to the analysis in [30, 35, 37, 38], we use a Chapman-Enskog-type expansion that allows
to study the behaviour of first-order perturbations of the equilibrium velocity. This yields a diffusion
correction as stated in the following theorem.

Theorem 4.1. Let a gPC expansion with the properties (A1) – (A3), a stochastic Galerkin formulation
of a hesitation function ĥ(ρ̂) and a Galerkin formulation of an equilibrium velocity V̂eq(ρ̂) be given.
Assume further that the Jacobians can be written as

V̂ ′eq(ρ̂) B Dρ̂V̂eq(ρ̂) = VDV′eq(ρ̂)VT and ĥ′(ρ̂) B Dρ̂ĥ(ρ̂) = VDh′(ρ̂)VT
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with constant eigenvectors. The first-order correction to the local equilibrium approximation reads

∂tρ̂ + ∂xf̂eq(ρ̂) = τ∂x
(
µ̂(ρ̂)∂xρ̂

)
, µ̂(ρ̂) B −V

[
D(ρ̂)2DV′eq(ρ̂)

(
DV′eq(ρ̂) +Dh′(ρ̂)

)]
VT. (D̂I)

Furthermore, it is dissipative if and only if the sub-characteristic condition

λ̂1(ρ̂, ẑ) ≤ λ̂eq(ρ̂) ≤ λ̂2(ρ̂, ẑ) holds on ẑ = ρ̂ ∗
(
V̂eq(ρ̂) + ĥ(ρ̂)

)
with DV′eq(ρ̂) < ~0. (ŜC)

Proof. We apply a Chapman-Enskog expansion

v̂ = V̂eq(ρ̂) + τv̂(1) + O
(
τ2).

The linearity P(α̂ + β̂) = P(α̂) + P(β̂) implies

v̂ ∗ ∂xv̂ = V̂eq(ρ̂) ∗ ∂xV̂eq(ρ̂) + O(τ) = P
(
V̂eq(ρ̂)

)
V̂ ′eq(ρ̂)∂xρ̂ + O(τ),

∂x
(
ρ̂ ∗ v̂

)
= ∂x

(
ρ̂ ∗ V̂eq(ρ̂)

)
+ O(τ) =

[
P
(
V̂eq(ρ̂)

)
+ P(ρ̂)V̂ ′eq(ρ̂)

]
∂xρ̂ + O(τ).

Hence, in the non-conservative formulation we obtain

−v̂(1) =
V̂eq(ρ̂) − v̂

τ
+ O(τ) = ∂t

(
V̂eq(ρ̂) + ĥ(ρ̂)

)
+ V̂eq(ρ̂) ∗ ∂x

(
V̂eq(ρ̂) + ĥ(ρ̂)

)
+ O(τ).

The symmetry of the Galerkin product and the equilibrium model (4.1) yield

−v̂(1) =

(
V̂ ′eq(ρ̂) + ĥ′(ρ̂)

)(
∂tρ̂ + P

(
V̂eq(ρ̂)

)
∂xρ̂

)
+ O(τ) =

(
V̂ ′eq(ρ̂) + ĥ′(ρ̂)

)
P(ρ̂)V̂ ′eq(ρ̂) + O(τ),

which implies the claim
∂tρ̂ + ∂xf̂eq(ρ̂) = τ∂x

(
µ̂(ρ̂)∂xρ̂

)
+ O

(
τ2).

�

Theorem 4.1 gives conditions to properly choose a hesitation function h(ρ) and an equilibrium
velocity Veq(ρ). In the deterministic case, various choices have been investiated to model also phantom
traffic jams and stop-and-go waves by introducing a negative diffusion coefficient [28–30]. Here, we
investigate states close to the equilibrium and choose a hesitation function h(ρ) and an equilibrium
velocity Veq(ρ) such that sub-characteristic condition is fulfilled. The following corollary extends a
widely used class, which includes the Greenshields flux, see e.g., [32,51,52] for the deterministic case,
to the derived stochastic Galerkin formulation.

Corollary 4.2. Let an equilibrium velocity and a hesitation function of the form

Veq(ρ) =
vmax

ρmax

(
ρmax − ρ

γ
)

and h(ρ) = Veq(0) − Veq(ρ) =
vmax

ρmax
ργ

with strictly positive constants vmax, ρmax, γ be given. Under the assumptions of Theorem 3.1 and The-
orem 4.1 the sub-characteristic condition (ŜC) is satisfied for the stochastic Galerkin formulations

V̂eq(ρ̂) =
vmax

ρmax

(
ρmaxe1 − P(ρ̂)γ−1ρ̂

)
and ĥ(ρ̂) = V̂eq(~0) − V̂eq(ρ̂) =

vmax

ρmax
P(ρ̂)γ−1ρ̂

with unit vector e1 = (1, 0, . . . , 0)T.
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Proof. Equation (3.7) yields the stochastic Galerkin formulations and

V̂ ′eq(ρ̂) = −γ
vmax

ρmax
P(ρ̂)γ−1 = −ĥ′(ρ̂) ⇔ O = V̂ ′eq(ρ̂) + ĥ′(ρ̂) ⇔ ~0 = DV′eq(ρ̂) +Dh′(ρ̂).

The matrices P(ρ̂) and P(ρ̂)γ−1 = VD(ρ̂)γ−1VT are strictly positive definite. Hence, the Jacobian V̂ ′eq(ρ̂)
is strictly negative definite and we haveDV′eq(ρ̂) < ~0.

�

5. Numerical results

The introduction of the gPC modes v̂ as auxiliary variable also allows for an efficient numerical
evaluation of the flux function (3.8), the relaxation term (3.9) and the computation of eigenvalues by
the numerically cheap and stable matrix vector multiplications

D(ρ̂) = VTP(ρ̂)V,
D

(
v̂(ρ̂, ẑ)

)
= VTP

(
v̂(ρ̂, ẑ)

)
V,

Dh′(ρ̂) = VT ĥ′(ρ̂)V,

λ̂2(ρ̂, ẑ) = D
(
v̂(ρ̂, ẑ)

)
,

λ̂1(ρ̂, ẑ) = λ̂2(ρ̂, ẑ) −Dh′(ρ̂)D(ρ̂),

v̂(ρ̂, ẑ) = VD−1(ρ̂)VTẑ − ĥ(ρ̂),

f̂(û) =

(
P(ρ̂)v̂(ρ̂, ẑ)
P(ẑ)v̂(ρ̂, ẑ)

)
,

Ŝẑ(û) = P(ρ̂)
(
V̂eq(ρ̂) − v̂(ρ̂, ẑ)

)
.

Hence, the computational complexity grows like K2, which is relatively low compared to approaches
with entropy and Roe variables [13, 16, 46]. The price is the restriction to gPC bases that satisfy the
assumptions (A1) – (A3). Here, we use the Haar sequence [7, 53, 54] with level J ∈ N0 that generates
a gPC basis SK with K + 1 = 2J+1 elements by

SK B
{
1, ψ(ξ), ψ j,k(ξ)

∣∣∣ k = 0, . . . , 2 j − 1, j = 1, . . . , J
}

for

ψ j,k(ξ) B 2 j/2ψ
(
2 jξ − k

)
and ψ(ξ) B


1 if 0 ≤ ξ < 1/2,

−1 if 1/2 ≤ ξ < 1,
0 else.

Using a lexicographical order we identify the gPC basis φ0 = 1, φ1 = ψ, φ2 = ψ1,0, φ3 = ψ1,1, etc.

An equidistant space discretization ∆x > 0 is used to divide the space interval [0, xend] into N cells
such that ∆xN = xend with centers x j B

(
j + 1

2

)
∆x and edges x j−1/2 B j∆x. The discrete time steps are

denoted by tk B k∆t for k ∈ N0. Due to the eigenvalue estimates
∣∣∣λ̂1(ρ̂, ẑ)

∣∣∣ ≤ ∣∣∣λ̂2(ρ̂, ẑ)
∣∣∣ =

∣∣∣D(
v̂(ρ̂, ẑ)

)∣∣∣ a
local Lax-Friedrichs flux [55] is efficiently evaluated as

F̂(ū`, ūr) B
1
2

[
f̂(ū`) + f̂(ūr)

]
+

1
2

max
j=`,r

{∣∣∣∣D(
v̂(ū j)

)∣∣∣∣}(ū` − ūr).

For numerical purposes the relaxation term is expressed as

Ŝẑ(û) B ρ̂ ∗
(
V̂eq(ρ̂) − v̂(ρ̂, ẑ)

)
= M̂(ρ̂) − ẑ for M̂(ρ̂) B ρ̂ ∗

(
V̂eq(ρ̂) + ĥ(ρ̂)

)
.

Since the term Ŝẑ(û) depends also in the stochastic Galerkin formulation on the unknown ẑ ∈ RK+1 in
a linear way, a first-order IMEX scheme [38, 56, 57], which treats the advection part explicitly and the
possibly stiff relaxation implicitly, can be employed:

ūk+1
j = ūk

j −
∆t
∆x

(
F̂
(
ū(1)

j , ū
(1)
j+1

)
− F̂

(
ū(1)

j−1, ū
(1)
j
))
,
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with ūk
j =

(
ρ̄k

j, z̄k
j

)T
, ū(1)

j =
(
ρ̄(1)

j , z̄(1)
j

)T
and

ρ̄
(1)
j = ρ̄k

j,

z̄(1)
j =

τ

τ + ∆t
z̄k

j +
∆t

τ + ∆t
M̂

(
ρ̄k

j
)

In the sequel, we consider a linear hesitation function and a relaxation towards the LWR model, i.e


∂tρ + ∂x(ρv) = 0,

∂t
(
v + ρ

)
+ v∂x

(
v + ρ

)
=

1
τ

(
Veq(ρ) − v

) with equilibrium velocity Veq(ρ) = 1 − ρ

and normalized density in the equilibrium model. According to Corollary 4.2 the sub-characteristic
condition is fulfilled and solutions to the ARZ model are expected to be close to the LWR model
if the relaxation parameter τ > 0 is sufficiently small. Moreover reference solutions are provided,
where a Monte-Carlo method is applied to the analytical solution with M = 106 uniformly distributed
samples ρ`(ξ) ∼ U for either of the following Riemann problems:

ρ(x, 0, ξ) =

ρ`(ξ) ∼ U(0.15, 0.45) for x < 1,
0.7 for x > 1,

v(x, 0, ξ) =

0.7 for x < 1,
0.3 for x > 1,

(shock)

ρ(x, 0, ξ) =

ρ`(ξ) ∼ U(0.55, 0.85) for x < 1,
0.3 for x > 1,

v(x, 0, ξ) =

0.3 for x < 1,
0.7 for x > 1.

(rarefaction)

5.1. Homogeneous case

This section illustrates the hyperbolic character of the derived stochastic Galerkin formulation, in
particular the statement of Theorem 3.1. Figure 1 and 2 illustrate the solution to the stochastic Galerkin
formulation to the Haar basis with level J. The mean of the density is given by the mode ρ̂0(t, x) and
plotted as blue line. The confidence region to the truncated gPC expansion is black shaded. Further-
more, the Monte-Carlo confidence region is shown as black dotted line and the reference mean as green
dashed line. We observe from Figure 1 for the rarefaction wave that the confidence region is already
well captured for level J = 0 and the mean for J = 3.

Likewise, Figure 2 shows the approximation for the shock case, when each realization admits a
discontinuity. The mean, however, is smooth as an average of discontinuous functions. The stochastic
Galerkin formulation approximates the mean as step functions (blue line). This behaviour is typical
and has been observed also for continuous input distributions [13, 46, 47, 58].
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Figure 1. Solution to the rarefaction wave at time t = 1 with discretization ∆x = 0.001,
CFL = 0.45 and Monte-Carlo reference solution with M = 106 samples.
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Figure 2. Solution to the shock wave at t = 1 with discretization ∆x = 0.001, CFL = 0.45
and Monte-Carlo reference solution with M = 106 samples.

5.2. Inhomogeneous case

This section is devoted to the stability analysis in Section 4. We investigate the guaranteed dissipa-
tivity condition of Theorem 4.1 and Corollary 4.2, which presume a relaxation to a first-order model.
Figures 3 and 4 show the behaviour of the inhomogeneous ARZ model for various relaxation parame-
ter, including the limit τ = 0. The left panels show the results for the level J = 2 without relaxation and
the exact confidence regions are plotted in the remaining panels for comparison. Indeed, we observe a
convergence towards the LWR model according to Corollary 4.2.
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Figure 3. Solution to the inhomogeneous ARZ model for the rarefaction case.
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Figure 4. Solution to the inhomogeneous ARZ model for the shock case.

6. Conclusions

A stochastic Galerkin formulation of the Aw-Rascle-Zhang (ARZ) model has been presented. In
particular, hyperbolicity has been shown for a special class of wavelet-based expansions. The analysis
is based on a non-conservative formulation. This allows a stability analysis for the inhomogeneous
ARZ with stiff relaxation, when solutions are expected to be close to an equilibrium velocity that satis-
fies a scalar conservation law. Due to the non-conservative formulation, the derived theoretical results
hold only for smooth solutions. However, a relationship to a conservative form has been established.
This allows for a numerical discretization with an IMEX scheme.
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