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Abstract: Corticomuscular connectivity plays an important role in the neural control of human 
motion. This study recorded electroencephalography (EEG) and surface electromyography (sEMG) 
signals from subjects performing specific tasks (walking on level ground and on stairs) based on 
metronome instructions. This study presents a novel method based on vine copula to jointly model 
EEG and sEMG signals. The advantage of vine copula is its applicability in the construction of 
dependency structures to describe the connectivity between the cortex and muscles during different 
movements. A corticomuscular function network was also constructed by analyzing the dependence 
of each channel sample. The successfully constructed network shows information transmission 
between different divisions of the cortex, between muscles, and between the cortex and muscles 
when the body performs lower limb movements. Additionally, it highlights the potential of the vine 
copula concept used in this study, indicating that significant changes in the corticomuscular network 
under lower limb movements can be quantified by effective connectivity values. 
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1. Introduction  

Walking is a complex task that depends on the complex control of the central nervous system [1]. 
In the neural control of human movement, the cerebral cortex directly or indirectly controls the 
activity of spinal neurons, causing muscle fibers to contract and produce movement. Studies have 
shown that walking training can change the state of brain activity and the excitability of the lower 
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extremity cortex and the spinal cord [2]. It can activate the direct cortical-spinal pathway through the 
primary motor area, reflected in the release of cortical potentials and activation of several peripheral 
motor units [3]. This potential synchronous activity reveals the connectivity between the cortex and 
the muscle. This connectivity indicates that the information flow between neuromuscular entities is 
related to cortical commands sent to the muscles and to muscle contraction feedback. Therefore, 
the study of these types of connectivity is conducive to understanding how the brain controls 
muscles, the impact of muscle activity on brain function, and the potential nature of specific 
physiological conditions. 

The control connectivity between the cerebral cortex and muscles is manifested at different 
levels of connectivity between electroencephalography (EEG) signals, surface electromyography 
(sEMG) signals, and EEG–sEMG signals [4]. EEG signals are the result among the interactions of 
neurons in the brain. The sEMG signal is an electrical signal generated by the activity of muscle fiber 
neurons and reflects the functional response of the muscle to the brain. EEG and sEMG signals can 
directly reflect the motion intention of the human body and, therefore, reveal the connectivity 
between the cortex and muscles during movement. Thus, the synchronous analysis of EEG and EMG 
signals can aid in estimating the functional relationship between the cerebral cortex and muscle 
tissue and can be used to describe the corticomuscular functional state [5–7]. 

Traditional connectivity analysis methods are based on coherence analysis and analyze the EEG 
and sEMG signals from the time, frequency, time–frequency, and causality domains [8–12]. 
Boonstra et al. [13] confirmed that neural drives regulate the frequency domain characteristics of 
sEMG based on the spectral analysis of sEMG captured during different walking tasks. Using the 
consistency analysis of sEMG and EEG during steady walking in healthy people, Jensen et al. [14] 
proved that the activities of the motor cortex and corticospinal tract during walking directly lead to 
muscle activity. Most of the research on EEG–sEMG connectivity is based on linear algorithms. In 
addition, Granger causality (GC) is commonly used in the field of neuroscience to calculate the 
connectivity between EEG and EMG. GC has been applied to calculate the coupling value between 
EEG and EMG signals, and it was found that there is bidirectional coupling between the cerebral 
cortex and muscle. However, interactions between signals generated by neural activity are highly 
nonlinear and nonstationary, and existing analysis methods have some shortcomings in this regard. 
They can only describe linear connectivity relationships between signals, and it is not easy to 
quantitatively analyze complex causalities, such as nonlinearity and higher-order effects. Continuous 
improvements in nonlinear analysis methods have gained interest, resulting in their increased 
application in analyzing the connectivity between the cortex and muscles [15,16].  

To overcome the aforementioned problems, a copula-based method is proposed in this study to 
perform corticomuscular coupling analysis. Copula theory [17], originating from the field of 
mathematics and statistics, has advantages in analyzing the dependent structure describing 
multiple variables, which can be applied to the correlation analysis of multiple time series in 
neuroscience [18,19]. Dauwels et al. [18] used copula theory to establish a Gaussian diagram 
model using multichannel EEG signals to infer the interactions between different brain regions. Hu 
et al. [19] used it to study the correlation between mixed data consisting of discrete neural spike 
sequences and continuous local field potential sequences, which revealed the nonlinear and 
higher-order causality of coupling between neural signal time series. As problems become more 
complicated, constructing a high-dimensional copula has become challenging [20]. The vine copula 
function [21], based on the copula function and the graphic tool, Vine, was introduced by Bedford to 
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overcome the problem of increasing complexity. The joint distribution is decomposed by the 
conversion formula between the conditional distribution and the joint distribution, which 
decomposes multidimensional variables into multiple copula functions and their marginal 
distribution functions in the form of a vine. High-dimensional problems are more intuitive when 
using this model than when using traditional copulas [22]. In addition, the vine copula model can 
take many forms, including the canonical vine (C-vine), drawable vine (D-vine), and regular vine 
(R-vine) [23–25]. Different copula functions provide different approaches to data analysis. 
Compared with the C- and D-vine structures, the R-vine structure has no fixed or special structural 
restrictions, which can better and more flexibly describe the dependencies among multiple variables. 
Thus, we decided to use the R-vine copula to analyze the coupling between EEG and sEMG. The 
model decomposes multidimensional variables into multiple copula functions and their marginal 
distribution functions in the form of a vine; thus, the causality between the brain and muscle 
multivariate variables can be determined. 

Table 1. Signal acquisition channels. 

EEG channel sEMG channel 

Fz Tibialis Anterior on left leg (TAL) 

F3 Tibialis Anterior on right leg (TAR) 

F4 Vastus Medialis on left leg (VML) 

Cz Vastus Medialis on right leg (VMR) 

C3 Semitendinosus on right leg (SEMR) 

C4 Semitendinosus on left leg (SEML) 

P3  

P4  

POz  

2. Materials and methods 

2.1. Data acquisition 

Six healthy subjects (three males and three females; age: 24–26 years; height: 160–180 cm; 
weight: 48–70 kg) were recruited for the experiments. All subjects read and signed an informed 
consent form approved by the institutional review board. Simultaneous 64-channel EEG signals were 
recorded using a portable wireless EEG amplifier, NeuSen. W64 (Neuracle Inc., China), and 
6-channel lower-limb sEMG signals were recorded using a Trigno™ Wireless EMG (Delsys Inc., 
Natick, MA, USA). The sampling rate of the EEG signal was 256 Hz, and all electrode impedances 
were found to be below 15 kΩ. The sampling frequency of the sEMG was 1000 Hz. All data records 
were synchronized using labels. Table 1 lists the sEMG electrodes (tibialis anterior (TA), 
semitendinosus (SEM), vastus medialis (VM), bilateral), and the EEG electrode locations (Fz, F3, F4, 
Cz, C3, C4, P3, P4, POz) used for the analysis. Subjects were asked to walk forward and backward 
on a straight section of level ground according to metronome instructions (60 and 120 bmp) and up 
and down an 8-step staircase in 2 min time blocks, as shown in Table 2. Figure 1 illustrates the 
experimental setup. The subjects repeated each action 30 times in each group. Each movement 
sequence (see Table 2) took approximately 6 s to complete. The experiment was repeated 10 times. 
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After every motion type was completed, the participant rested for 5 min to prevent fatigue. During 
the experiment, the subjects were instructed to fold their hands across their chest and focus their gaze 
on one point. They were instructed to relax their bodies, refrain from moving their head, and avoid 
blinking excessively to minimize artifacts in the EEG signals. 

Table 2. Experimental movements. 

Movement Abbreviations 

Walk slowly (60 bmp) WS 

Walk fast (120 bmp) WF 

Walk backward slowly (60 bmp) WBS 

Walk backward fast (120 bmp) WBF 

Walk up an 8-step staircase WUS 

Walk down an 8-step staircase WDS 

 

Figure 1. Images of experiments. 

2.2. Vine copula 

Copula Theorem: Sklar’s theory [26] allows F to be a joint distribution function of 
n-dimensional random variables 	 , , … , , with marginal distribution functions 

1,2, … , . If all marginal functions are continuous, there is a unique copula function C, 
such that 

 , , … , , , … , . (2.1) 

If the inverse functions of 1,2, … ,  are 1,2, … , , then by setting	
1,2, … , , the copula function can be calculated as 

 , , … , , , … , . (2.2) 

Similarly, the joint density function  can be defined as 

 , , … , , , … , ∏ , (2.3) 
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where , , … , , ,…,

…
, which is an n-dimensional copula density function, and 

 is a marginal density function.  
Tree definition: If N is a set of nodes and E is a set of edges, then a tree can be represented by a 

graph 	 , ; the tree is constructed using N and E connections and has no cycles. 
R-vine definition: , , … ,  is a vine on n elements if: 
1)	  is a tree with nodes 1,… ,  connected by a set of edges denoted . 
2) For 2,… , 1,  is a tree with a node and  edge set	 .  
3) For 2,… , 1 and , 	 	 , in which , ,	 , , and # , 1# 

represents the cardinality of the collection. 
Therefore, the one n-dimensional R-vine structure can be expressed using 1 trees (T), and 

tree  has 1  nodes and  edges, which refer to the copula 	  density functions. 
The edges that share one node in tree  become nodes of and are connected by other edges in tree 

. Equation (2.4) defines the R-vine density function.  

 , , … , ∏ ∏ ∏
, , , | , | ,

,
, | ,

 (2.4) 

Here,	 , … , , ,  is the edge between nodes a and b in the vine copula tree 
structure,  refers to the set of variables in the edge , , , | 	  represents the binary copula 
function that characterizes the edge , , and  is the inverse function of 1,… , . 

Copula function selection: There are two model selection criteria: the Akaike information 
criterion (AIC) and the Bayesian information criterion (BIC).  

 2 2  (2.5) 

 2  (2.6) 

Here, 	  is the estimated likelihood, m is the number of adjustable parameters in the 

copula function, and n is the number of data points. 

2.3. Processing steps used to construct the vine copula 

The sEMG and EEG signals were first preprocessed. Comprehensive experiments were 
performed using MATLAB’s (Mathworks Natick, MA, USA) script data analysis feature. The EEG 
signal was filtered using a 0.5–50 Hz band-pass filter, after which the common average method in 
MATLAB was used for rereferencing. Independent component analysis (ICA) was used to remove 
artifacts from the EEG signals and improve signal purity and accuracy. The sampling rate of the 
sEMG signal was reduced to 256 Hz. The sEMG signal was filtered using a 0.5–50 Hz band-pass 
filter, and interference was eliminated using the ICA algorithm. The sEMG signal was then denoised 
using a wavelet threshold. The dependencies among channels were then analyzed for each movement. 

The vine copula can be understood as a joint distribution function in which all marginal 
distributions approximately follow U [0,1]. The most important action taken was that the 
preprocessed data were normalized and transformed to follow uniform distributions via probability 
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integral transformation and were used as the input variable of the R-vine copula (called copula data), 
which are also the source data for establishing the vine copula model. The Kendall-τ correlation 
coefficient measurement method [27], widely used to measure dependence based on ranks, was 
selected to determine clear dependence structures between channels. Thus, the Kendall–τ correlation 
coefficient between each channel was obtained. Before choosing the appropriate copula function to 
describe the correlation between EEG and sEMG, the maximum likelihood estimation (MLE) 
method was used to estimate the parameters of the binary copula function. A well-fitted copula 
function for each class having the lowest AIC and BIC criteria was selected. When the two criteria 
selected different copula functions, the final decision was made by the AIC. The best pair-copula 
function among common binary copula functions, such as Gauss copula, Student-t copula, Clayton 
copula, Gumbel copula, or Frank copula, was selected to measure the correlation between two 
channels in the R-vine copula structure. After obtaining the R-vine structure for six movements, the 
pair-copula species and the estimated parameters in the R-vine copula model were obtained. The 
overall process applied the maximum spanning tree algorithm (see [28]) to construct the dependency 
structure of different movements until the number of edges in the tree was less than 2. 

 

Figure 2. Schematic showing the EEG and sEMG processing steps. 

3. Experimental results and discussion 

3.1. Model results 

The first layer tree (Tree 1) of the different movements was estimated using the maximum 
spanning tree algorithm, as shown in Figure 3. The determination of the structure of Tree 1 highlights 
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the direct and indirect dependence of each channel. Figure 3 clearly shows the EEG–EEG 
correlations. The closer the channel is to the tree structure, the higher its contribution to the 
movement process and the stronger its correlation with other channels. In the dependent structure, C3, 
C4, P3, and P4 play a significant role in connectivity. It can be seen that a fixed dependent structure 
of C4, Cz, C3, P3, and P4 exists under the WBS and WBF states and that there is a fixed dependent 
structure according to the strong and weak arrangement of correlations in other states. Signals from 
all participants exhibited similar traits. The performance of sEMG–sEMG also differed under 
different motion states. From the sEMG channels highlighted with the red markings in Figure 3, the 
correlations within each leg are significantly better than the correlation between legs, such as VM 
and SEM, indicating that these results reflect strong linkages among muscles. The correlations 
between EEG and sEMG can also be described in the walking state. For example, VM, SEM, and C4 
were tightly connected under WF and WBS, as highlighted in Figure 3. Significant movement 
changes in Tree 1 suggest that the cortex and muscles are involved in specific tasks but that 
differences in their specific connectivity exist. Figure 3 highlights the correlations between EEG–
EEG, sEMG–sEMG, and EEG–sEMG. 

 

(a) (b) (c) 

 
(d) (e) (f) 

Figure 3. Tree 1 indicating correlations for different movements. (a) WS; (b) WF; (c) 
WBS; (d) WBF; (e) WUS; (f) WDS. 

The best pair-copula function was selected from the commonly used binary copula functions to 
determine the best dependent vine structure between two channels. After obtaining the R-vine 
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structure for six movements, the pair-copula type and the estimated parameters in the R-vine copula 
model were obtained. The Kendall–τ correlation coefficient had positive and negative values, 
indicating a certain dependence between channels and differences in the degree of dependence. In the 
R-vine copula, the copula function in the first-level tree structure describes the unconditional 
correlation between the channels. Additionally, the remaining copula functions in the second- to 14th- 
level trees describe the conditional correlations. The correlation coefficient reflects the correlation 
between channels. This method considers the influence of other variables on the relevance of the 
investigated variables and improves the accuracy of estimating the true connectivity. Although 
several copula functions exist, only a few are easy to solve for high-dimensional problems. First, the 
type and number of pair-copula functions were calculated for each channel in the pair-popula 
parameter estimation for each action, as shown in Table 3. The most appropriate copula function was 
selected from a common family, among which the Clayton and Student-t functions were particularly 
popular. The Student-t copula has “fat tail” correlation characteristics. The Clayton copula is 
sensitive only to one end and, therefore, describes asymmetric correlations. According to the binary 
function characteristics in the vine copula structure, the copula data in this experiment have both 
asymmetry and fat tail correlation. The R-vine copula model chooses the most suitable copula 
function from several binary copula functions to describe nonlinear correlations among data. The 
various copula functions provide very different results when considering the correlations among data. 
However, for this same reason, the copula function is more adaptable to different movements. 

Table 3. Types and numbers of pair-copula functions. 

Action Gauss Student-t Frank Clayton Gumbel 

WS 7 38 13 36 11 

WF 5 59 4 21 16 

WBS 6 57 14 20 8 

WBF 6 44 20 27 8 

WUS 3 59 13 25 8 

WDS 4 58 5 21 17 

Total 31 315 69 150 68 

Table 4. Overall fit results of R-vine copula model. 

Action 
R-vine 

LogLik AIC BIC 

WS 10894670 −21788999 −21787864 

WF 7775231 −15550121 −15549042 

WBS 8415024 −16829676 −16828440 

WBF 1865384 −3730413 −3729354 

WUS 2764887 −5529432 −5528372 

WDS 35226420 −7052488 −7051427 

The determination of the rattan structure not only affects the fitting results of the entire copula 
model, but also affects certain special dependent information between studied sequences. Therefore, 
C-vine and D-vine copula models were also established based on EEG–sEMG data to closely 
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compare the fitting effects of different vine copula models. Tables 4–6 list the goodness of the 
overall fit for each of the three vine copula models. The larger the LogLik (log likelihood) and the 
smaller the AIC and BIC values are, the lower the error between the constructed model and the actual 
conditions, the better the model description capability, and the more successful the model 
construction. Comparatively, the R-vine copula model has a better fit, proving that it is suitable to 
use R-vine to construct a copula model for analysis of the movements described previously. 

Table 5. Overall fit results of C-vine copula model. 

Action 
C-vine 

LogLik AIC BIC 

WS 4529541 −9058908 −9058327 

WF 3483701 −6967194 −6966538 

WBS 3929650 −7859067 −7858297 

WBF 862533 −1724862 −1724252 

WUS 2555627 −5111035 −5110354 

WDS 1949580 −3898928 −3898229 

Table 6. Overall fit results of D-vine copula model. 

Action 
D-vine 

LogLik AIC BIC 

WS 8671735 −17343118 −17341943 

WF 7677440 −15354539 −15353460 

WBS 8396825 −16793294 −16792111 

WBF 2939655 −5878965 −5877936 

WUS 1886840 −3773318 −3772197 

WDS 3511901 −7023455 −7022412 

3.2. Connectivity pattern 

As shown in Figures 4–6, we used chord diagrams to intuitively visualize the connectivity 
between the cortex and the muscles by analyzing the Kendall–  correlation coefficient of the EEG 
and sEMG signals. A chord graph is a visualization method that displays relationships between data 
and mainly describes complex dependencies. Node data are arranged radially along the 
circumference, and nodes are linked by weighted (wide) arcs. The nodes in the figure represent 15 
data channels, the size associated with a node represents the number of channels that depend on the 
current channel, and the width of the edges represents the connection strength between channels.   

The intercortical connectivity is shown in Figure 4, and the full bands highlight the existence of 
interconnectivity in the cortex for different movements. It can be seen that a speed change has a 
certain influence when walking on the ground. Compared with WS, the connectivity of Cz, C4, P4, 
and POz increased during WF, whereas the F3-related connectivity weakened. C3, C4, F3, and F4 
played primary connectivity roles in WBS. However, their connectivity decreased with a change in 
speed in the WBF experiments. Additionally, interconnectivity in the unilateral cerebral cortex was 
significant during forward walking (WS, WF), whereas the connectivity between the left and right 
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cerebral cortex increased during backward walking (WBS and WBF). Additionally, the intercortical 
connectivity during WUS and WDS was closer than that when other movements were considered. 
The interconnectivity in the cortex changes for different motion states, indicating that the activity of 
the cortex in the walking state varies according to the specific task. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4. Chord diagrams for EEG–EEG connectivity. (a) WS; (b) WF; (c) WBS; (d) 
WBF; (e) WUS; (f) WDS. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5. Chord diagrams for sEMG–sEMG connectivity. (a) WS; (b) WF; (c) WBS; (d) 
WBF; (e) WUS; (f) WDS. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  

Figure 6. Chord diagrams for EEG–sEMG connectivity. (a) WS; (b) WF; (c) WBS; (d) 
WBF; (e) WUS; (f) WDS. 

Figure 5 highlights the intermuscular connectivity analyzed in this study. It shows that the 
intraleg connectivity was higher than the interleg connectivity. No obvious difference was observed 
for walking forward (WS, WF) at different speeds, except for a weakening of the intraleg 
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connectivity and an enhancement of the interleg connectivity between the VM and SEM muscles. 
The obvious increase in connectivity observed between the WBS and WBF movements occurred 
primarily because of the connectivity between the TA and SEM muscles. For the WUS and WDS 
movements, all muscles exhibited strong ipsilateral muscle connectivity. During any exercise, the 
correlation with SEM was greater than that for any other muscle. Additionally, the muscle of the left 
leg was more closely connected than that of the right leg, especially between SEML and other 
muscles, indicating that the SEM location may be the best electrode position for measuring the 
correlation between EEG and sEMG in this experiment. 

Figure 6 shows the corticomuscular connectivity based on different frequency bands. First, we 
found that EEG–sEMG connectivity in different EEG frequency bands could be reflected in the 
gamma band. However, these were more obvious in the theta, alpha, and beta bands. Theta, alpha, 
and beta exhibited an obvious connectivity during WS and a weakened connectivity during WF, 
mainly reflected in the alpha rhythm. The strong connectivity between WBS and WBF is mainly 
reflected in theta, alpha, and gamma. Compared with WBS, we found that the connectivity between 
the cortical area in the WBF movement and the calf muscle increased in theta but decreased in alpha 
and that there was no obvious change in the connectivity between beta and gamma. The overall 
connectivity was lower when walking backward than forward. Clearer corticomuscular connectivity 
was observed for the WDS movement in each frequency band than for WUS. Among these six 
movements, WS, WBS, and WDS best revealed the connectivity between the cortex and muscles and 
the influence of speed change on connectivity. Second, a comparison of the EEG–sEMG 
connectivity analysis in muscles indicated that the connectivity of the cortex and muscles decreased 
or increased for different movements. Figure 6 shows that the connectivity strength of the cortex and 
muscles in the theta and beta rhythms at the VM muscle during WF movement was lower than that 
during WS, whereas SEM showed the opposite. For all movements, the corticomuscular connectivity 
on SEML was more prominent than that on SEMR. The SEML muscle is noticeably connected to 
each cortical area, whereas the connectivity of SEMR varies based on the physical task. 
Particularly, the cortex and muscles associated with SEMR are weakly connected during WDS, 
whereas SEMR is closely connected with Fz, F3, and Cz during WUS. In short, owing to the 
different muscle functions during walking, different forms of coupled oscillations exist between 
cortical neurons and muscle motor neurons. Different rhythms of the EEG are involved in various 
functional coupling oscillations in the process of motion control, and different rhythms and 
muscles lead to varied EEG–sEMG connectivity. 

3.3. Construction of corticomuscular network 

We analyzed corticomuscular connectivity defined by 15 nodes (nine EEGs and six sEMGs) 
based on the links between pairs of nodes. The degree of connectivity for each node was calculated 
for binary networks to measure the extent to which the cortical nodes influenced the muscle nodes. 
The correlation of Tree 1 of the vine copula model representing the full bands was applied as the 
weighted boundary value of the network. A threshold selection strategy [29] was used to remove the 
weaker weighted edges in the adjacency matrix, that is, weaker edges in the adjacency matrix were 
set to zero. At the same threshold (threshold = 0.04), the resulting adjacency matrix was transformed 
into a simplified corticomuscular function network, as shown in Figure 7. The red dots indicate the 
anterior muscles (TA and VM, bilateral), and the yellow dots indicate the posterior muscles (SEM, 
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bilateral). There are significant differences in the connectivity of the network models for different 
activities. Figure 7 shows that the cortex and muscles are actively involved in movement under 
specific tasks, as indicated by the connectivity changes. The activity of the corticomuscular network 
in the walking state changes according to the task. Additionally, the connectivity within one leg was 
significantly better than that between both legs. As the speed changed, the corticomuscular 
connectivity during walking became obvious. 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Corticomuscular function network. (a) WS; (b) WF; (c)WBS; (d) WBF; (e) 
WUS; (f) WDS. 

In addition, we used the GC method to construct a corticomuscular network that was used for 
comparison in evaluating the performance of the proposed method. The average weighted clustering 
coefficient and weighted feature path length of multiple sets of data based on GC and the proposed 
method were calculated to measure the characteristics of the corticomuscular functional network. A 
t-test was used to evaluate any significant difference between the average weighted clustering 
coefficient and weighted feature path length for different movements, and the results are shown in 
Figure 8. While the size and density of the six movement networks in the corticomuscular functional 
network were the same, the network characteristics of the movements were different.  Different 
actions produced significant differences. In contrast, the proposed method can better reflect the 
significant differences between different actions than GC. Speed was also found to have no 
significant influence on the brain muscle network.  In the network constructed by the proposed 
method, it is particularly obvious that the weighted clustering coefficient of WBF is the largest 
among all actions, indicating that the network corresponding to the WBF movement is more complex. 
WBS exhibited the most significant difference to the other movements, and there were no significant 
differences among the other movements. This may be due to the conscious and highly concentrated 
movement control of the brain in the backward walking mode and the abnormal muscle stretching 
and contraction state induced by specific walking movements, leading to significant changes in the 



4354 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4341–4357. 

connectivity between the muscle and the cortex. It can be argued that the experimental actions in this 
study can effectively describe corticomuscular connectivity under specific walking conditions. 

(a) (b) 

Figure 8. Clustering coefficient and characteristic path length of networks obtained with 
vine copula and GC in different movements. (a) Weighted clustering coefficient; (b) 
weighted feature path length. 

  
(a) (b) 

Figure 9. Average weighted clustering coefficient and average weighted feature path 
comparison of regular network (ordered), corticomuscular function network (exp), and 
random network (random). (a) Weighted clustering coefficient; (b) weighted feature 
path length. 

According to the network characteristics, a network can be generally divided into random, 
regular, small-world, and scale-free networks. The average weighted clustering coefficient and 
feature path length of the corticomuscular function network (exp), regular network (ordered), and 
random network (random) were compared, as shown in Figure 9. The weighted clustering coefficient 
of the corticomuscular function network was much larger than that of the random network, and there 
was no significant difference compared to the weighted clustering coefficient of the regular network. 
Additionally, the average weighted characteristic path length of the corticomuscular function 
network was longer than that of the random network and shorter than that of the regular network. As 
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the small-world network has the characteristics of both regular and random networks, it has a higher 
clustering coefficient and a shorter characteristic path. Therefore, this comparison highlights that the 
constructed network is meaningful and has small-world characteristics. 

3.4. Limitations and future considerations 

This study had several shortcomings. First, the walking speed used in this study was 
self-selected based on a metronome, unlike walking at a constant speed on a treadmill. Each healthy 
subject completed 10 experiments for each movement, and the number of subjects represents a 
limited sample size. We plan to include a sample set of subjects who have suffered a stroke in future 
experiments. Future work should also consider a more rigorous assessment of the role signals play in 
corticomuscular connectivity at different frequencies. Additionally, the method of corticomuscular 
analysis used in this study can be improved to describe the motion response state in a specific 
walking motion and to quantitatively describe the two-way information transmission characteristics 
of the cortex and muscles in the process. Furthermore, connectivity analysis of the cortex and 
muscles helps to explore the control mechanisms involved in different movements. Additionally, the 
two-way information transmission characteristics of the cortex and muscles in the process are 
quantitatively described during walking and can provide a theoretical basis for walking rehabilitation 
evaluations. However, more research is required to determine the exact interactions that lead to 
corticomuscular connectivity and to describe the functional role of the motor cortex in periodic 
bilateral movements such as walking. 

4. Conclusions 

Neurophysiological analysis has gained popularity in the field of neurorehabilitation science. 
Walking training remains a challenge with respect to lower-limb nerve rehabilitation systems. This 
study sought to determine the connectivity between signals from the cortex and the muscle during 
walking using simultaneous EEG and sEMG recordings from healthy subjects asked to perform 
specific tasks (level ground and stair walking). To model the connectivity problem between EEG and 
sEMG, the R-vine copula was initially used to study and analyze the related data for network 
construction. The vine copula used in this study accurately depicted the effective EEG–EEG, sEMG–
sEMG, and EEG–sEMG connectivity. The results indicated that connectivity of the cortex and 
muscles was present during lower limb movement in humans. The method proposed in this paper 
was used to construct a corticomuscular functional network to verify that the constructed network is 
meaningful and has small-world characteristics. The analysis demonstrated that the vine copula 
method is feasible and can effectively describe the connectivity among cortical muscles under 
specific walking conditions. With the continuous exploration of analysis methods, research on the 
connectivity of bioelectric signals will become more in-depth and will continue to mature. This 
should help to further clarify the principle of corticomuscular control in human gait movement and 
improve its suitability for evaluation and application of rehabilitation treatments. 
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