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Abstract: Segmentation and visualization of liver vessel is a key task in preoperative planning and 
computer-aided diagnosis of liver diseases. Due to the irregular structure of liver vessel, accurate 
liver vessel segmentation is difficult. This paper proposes a method of liver vessel segmentation 
based on an improved V-Net network. Firstly, a dilated convolution is introduced into the network to 
make the network can still enlarge the receptive field without reducing down-sampling and save 
detailed spatial information. Secondly, a 3D deep supervision mechanism is introduced into the 
network to speed up the convergence of the network and help the network learn semantic features 
better. Finally, inter-scale dense connections are designed in the decoder of the network to prevent 
the loss of high-level semantic information during the decoding process and effectively integrate 
multi-scale feature information. The public datasets 3Dircadb were used to perform liver vessel 
segmentation experiments. The average dice and sensitivity of the proposed method reached 71.6 
and 75.4%, respectively, which are higher than those of the original network. The experimental 
results show that the improved V-Net network can automatically and accurately segment labeled or 
even other unlabeled liver vessels from the CT images. 

Keywords: liver vessel; V-Net, dilated convolution; 3D deep supervision mechanism; inter-scale 
dense connections 

 

1. Introduction  

Liver cancer is the second most deadly cancer after lung cancer and one of the cancers with the 
fastest increasing morbidity and mortality in China [1]. At present, the computer-assisted treatment 
method for liver cancer is thermal ablation which is an effective treatment method to eliminate 
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malignant liver tumors in addition to surgical cutting and liver transplantation. Three-dimensional 
visualization of liver vessels is essential for the path planning and guidance for thermal ablation. The 
relative position of the liver vessels and liver tumors can determine the final ablation effect and 
affect the tumor recurrence rate [2]. Manually delineating liver vessels is time-consuming and 
laborious, and the delineation results between different experts are quite different. Due to the 
irregularity, uneven distribution, and the low contrast with surrounding organs of liver vessels, it is 
difficult to segment. Therefore, an accurate, fast, and efficient liver vessel segmentation method is 
needed for clinical applications.  

The traditional methods of liver vessel segmentation mainly include the region growing method, 
image filtering and enhancement algorithm, tracking algorithm, and machine learning method [3]. 
The region-growing method is a semi-automatic segmentation method based on pixels or voxels, 
which relies on gray similarity and spatial proximity. Oliveira et al. [4] used the region-growing 
method to extract liver vessels in the segmented liver region, which can obtain the main branches of 
vessels, but it has a weak effect on small vessel segmentation and is sensitive to noise. Chi et al. [5] 
proposed a vascular context-based voting system to segment vessels using regional features, but they 
required manual labeling of seed points and took a long time. Image filtering enhancement method, 
based on the characteristics of the tree structure of the liver vessels as a whole, using the relationship 
between Hessian matrix eigenvalues to extract the tubular structure in the image, which is used for 
multi-scale enhancement of liver vessels [6,7]. However, this method cannot distinguish liver vessels 
correctly on images with high noise or uneven intensity, so region growth [8], graph cuts [9], and 
morphological operations are often used for post-processing. The tracking algorithm starts from a 
certain point of the vessel boundary on the image, searches for and tracks the adjacent boundary 
points to obtain the entire vessel boundary [10]. The above all algorithms are prone to produce 
segmentation errors and often require user interaction. 

In machine learning algorithms, Zeng et al. [11] used K-means clustering combined with a 
hybrid active contour model to perform coarse vessel segmentation. Gaussian filters were utilized to 
promote 3D region growth for fine vessel segmentation. The final segmentation result combines 
these two segmentation results, but the segmented liver vessel surface was rough, and some thick 
vessels with lower intensity failed to be extracted.  

Recently, deep learning has achieved breakthrough results in computer vision tasks. For 
example, convolutional neural network (CNN) is a classic deep learning model that can learn 
complex data features from numerous training samples, thereby avoiding the cumbersome feature 
extraction process and possessing generalization capabilities. Kitrungrotsakul et al. [12] used three 
deep convolutional networks (DNN) to learn liver vessel features from different planes of CT images, 
but the network failed to segment liver vessels that have diverse intensity range than the training 
datasets. The fully convolutional neural network U-Net makes a great contribution to medical image 
segmentation [13]. It introduces the encoder-decoder and skip connections, which is very suitable for 
small sample training. Since most medical images are volume data, networks suitable for 3D 
medical image segmentation have appeared, such as 3DU-Net [14] and V-Net [15]. Yu et al. [16] 
utilized 3D residual U-Net spatial contextual information to extract liver vessels from the CT 
images. Xu et al. [17] applied a 3DCNN network to extract liver vessel features. The network uses 
dilated convolutional layers instead of the down-sampling layers to capture multi-scale context 
information without reducing the size of the feature map. Huang et al. [18] also used the 3DU-Net 
network to extract all liver vessels. 
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Due to the irregular shape of liver vessels, the surrounding tissue has low contrast, and 3D 
medical training samples with annotations are minimal. Besides, image segmentation is essentially a 
classification problem at the pixel level. Suppose the foreground and background categories are not 
balanced. In that case, it will easily cause training to fall into the optimal local value, and the small 
foreground area will be lost or without detected. Although the spatial information of the decoder in 
the V-Net network is relatively rough, it has powerful semantic features and accurate resolution. 
However, de-convolution and convolution often result in the loss of high-level semantic information 
so that the contextual information cannot be propagated to a higher resolution layer. The above 
problems make it difficult to segment liver vessels with conventional deep convolutional networks. 

V-Net is chosen as the basic network structure of liver vessel segmentation and improved. The 
main contributions are as follows: 1) The original network structure is optimized and a 3D deep 
supervision mechanism [19] is introduced into the network, which helps the network learn semantic 
features better, accelerate the convergence speed and improve prediction accuracy. 2) Inter-scale 
dense connections are designed in the decoder, aiming to reduce the loss of high-level semantic 
information during the decoding process and effectively fuse multi-scale feature information. 3) A 
loss function composed of binary cross-entropy and dice coefficient is utilized to ensure that the 
network can still effectively train in the case of category imbalance. 

2. Methods 

2.1. Preprocessing 

The preprocessing steps are as follows: 1) CT values of the CT image are limited to [−200,200] 
HU, which can filter out other organs in the image. 2) Due to the limitation of GPU memory, the 
original resolution is changed from 512 × 512 to 256 × 256 by down-sampling. 3) Because the 
thickness of most training dataset slices is 1.6 mm, the thickness of data slices less than 1.25 mm or 
greater than 2 mm is normalized to 1.6 mm by trilinear interpolation. A three-dimensional training 
data is taken multiple 48 slices continuously for training with a sliding step of 5. 4) Rotation and 
mirroring operations are used to augment the data. 

2.2. Improvement of V-Net network framework 

V-Net is a 5-layer symmetrical network architecture with an encoder that extracts spatial 
features from images, and a decoder that constructs segmentation graphs from encoded features, as 
well as the skip connection structure that combines the position information in the encoding path 
with the context information in the decoding path to make up for the missing edge features and 
spatial information during the decoding process. To mitigate the disappearance of the network 
gradient, the residual units are added to the network. The formula is as follows: 
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where   represents the residual function, 
lx  is the input feature, and 

i
W  is a group of weights 

related to the residual units. Any deeper feature Lx (L > l ≥ 1) can be expressed as a shallow feature 
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lx  plus an accumulated residual function 1
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Because the original V-Net has many parameters, it is easy to cause the network to overfit. 
Therefore, 3 × 3 × 3 convolution kernels are applied to replace the original 5 × 5 × 5 convolution 
kernels in each layer of the network. A PReLu activation function adopted throughout the network. 
The down-sampling of the V-Net network adopts the convolution method. That is, the feature map is 
convolved using a 2 × 2 × 2 convolution kernel with stride 2 in the encoder to reduce the resolution 
rate of the feature map. At the same time, the number of feature channels in each layer is doubled to 
learn in-depth features more accurately and fully.  

Although down-sampling can increase the receiving field, it also reduces the spatial resolution. 
Therefore, the last layer of the network is changed. Only the number of feature channels is increased 
without change the feature map size (see Figure 1). Three dilated convolutions are introduced in the 
third and fourth layers of the encoder to avoid losing the resolution and still increase the receptive 
field. The third layer dilation rate are 1, 2, and 4, and the corresponding receptive fields are 3, 7, 
and 15, respectively. The fourth layer dilation rate 3, 4, and 5, and the corresponding receptive fields 
are 11, 15, and 19, respectively. Adjusting the dilation rate of the dilated convolution can extract the 
context information about different scales of the feature map. The network can locate the target more 
accurately due to the improvement of the resolution. Each layer in the decoding path uses a 2 × 2 × 2 
de-convolution with stride 2 for up-sampling. The number of feature channels is halved, followed by 3 
padded convolutions (the last layer is 2 padded convolutions). Finally, in the output layer, a 1 × 1 × 1 
convolution is performed to adjust the number of channels of the characteristic map. Because the 
image resolution is reduced in the preprocessing stage, trilinear interpolation is performed to restore 
the feature map to the original image size. A sigmoid function is applied to obtain the final 
probability map. A dropout layer is added at the end of the residual unit of each layer to prevent the 
network from overfitting. 

2.3. 3D deep supervision mechanism 

A 3D deep supervision mechanism is introduced into the network to optimize the model, speed 
up the network learning speed and prevent information loss during the forward propagation. Because 
the parameters of each path are initialized randomly, this mechanism allows different paths to update 
the weights independently without interfering with each other so that the learning of the network will 
not stay in the same local minimum. Moreover, introducing a deep supervision mechanism allows 
the network to obtain more feedback information during the back propagation process than just using 
the last output layer for back propagation (see Figure 1). Three output layers are added to the decoder 
of the improved V-Net network. Each layer's characteristic map is up-sampling by trilinear 
interpolation, and then the loss value is calculated after a sigmoid function. The 3D deep supervision 
formula is as follows: 

 

2
2

; ) ( ; ) ( )( dd d d d
d D d D

L L W L W w W w   
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where ;( )L W  is the loss value calculated by comparing the prediction result of the main network 
with the label of the ground truth,   and W  respectively represent the training database and main 

network weights, ( ; )d d dL W w


， is the auxiliary loss of all hidden layers, d  is the balancing weight of 
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dL . 
d

W  represents the weight of the d-th layer in the main network and the third term is the weight 

attenuation regularizations and   is the hyper-parameter of weight.  
The 3D deep supervision mechanism can promote the expression of high-level features by 

hidden layers, thereby promoting the discrimination capability of the model. As these different loss 
components propagate backward, the equivalent training data expands, thereby effectively 
preventing the network overfitting and further boosting its generalization capability. 
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Figure 1. Schematic diagram of the overall structure of the improved V-Net network. 

2.4. Inter-scale dense connections 

Inter-scale dense connections are introduced in the decoder to further reduce the information 
loss during the decoding process. The network constructs encoders and decoders for top-down and 
bottom-up methods. Although the spatial information is coarse in the decoder, it has powerful 
semantic features and precise resolution. Due to the large semantic gap between the layers, these 
specific inter-scale dense connections can directly propagate the feature information from one scale 
stage to another scale stage so that it can fuse feature information of different scales to prevent 
high-level semantic information loss. 

The improved V-Net network is a four-layer network structure, and we use the feature activation 
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of the residual block output of each stage from bottom to top in the decoder. We indicate that the output 
of residual block is {p1, p2, p3, p4}, and the up-convolution block is {u1, u2, u3} (see Figure 1). To 
achieve inter-scale dense connections at the decoder (see Figure 2), p in p4→u3, p3→u3, p4→u2 is 
passed through a connection block (The connection block includes using trilinear interpolation for 
up-sampling and using 1 × 1 × 1 convolution to reduce the number of channels.) is fused with the 
corresponding u. Then it is fused again with the feature maps propagated through the skip connection in 
the same layer to achieve multi-fusion. The inter-scale dense connections effectively avoid the loss of 
deep semantic information caused by operations such as up-sampling and multiple convolutions. 

The inter-scale dense connections formula is as follows: 

 
21
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where L  represents the number of network layers, Γ is the j-th layer de-convolution block in the 

encoder, jx  is the input feature of the de-convolution block, and jw  is a group of weights related 

to the de-convolution block. Θ is the connection block after the residual structure of j i  layer. 

j ix   is the input feature of the connection block, and j iw   is a group of weights related to the 

connection block. 
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Figure 2. Inter-scale dense connections. 
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2.5. Loss function 

A combined loss function, which is composed of binary cross-entropy loss function and dice 
loss function [20], enables the network to be effectively trained in imbalanced categories. The 
combined loss function formula is as follows, where   is a weighting factor. 

 (1 ) (1 )    BD DiceBCEL L L  (2.4) 

The binary cross-entropy loss function is as follows: 
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The dice loss function is as follows: 
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where y


 represents the prediction result of the network, y represents the true label of the 

corresponding voxel. 

2.6. Post-processing 

In post-processing, the volume of each connected region is calculated. To prevent the predicted 
disconnected liver vessels from being removed, we remove the small area noise (less than 450 mm3) 
caused by classification errors through volume judgment, effectively reducing false positives in 
segmentation results (see Figure 3). 

 
(a) (b) 

Figure 3. The process of post-processing. (a) (b) 3D visualization result before and after 
post-processing. 
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3. Experiments and results 

3.1. Experimental environment and experimental data 

The hardware configuration required for the experiment is Intel (R) Xeon (R) Silver 4110 CPU 
@ 2.10GHz and an NVIDIA Tesla T4 GPU (16 GB memory) and the development tools are 
Python3.7 and PyTorch.  

The experimental data were selected from the public CT image datasets 3Dircadb provided by 
the Research Institute against Digestive Cancer. The datasets contain 20 three-dimensional images of 
enhanced portal venous phase with pixel spacing ranging from 0.56 to 0.86 mm, slice thickness 
ranging from 1mm to 4 mm, number of slices ranging from 64 to 502, and single-layer resolution of 
512 × 512, by manually selecting 12 cases for training and 8 cases for testing. 

3.2. Parameter settings and training 

The dropout parameter was set as 0.5 and the 3D deep supervision weight was initialized to 0.33, 
which decays as the training progress. A typical Adam optimizer was selected for network training, 
and the initial learning rate was 0.0001. Considering the computing resources, the batch size was set 
as 1, and the final number of the epoch was 35. Because the inter-scale dense connections were 
designed into the improved V-Net network, the probability map of the last output layer is used as the 
final segmentation result when making predictions. The training time of the model was about 10 h, 
the testing time of the 8 test datasets was 9.58–26.53 s, and the average testing time was 13.46 s. 

3.3. Evaluation metrics 

The following four evaluation metrics were selected, which include the dice coefficient (Dice), 
accuracy (Acc), sensitivity (Sen), and specificity (Spe). The formulas are as follows: 

2

2

TP
Dice

TP FP FN


 
 (3.1) 

 
TP TN
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
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where TP and TN are the numbers of voxels correctly divided into liver vessels and background, and 
FP and FN are the numbers of voxels incorrectly divided into liver vessels and background. 
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3.4. Selection of the weighting factor 

The selection of weighting factor   in the combined loss function was analyzed, which was 
set to 0, 0.3, 0.5, 0.7, 0.9 and 1, respectively. Table 1 shows the effect of combined loss function on 
improved V-Net network performance under different weight factors. It can be seen from Table 1 that 
when   is 0.7, the performance of the network is good. In particular, when   is 0, the loss 
function is the binary cross-entropy loss function; when   is 1, the loss function is the dice loss 
function. Therefore, the weighting factor   in this experiment was set to 0.7. 

Table 1. The impact of different weighting factors on improved V-Net performance. 

Weighting factor   Dice (%) Sen (%) 

0 66.9 67.4 

0.3 67.0 69.1 

0.5 67.9 72.7 

0.7 68.7 73.4 

0.9 68.3 72.8 

1 66.7 71.4 

As shown in Figure 4, using the combined loss function in the network can segment even 
smaller liver vessels than using the dice loss function. However, there are still disparities compared 
with the annotated data. Therefore, in the following experiments, the combined loss function is used 
to train the network. 

 

(a) (b) (c) 

Figure 4. Performance comparison on different loss functions. (a) 3D visualization result 
using dice loss function; (b) 3D visualization result using combined loss function; (c) 3D 
visualization result of expert segmentation. 

3.5. Evaluation and comparison 

Each improved method was tested on 8 3Dircadb datasets, and the results were post-processing. 
As shown in Table 2, after introducing the 3D deep supervision mechanism into the improved 
V-Net network, the average dice, sensitivity, accuracy, and specificity are improved by 1.3, 0.7, 0.5, 
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and 0.2%, respectively. The 3D deep supervision mechanism can alleviate the gradient 
disappearance or explosion of the network during the training process, make the network update 
parameters from different paths without interference, and help the network learn discrimination 
features better. When inter-scale dense connections were introduced into the improved V-Net 
network, the average dice was 71.2%, sensitivity was 74.8%, accuracy and specificity were 98.4 
and 99.4%, respectively. Compared with the improved V-Net network evaluation, the average dice 
value improved by 2.5%, and sensitivity improved by 1.4%, which shows that this method can 
effectively compensate for the loss of high-level semantic information due to multiple up-sampling 
and convolution and achieve inter-scale feature fusion. As shown in Figure 5, this method can extract 
more thin-walled small liver vessels and further optimize the segmentation results. 

Table 2. Comparison of segmentation performance of the improved network on 3Dircadb 
test data. 

Methods Dice (%) Sen (%) Acc (%) Spe (%) 

3DU-Net 65.7 68.1 97.1 98.4 

Improved V-Net + BDL  68.7 73.4 97.6 99.2 

Improved V-Net + BDL  + DS 70.0 74.1 98.1 99.4 

Improved V-Net + BDL  + ISD 71.2 74.8 98.4 99.4 

Improved V-Net + BDL  + DS + ISD 71.6 75.4 98.5 99.5 

Improved V-Net + BDL  + DS + ISD (no pp) 71.5 75.5 98.4 99.5 

(DS: 3D deep supervision mechanism; ISD: inter-scale dense connections; no pp: no post-processing) 

 

(a) (b) (c) 

Figure 5. An example of performances of the proposed method. (a) liver vessel slice 
result using improved V-Net network; (b) liver vessel slice result using the inter-scale 
dense connections; (c) liver vessel slice result of expert segmentation. 

Finally, the 3D deep supervision mechanism and the inter-scale dense connection were 
introduced to the network simultaneously. The final average dice, sensitivity, accuracy, and 
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specificity of the testing data were 71.6, 75.4, 98.5, and 99.5%, respectively. The average dice, 
sensitivity, accuracy and specificity of liver vessels without post-processing were 71.5, 75.5, 98.4 
and 99.5%, respectively. As shown in Table 3, the average sensitivity of our proposed method is 
slightly lower than the method [9], but it belongs to a semi-automatic segmentation method, and 
other metrics are significantly higher than the comparison methods, which indicates that our 
proposed method has better segmentation performance. As shown in Figure 6, the narrow liver 
vessels segmented by our method are closer to the real liver vessel contour and have high accuracy 
and robustness for images with high noise, low contrast and varied intensity distribution. 

Table 3. Comparison of segmentation performance between the proposed algorithm and 
other algorithms. 

Methods Dice (%) Sen (%) Acc (%) Spe (%) 

Method in [5] − 70.0 98.0 99.0 

Method in [9] − 79.8 97.7 98.6 

Method in [18] 67.5 74.3 97.1 98.3 

Proposed method 71.6 75.4 98.5 99.5 

(The bold value is the highest value of each metric) 

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 6. Examples of performances of the proposed method. (a) CT images; (b) (e) liver 
vessel slices and 3D visualization results using a combined loss function; (c) (f) liver 
vessel slices and 3D visualization results using the 3D deep supervision mechanism and 
the inter-scale dense connections; (d) (g) liver vessel slices and 3D visualization results 
of expert segmentation. 

Kitrungrotsakul et al. [12] finally predicted the average dice value was 83%. Although the dice 
value is high, unlabeled liver vessels were not extracted in the results. Through experiments, we find 
that the proposed method can extract liver vessels unlabeled by experts, and these liver vessels have 
been recognized by experts, as shown in Figure 7. Therefore, our evaluation results are closer to the 



4338 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4327–4340. 

clinical results rather than the comparison results based on incomplete annotations. The proposed 
method is proved to effectively and accurately extract liver vessels, which is used to replace the 
interactive segmentation of liver vessels in clinical practice and assist surgical planning through 
three-dimensional visualization. In the future, we will also verify the proposed method on more 
vascular datasets, such as aortic vessels [21]. 

 

(a) (b) (c) 

(d) (e) (f) 

Figure 7. An example of unannotated liver vessel segmentation. (a) CT image; (b) (e) 
liver vessel slice and 3D visualization result using the proposed method; (d) combined 
liver vessel slice for (b) and (c); (c) (f) liver vessel slice and 3D visualization result of 
expert segmentation. 

4. Conclusions 

This paper proposes a method for automatically segmenting liver vessels from CT images based 
on an improved V-Net network. Rotation and mirroring operations are performed to augment the data. 
A combined loss function is utilized to improve the segmentation accuracy and sensitivity of liver 
vessels with unbalanced categories. The dilated convolution is introduced in the network encoder to 
increase the receptive field of the network in the case of reducing down-sampling. The 3D deep 
supervision mechanism is introduced into the network to speed up the network learning speed and 
improve the network's discrimination ability. Besides, inter-scale dense connections are designed into 
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the network, effectively integrating multi-scale feature information. The final experimental results 
show that all metrics have been significantly improved and have been recognized by experts. The 
algorithm can automatically and accurately segment liver vessels with complex structures and low 
contrast with surrounding tissues from CT images. 
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