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Abstract: The typical aim of user matching is to detect the same individuals cross different
social networks. The existing efforts in this field usually focus on the users’ attributes and network
embedding, but these methods often ignore the closeness between the users and their friends. To this
end, we present a friend closeness based user matching algorithm (FCUM). It is a semi-supervised
and end-to-end cross networks user matching algorithm. Attention mechanism is used to quantify the
closeness between users and their friends. We considers both individual similarity and their close
friends similarity by jointly optimize them in a single objective function. Quantification of close
friends improves the generalization ability of the FCUM. Due to the expensive costs of labeling new
match users for training FCUM, we also design a bi-directional matching strategy. Experiments on
real datasets illustrate that FCUM outperforms other state-of-the-art methods that only consider the
individual similarity.

Keywords: user matching; cross networks; friend closeness; network embedding; attention
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1. Introduction

In recent years, with the rapid increasement of people’s social needs, the dependence on social
networks is continued to grow. In the middle of 2020, the total user scale of various social networks
around the world was 4.5 billion, and the scale of social network users in China has reached 0.94
billion∗. In order to take advantage of different services provided by different social networks, it

∗http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2021214


4265

becomes a common phenomenon that a user may register accounts on multiple social networks
respectively. For example, a user can post his latest tweet, feelings, or related news on Twitter to share
with others, or use Instagram to share pictures captured at any time. Social network is a platform for
communication among users which may have different kinds of forms. The core of Social network is
to connect different users, so that users can communicate conveniently to meet the needs of social
interaction. The data in these social networking sites can often be used to solve problems in other
areas, such as cross-domain recommendation [1, 2], information diffusion [3], privacy protection [4]
and even public security field [5, 6]. In terms of cyber-security, it is significant to have a
comprehensive social network identity information of a natural individual by using user matching
technology. A holographic profile of the user can be quickly established through user matching
technology, which can provide rich information support for case investigation, identity verification
and risk warning. For example, the verification is more difficult when investigating a suspicious user
of a overseas social network. At this time, police can try to match the suspicious user to the known
user information so that reduce the workload of manual checking and get more investigation clues.
Therefore, it is necessary to match users across social networks. User matching across social
networks is an emerging field that has attracted the attention of more and more experts and scholars.

Current cross-network user matching methods mainly focus on the users’ attributes and the network
structure:

1) Research based on users’ attributes mainly uses the statistical characteristics of users. This type
of method requires pre-extracting features from user profile or activities, such as user names, interests,
and writing style. The current mainstream method is to match based on common user attributes in each
social network, such as user name attributes. The latest research on user names mainly includes the
model based on prefix or suffix [7], information redundancies based on display names [8] and the model
based on sparsity [9]. However, when users use different usernames in different social networks, the
above mentioned methods are usually difficult to achieve high-accuracy user matching. In view of this
challenge, there are several solutions as follows. Firstly, using the long-term topic interests, language
style personalized words and emoticons to match users [10, 11]. The second method is to combine
several features extracted from users’ posts, such as geographic location, timestamp and language, to
describe their identity [12]. At the same time, applied sociology and psychology theory also can be
used to model user behavior patterns to map the identity on social networks [11]. However, the user
features in these methods usually need to be specified manually, and a deep understanding of domain
knowledge is also required.

2) In the research based on the network structure, the user’s social network topology is mainly
used, such as the friend relationship between users. As one of the main technical methods in this
direction, the network embedding method can encode the network in a continuous low-dimensional
vector space, while effectively preserving the network structure, such as using dual learning embedding
paradigm to achieve the purpose of improving the connection result [13]. Internal links, external links,
and cross-network labeled user pairs can be used to generate a probabilistic graph classifier [14] or
provide multiple network embedding spaces for association computing [15]. Some approachs use the
structural features of social networks for user matching such as common neighbors [16]. Local and
global consistency and Adamic/Adar [17] scores in multiple networks is another important method
to calculate and measure neighbor similarity. Meanwhile, it is also an effective method for network
embedding which uses paired follower-followee relationships to maintain the proximity of users with
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similar relationships [18]. In addition, there are incidence matrix [19], hypergraph [15] or network
embedding method [20] to solve this problem. Among them, matrix decomposition often involves the
inverse or eigenvector of the matrix, which makes it difficult to apply to large-scale data sets.

The current challenges are mainly as follows: 1) Different social network sites are independent,
users register accounts in different social networks for different purposes, and their activities in different
social networks and the behavior are also different. It is a challenge to provide a unified framework
to solve the heterogeneity between different social networks and realize the matching between users
across networks. 2) Insufficient labeled user pairs available for training will result in lower training
accuracy, but it is costly and extremely time-consuming to generate a large number of accurate and
reliable labeled user pairs across social networks. 3) Users in social networks may only have limited
personal data, and it is extremely easy to overfit during training, making it difficult to distinguish them
from other users.

In order to address the cross-network user matching problem and the above-mentioned challenges
more effectively, in this paper, we propose a new method friend closeness based cross-network user
matching (FCUM). This method is mainly aimed at solving insufficient attention to the social group
relationship formed naturally between people. It uses the attention mechanism to quantify the closeness
between users, and then uses the network by designing a joint learning model structure and embedding
characteristics to enhance the accuracy and generalization ability of the model. Our experimental
results on real-world network datasets show that compared with the state-of-the-art methods, such as
DeepLink [13] and ABNE [21]. FCUM has a maximum improvement of 6.9% on Hits@1 and a
maximum improvement of 12.3% on Hits@30.

The main advantages and contributions of our work are as follows:

1) We propose a new semi-supervised model FCUM by integrating user matching and bi-directional
matching strategy. Based on the two components, we can improves the accuracy of the model by
converting unlabeled users into labeled users iteratively.

2) We can quantify the closeness between users and their friends by attention mechanism, and
then form close friends vectors based on the user’s network embedding vectors space. The results
demonstrate that FCUM can avoid over-fitting the input data and increasing the generalization ability.

The remaining parts of this paper are organized as follows. We will introduce related work in the
Section 2. The definition of the problem will be introduced in detail in Section 3. The framework of
FCUM will be explained in Section 4. The effectiveness of FCUM will be tested in Section 5. Finally,
we will end this article in Section 6.

2. Related works

In recent years, the problem of matching accounts that belong to the same identity among different
social networks has become one of the research hotspots. The existing works can be divided into three
categories: 1) matching methods based on personal attribute characteristics; 2) matching methods
based on network structure characteristics; 3) matching methods based on both personal attributes and
network structure.
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2.1. Matching methods based on personal profile

In order to match different user identities among different social networks, it uses the user’s personal
profile, such as username [11], users spatiotemporal pattern [22], user-generated content [23] and
writing style [24]. In order to match personal attribute information which belongs to the same identity,
Malhotra et al. [25] applied an automatic classifier and they found that the username is one of the most
important attributes in this problem. From the perspective of information redundancy, Reza et al. [11]
used user names to match related user identities by modeling the naming process and rules.Carmagnola
et al. [26] proposed a method CS-UDD, which can associate the personal profile that may belong to
same user retrieved from different social networks. However, the username might be selected and
modified randomly, which increases the difficulty of completing the task. Based on user name attributes
and behavior patterns, Zhang et al. [27] proposed a classification model to perform user matching.
Narayanan et al. [28] expressed the user attribute information as an n-dimensional vector, and then
used exact matching, partial and fuzzy matching to generate the similarity of these vectors to realize the
result. Writing style recognition is another promising way to solve the cahllenge of locating users with
multiple accounts while revealing various disguise behaviors. Arvind et al. [24] also used the writing
style of user-generated text, such as the grammatical structure and frequency of letters to identify users.
But this method can lead to overfitting, especially for short texts like Twitter, because such short texts
may involve too many attributes.

In addition, membership information of their community and specific behaviors [29] can also be
used to identify and perform matching tasks. Peled et al. [30] extracted three features from user-
generated content, which includes the timestamp of posting, the location of posting, and writing style.
In this research, it can be found that geographic location is the most obvious feature of matching
user identities. Based on spatial distance and textual similarity, Belesiotis et al. matched users in a
large dataset by individual posts matching [22]. Li et al. [31] presented a supervised machine learning
method to extract the temporal and spatial features, and match user accounts by measuring temporal
and spatial similarity . Chaozhou et al. [32] proposed a method which includes a matching function to
minimize the surface movement distance which called EMD between users in different networks, and
proposed a user alignment model named UUILgan based on generative adversarial networks and a user
alignment model named UUILomt based on matrix transformation. Jiang et al. [33] proposed a semi-
supervised transfer learning method to predict the behavior of cross-social networks through sparse
and overlapping crowds. In addition, in order to detect multi-account users across social networks,
Luo et al. [34] proposed a single-class classification method.

Almost all methods based on personal attributes focus on writing style analysis or user behavior
inference. However, these methods might not solve the problems of lack of the profiles, such as
personal attributes and high time complexity, especially, when facing large-scale social networks.

2.2. Matching methods based on network structure

For the way based on the network structure, it must be pointed out that it is a promising method
in solving the challenge of user matching which only needs network structure information to align
the network based on labeled users. The existing network-based method embeds the node structure
from the local context of the node in order to connect identities across social networks, where the local
context of the node can be generated by retaining first-order or second-order neighbors.
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Community-based features seem to be a natural choice for user matching problems. Shouling et
al. [35] demonstrated the feasibility which uses network structural features in order to match different
user identities across different social networks. In this method, they combined the greedy strategy and
network structure characteristics to match user identities, and treated the iterative results as new labeled
user pairs for further research. Koutra et al. [36] introduced the problem of aligning bipartite graphs and
proposed a solution based on gradient descent. In addition, in order to reduce the time complexity of the
user matching algorithm in large-scale social networks, Zhou et al. [37] adopted a neighborhood-based
network structure feature to measure community similarity by calculating the Adamic/Adar score.
Zhang et al. [14] propose a method named CLF to matches user identities by passing the matching
information formed by labeled users in the source network to the target network. Korula et al. [36]
designed a simple, partial and efficient algorithm that uses network structure information to match user
identities. At the same time, they provided theoretical proofs for the performance of the algorithm.

Network embedding is another solution to solve matching problem. Man et al. [20] used network
embedding technology to capture the observed underlying structural laws of anchor links, and further
learned the cross-network matching used to predict anchor links. Zhou et al. [13] designed DeepLink
which is an a semi-supervised algorithm based on deep reinforcement learning and end-to-end. Liu et
al. [18] proposed IONE, which also embeds two social networks in a public space to capture the social
connections of users. Zhou et al. [38] also proposed an unsupervised scheme FRUI-P, a user recognition
algorithm based on friend relations without prior knowledge. Derr et al. [39] uses graph convolutional
neural network for signed link prediction. Heimann et al. [40] designed the REGAL framework, which
implements graph alignment for network representation learning based on the cross-network matrix
decomposition method. Zhao et al. [19] designed a dimensionality reduction algorithm based on the
hypergraph to learn the common continuous vector of each user. Sun et al. [41] proposed a self-service
algorithm to obtain potential anchor nodes for the next calculation in each iteration.

Compared to the above method, existing methods based on network structure only use several
labeled users for supervised training, and might not fully mine non-label user profile, which may
leads to insufficient training and low matching efficiency. In addition, many methods such as IONE,
only use labeled users to embed and align non-label users [18]. However, their labeled users may
deviate after training.

2.3. Methods based on both profile and network structure

In order to improve the performance of cross-social network user matching, user node information
and network structure information can be used in combination in this situation. For example,
Bartunov et al. [42] proposed a new method, which combines distance-based personal attribute
characteristics and neighborhood-based network structure characteristics for joint modeling. Peled et
al. [30] extracted 27 attributes, which includes personal profile and network structure. Using
user-generated profile information, such as published articles or conversations, as the basis for
matching is also a method used to improve matching accuracy. For example, Ma et al. proposed a
novel combinatorial term weighting scheme CmTLB [43] based on the term weighting scheme, which
combined with the application of sentiment analysis [44]. It can increase the diversity of user
information used for matching. In particular, training samples can be generated using sentiment-based
session generation techniques [45] to expand the number of training samples to improve the efficiency
of the training model. Also, graph-based community detection techniques can be used to optimize the
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matching process [46] to adapt to changes in data volume [47]. In addition, Ma et al. propose a
community detection technique [48] using most influential nodes to detect community structure,
which identifies the best nodes with high influence and is better than other centralized methods.
Based on these large numbers of attributes, supervised learning techniques are used to achieve user
matching. Tan et al. [15] used hypergraphs to model high-order link relationships, projected the
manifolds of two social networks into a common embedding vector space, and combined
distance-based personal attribute features to obtain better performance. Kong et al. [16] extracted
style-based content features and neighborhood-based network structure features. They designed a
supervised aggregation algorithm and a maximum weight matching scheme to rank all potential user
identities. The purpose of PCT is to combine personal attributes and network structural characteristics
to simultaneously infer the potential corresponding connections of multiple shared entities in the
network [49]. In addition, Nie et al. [50] proposed the dynamic core interest matching method named
DCIM, which comprehensively considers the user’s network structure and user-generated content to
measure the similarity of user pairs. Zhong et al. [51] proposed a progressive supervised alignment
model CoLink, which combines an attribute-based model and a relationship-based model for joint
training. Through these two mutually reinforcing models, CoLink can iteratively align users with a
small number of labeled user pairs.

Compared with these works, our method can embed the global network structure, automatically
capture the potential meaning of the network structure, and obtain higher matching accuracy. From
another perspective, the attention mechanism is used to quantify the closeness between users and
friends, which increases the generalization ability of the model. Finally, we designed a
semi-supervised model and a bi-directional matching strategy to deal with the problem of insufficient
labeled user data.

2.4. Graph embedding

We introduce graph embedding below since they are an important concept in our work.
Graph embedding is a bridge between the original network data and network application tasks,

also known as network embedding, network representation learning. It aims to express the nodes in
the network into low dimensional vector. So that the vector can have the ability of representation and
reasoning in vector space, and can be applied to the vector to network applications. The structure of
the network is often complex and diverse. Graph embedding usually mines the neighborhood
structure of the network, the high-order similarity of nodes and the community structure of the
network. Graph embedding based on network structure aims to make learning nodes represent and
retain network structure information. The representation of network can complete many kinds of
network analysis tasks, such as node classification, link prediction, important node discovery and so
on.

Most of the early graph embedding algorithms are based on spectral clustering. Representative
works include PCA [52], Locally Linear Embedding [53, 54], Laplacian Eigenmaps [55, 56], Directed
Graph Embedding [57], etc. With the development of word embedding technology word2vec [58–60]
in NLP, DeepWalk [61] and Node2vec [62] regard nodes as words and generate node sequences by
random walk as sentence. Then, neural language models such as Skip-gram [63] can be applied to
these node sequences to obtain graph embedding. HARP [64] improves the solution and avoids local
optimization by better weight initialization. It is combined with the method based on random walk to
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get better optimization function solution. In order to solve the sparsity of adjacency matrix, LINE [65]
considers both first-order proximity and second-order proximity of network nodes. Grarep [66]
preserves the k order proximity through a special relation matrix. AROPE [67] learns the network
high-order proximity based on SVD. Hope [68] uses JDGSVD algorithm to reduce the dimension of
the asymmetric relation matrix of the network to learn the low dimensional representation of nodes.
NetHiex [69] cooperatively trains the node representation and class representation, and the node
representation is composed of multiple class representations with different granularity.

Currently, more and more methods use deep neural network for graph embedding. SDNE [70] uses
deep auto-encoder to preserve the neighbor structure of the node. DNGR [71] combines random walk
and deep auto-encoder. The model consists of three components, including random surfing, calculation
of PPMI matrix and feature reduction by SDAE. DVNE [72] learned a Gaussian distribution as the
representation of nodes in the Wasserstein space, which can preserves the structure information of the
network and the uncertainty of the formation and evolution of modeling nodes. GAT [73] applied
the self-attention mechanism to graph to learn the representation of network nodes. The node can
take into account the characteristics of all other neighbor nodes when updating its own characteristics.
GAT does not need to know the structure of the entire network in advance, and can implicitly assign
different weights to nodes in the same neighborhood, which is conducive to the interpretability of
the model. GraphSAGE [74] is a graph embedding method based on neighbor feature aggregation,
which updates the current node’s features by gathering the sampled neighbor features. GraphSAGE
can quickly generate node representations for new nodes without additional training. VGAE [75] uses
GCN encoder and inner product decoder. The input is adjacency matrices, and they rely on GCN to
learn high-order dependencies between nodes. Graph2vec [76] regards a graph as a document, and
the rooted subgraphs around all nodes in the graph as words. In other words, the way that rooted
subgraphs form a graph is the same as the way words form sentences or paragraphs. RDF2Vec [77]
uses a language modeling method that extracts unsupervised features from word sequences and applies
them to RDF graphs. It uses the local information in the subgraph structure, Weisfeiler-Lehman Subtree
RDF and graph walk to generate sequences, and represents the entities in the RDF graph as vectors.
GraphGAN [78] proposed graph softmax, which uses GAN to update the expression of network node
vectors.

3. Preliminary background

In this section, we introduce the key terms and descriptions in our proposed approach, and present
a few formal definition.

3.1. Key terms and descriptions

Key terms and descriptions used in this paper are listed in Table 1.

3.2. Problem definition

Definition 1 (Social network structure diagram). The definition GX/Y =
(
VX/Y , EX/Y , FX/Y ,WX/Y

)
is

a undirected graph to indicate the social network GX or GY , where VX/Y =
{
vX/Y

i

}
is a set of vertices,

each vertex uX/Y
i represents a user in the specified social network, EX/Y =

{
eX/Y

i j

}
is a collection of edges,
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Table 1. Key terms and descriptions.

Terms Description
vX/Y

i User i in network GX or GY

eX/Y
i j The edge from user i to user j in the network GX or GY

wX/Y
i j The weight of the edge from user i to user j in the network GX or GY

~vX/Y
i The network embedding vector of user i in network GX or GY

f X/Y
i The collection of close friends of user i in the network GX or GY

~f X/Y
i Embedding vector of close friends of user i in network GX or GY

N(vX/Y
i ) User’s circle of friends in network GX or GY

L The collection of labeled nodes in the network GX or GY

UX/Y The collection of non-label nodes in the network GX or GY

each edge eX/Y
i j is used to connect two associated vertices vX/Y

i and vX/Y
j . Each f X/Y

i in FX/Y =
{
f X/Y
i

}
is

used to represent the set of close friends of the specified user vX/Y
i . WX/Y =

{
wX/Y

i j

}
is the edge weight set

corresponding to the edge set, each edge weight wX/Y
i j represents the closeness of the edge connection,

if the social network only has ordinary friend relations, then all wX/Y
i j = 1.

Definition 2 (Network embedding model). Give all users vX/Y
i (i = 1, 2, . . . , n) and all edges

eX/Y
i j (i = 1, 2, . . . , n; j = 1, 2, . . . , n; i , j) in social networks GX and GY respectively, and then network

embedding model is used to learn a vector ~vX/Y
i ∈ Rd to represent each user, where vX/Y

i ∈ GX/Y , d is
the dimension of the vector space and d �

∣∣∣VX/Y
∣∣∣ . The ~vi

X/Y is the network embedding vector
representation of user vX/Y

i ∈ GX/Y .
Definition 3 (User match). Given two different networks GX/Y = (VX/Y , EX/Y , FX/Y ,WX/Y), the goal

of cross-network user matching is to determine whether any vX
i ∈ GX and vY

m ∈ GY belong to the same
real user, The result of user matching which is denoted as ψ

(
vX

i , v
Y
m

)
is calculated by

ψ(νX
i , ν

Y
m) =

{
1, νX

i = νY
m

0, νX
i , ν

Y
m

}
(1)

Definition 4 (Bi-directional matching). For each vX/Y
i ∈ GX/Y , and the function Φ

(
~vX

i

)
7→ ~v j

Y is used
to map the node embedding vector in the network GX to the corresponding node embedding vector in
the network GY , which indicates that the two node embedding vectors belong to the same real users.
Vice versa, the inverse matching function Φ−1

(
~v j

Y
)
7→ ~vi

X can also be defined.

4. Model framework

In this section, we will introduce FCUM model in detail. The main steps are described as following.
Firstly, in order to extend the friend relationship, we take the labeled user pair set L as the basis.
Secondly, random walk strategy and Skip-gram model are adopted to sample user nodes and generate
user vector space respectively based on extended network. To calculate the friend closeness, we apply
the attention mechanism to the extended network. After that, the close friend vector space can be
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Figure 1. Framework of FCUM.
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generated by using user vector space and friend closeness. Then bi-directional matching function is
designed to calculate the vectors cosine similarity. Based on the above, the newly matched user node
pairs are added to the labeled node pair set L, and remove the corresponding user nodes from the
unlabel node pair set U at the same time. At last, the accuracy of FCUM can be gradually improved
by iteration with the steps described above.

As shown in Figure 1, FCUM is mainly composed of four main parts: (A) Extension of friend
relationship, (B) Generation of user vector space, (C) Generation of close friend vector space, (D)
Bi-directional matching. Each part will be described in detail in the sequel.

4.1. Extension of friend relationship

The data we retrieved through web crawlers might be incomplete, and part of the relationship
between users in the original data may be lost. Therefore, we use the labeled user pair set L to extend
the original edge set EX/Y in the social network before network embedding.

We assume that in the source network GX, if there is a connected edge between a pair of users, they
should also have a corresponding edge in the target network GY [79]. According to this assumption, if
there is a pair of label nodes

(
vX

i , v
Y
m

)
∈ L, vX

i and vY
m are matched cross-network user pairs, and vX

i and

vX
j in source network GX has a friend relationship, and at the same time

(
vX

j , v
Y
n

)
∈ L is also a pair of

label nodes, vX
j and vY

n are also matched cross-network user pairs, but vY
m and vY

n in the target network
in GY doesn’t have a friend relationship. At this time, we can reconstruct the edges of vY

m and vY
n and

connect them with edges which is shown in part A of Figure 1. The left network is the network before
extension, and the right one is the extended network. The nodes connected by dashed lines represent
matched label nodes, and the solid lines being supplemented after extension (B,D) and (A′,C′) are the
missing edges. Through the existing source network GX, target network GY and the label node pair set
L, the extended source network GX and target network GY of the friend relationship are calculated by

Ṽ
X

= VX

Ẽ
X

= EX ⋃
(
vX

i , v
X
j

)
:


(
vX

i , v
Y
m

)
∈ L(

vY
m, v

Y
n

)
∈ EY(

vX
j , v

Y
n

)
∈ L




Ṽ
Y

= VY

Ẽ
Y

= EY ⋃
(
vY

m, v
Y
n

)
:


(
vX

i , v
Y
m

)
∈ L(

vX
i , v

X
j

)
∈ EX(

vX
j , v

Y
n

)
∈ L






(2)

where ṼX = VX means that the extended network contains all the user nodes in the original network
GX.

4.2. Generation of user vector space

Maintaining the user’s network structure characteristics as much as possible in the user vector
space is essential to improve the accuracy of the final result. Generally speaking, two user nodes with
strong correlation, such as having more common friends, should be closer to each other in the user
vector space. From the part B of Figure 1, we can observe the two components of the user vector
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space generation, includes sampling the network structure and generating user vectors.The graph
embedding methods used in this paper are similar to Graph2Vec [76] and Rdf2Vec [77]. The methods
mentioned above start with generating sequences related to nodes, and then input them into
Skip-gram model for training. But we regard each node in the graph as a word, while Graph2Vec
regards the rooted subgraphs around all nodes in the graph as words. And we use random walks for
undirected graphs, while Rdf2Vec is mainly for directed labeled RDF graphs. Random walks can not
only capture basic network information, but also adapt to the scene of subtle adjustment changes in
the network structure without recalculating everything [61]. We can also use this feature to solve the
time-consuming problem of generating social sequences in large networks by assigning several
threads that work at the same time to perform random walks in parallel. Alibaba also took DeepWalk
as the prototype model and introduced side information, and further optimized the model for different
side information to form the final solution EGES [80].

The first is to sample the network structure. In order to generate high-quality network embedding,
while taking into account the large-scale of social networks and the continuous subtle changes of
subsequent user nodes, we adopted random walk strategy [61] to sample user nodes. Starting from
any user node vX/Y

i , the friend nodes of the currently visited node are selected uniformly and unbiased
randomly at each step. Repeat the operation until the number of the visited node reaches the specified
length l. For each user node vX/Y

i , the above steps will be repeated a certain times t to get multiple
social sequences for the user.

The second is to generate the user vector space. We can regard the social sequence generated by
sampling the network structure as short sentences of a specific length, and the nodes in the sequence
can be regarded as words in a special language. Then we can use the derived Skip-gram model to
generate the user vector space. The Skip-gram model was originally used to predict the context of a
word by maximizing the average log probability in the field of word representation [58]. This model
can generate the embedding vector of the node as an extra-product when updating the weight matrix.

Given a user sequence
(
vX/Y

1 , vX/Y
2 . . . vX/Y

n

)
∈ GX/Y , the goal of the Skip-gram model is to maximize

the co-occurrence probability of a context node with a certain node as the center node and a sliding
window size of c, that is, to maximize the following logarithmic probability, which is calculated by

max
1
n

n∑
i=1

c∑
j=−c, j,0

log p
(
vX/Y

i+ j | v
X/Y
i

)
(3)

where c is the size of the sliding window, increasing the c of the training context can get a more
accurate embedding vector, but it will inevitably consume more training time, so we need to choose
an appropriate sliding window size. And p

(
vX/Y

i+ j | v
X/Y
i

)
is calculated by the softmax function, which

means that the j-th hop neighbor of the given user vX/Y
i appears and the probability is calculated by

p
(
vX/Y

i+ j | v
X/Y
i

)
=

exp
((
~vX/Y

i+ j

)T
· ~vX/Y

i

)
n∑

t=1
exp

((
~vX/Y

t

)T
· ~vX/Y

i

) (4)

where n =
∣∣∣VX/Y

∣∣∣ is the number of all nodes in GX/Y , and ~vi
X/Y is the vector of node vX/Y

i , which will be
updated in each iteration of training.
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The Skip-gram neural network has a large-scale weight matrix. If all the samples are used to adjust
these weights, which consumes too much computing resources, and the training process will be very
slow. So in order to improve the training efficiency, we use the negative sampling method to sample
in a specific noise distribution to avoid all negative samples participating in training. Maximize the
objective function is defined as follows [20, 81]

logσ
(
~vT

i+ j · ~vi

)
+

K∑
k=1

Evk∝ρn(v)

[
log

(
1 − σ

(
~vT

k · ~vi

))]
(5)

The first term represents the probability of edges between nodes vi and vi+ j, and the second term
represents the probability of edges between vi and K negative samples from the noise distribution.
According to the research results of Mikolov et al. [58], it is recommended to set ρn(v) ∝ d3/4

v , where
dv is the degree of node v.

4.3. Generation of close friend vector space

At present, some supervised user matching models only use a limited number of label nodes for
training, and most of the non-label nodes cannot be used effectively. In order to make full use of
non-label nodes, we mine the user friend structure. In some methods, the structural information of the
user’s friends is often ignored and only focuses on the structural information of the user. If only a small
number of label nodes are used for model training under a large-scale network structure, it is likely to
lead to overfitting, and thus unable to effectively match users. Therefore, it is very necessary to explore
the user’s friend structure and use the value of non-label nodes.

The ego-network can reflect a person’s social friend environment, but the appearance of different
friends to a person is shown in part C of Figure 1, so we need to distinguish between them and choose
important friends. For this reason, we use the weight wX/Y

i j to measure the closeness between users vX/Y
i

and vX/Y
j , and assume that the closer the friend is, the greater the influence on a person.

However, most social networks do not distinguish the closeness of users’ friends, that is, wX/Y
i j = 1,

which is meaningless. Therefore, we also need to propose a user closeness calculation method in
social networks. At present, there are some methods to use graph attention mechanism to distinguish
the importance of users [82]. In this article, we use the attention mechanism to recalculate the friend
closeness weight wX/Y

i j between user vX/Y
i and vX/Y

j , which is calculated by

wX/Y
i j =

exp
(
~aX/Y ·

(
~vi

X/Y
◦ ~v j

X/Y
))

∑
vk∈NX/Y (vi)

exp
(
~aX/Y ·

(
~vi

X/Y
◦ ~vk

X/Y
)) (6)

where ~vi
X/Y
◦ ~v j

X/Y represents the Hadamard product of two vectors, and ~aX/Y is the vector parameter
that needs training and learning. After generating the weight wX/Y

i j , each user can generate a new
attention vector, defined by

~vi
∗X/Y

=
∑

v j∈NX/Y (vi)

wX/Y
i j · ~v j

X/Y (7)

The attention vector ~vi
∗X/Y can be regarded as the weighted sum of all neighbor vectors of the user.

Then the label node set is used as the supervision information, and the target optimization can be
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performed by minimizing the following variance loss function to generate the vector parameter ~aX/Y ,
which is calculated by

lossatt =
1

2n

[
σ

(
~vi
∗X
· ~vm

∗Y
)
− y

]2
(8)

where σ is the sigmoid function, n is the sum of the number of positive and negative samples
participating in the training of the attention mechanism, and y ∈ (0, 1) indicates whether the users vi

and vm belong to the same real user.
Then, we use Eq (7) to get the weight wX/Y

i j that represents the closeness of the users vX/Y
i and vX/Y

j .
We set an appropriate threshold for it, and then we can filter out the closest friends to the user as the
user’s close friend set f X/Y

i which is calculated by

f X/Y
i =

⋃
vk∈NX/Y (vi)

{
vX/Y

m : wX/Y
ik ≥ top@α

}
(9)

where α is the friend closeness factor. top@α is the α-th largest weight value of the edge connected to
the user node vX/Y

i in the network GX or GY . Only friends greater than or equal to top@α can be used
to participate in the aggregation operation.

At last, we use an aggregation operation to generate the friend closeness embedding vector of the
user vX/Y

i , which is calculated by

~fi
X/Y

=

∑
v j∈ fi X/Y

~v j
X/Y

∣∣∣ f X/Y
i

∣∣∣ (10)

4.4. Bi-directional matching

As shown in part D of Figure 1, we design the bi-directional matching functions Φ and Φ−1:
Φ

(
~vi

X
)
7→ ~vm

Y and Φ−1
(
~vm

Y
)
7→ ~vi

X
, these functions will be used to determine whether users from

different social networks matched or not. In this article, we use two multilayer perceptrons to realize
the above matching relationship: Φ = MLP

(
~vi

X
, θ, b

))
and Φ−1 = MLP−1

(
~vm

Y
, θ−1, b−1

)
, where

(θ, b, θ−1, b−1) are weight parameter and bias term of multilayer perceptrons respectively.
We use a simple four layer MLP as the matching function to map the vectors in the source network

GX to the vectors in the target network GY by nonlinear transformation. MLP has simple structure and
high efficiency. In addition, if we can achieve good accuracy based on a simple model, it can also
verify the contribution of our work on the other hand. For example, the quantification of user’s close
friend relationship and credible bi-directional matching strategy.

The distance between the prediction result Φ f

(
~vi

X
)

and the true corresponding vector ~vm
Y in the

target network GY should be minimized at the same time, and the loss function is defined by

lossu =
∑

(vX
i ,v

Y
m)∈L

∥∥∥∥Φ (
~vX

i

)
− ~vY

m

∥∥∥∥
F

(11)

and the distance between the prediction result vector Φ f

(
~f X
i

)
and the true corresponding vector ~f Y

j in
the target network GY is calculated by
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loss f =
∑

(vX
i ,v

Y
m)∈L

∥∥∥∥Φ (
~f X
i

)
− ~f Y

m

∥∥∥∥
F

(12)

where L is the set of labeled nodes, and F represents the F − norm.
In the same way, the reverse objective function is calculated by

loss−1
u =

∑
(vX

i ,v
Y
m)∈L

∥∥∥∥Φ−1
(
~vY

m

)
− ~vX

i

∥∥∥∥
F

(13)

loss−1
f =

∑
(vX

i ,v
Y
m)∈L

∥∥∥∥Φ−1
(
~f Y
m

)
− ~f X

i

∥∥∥∥
F

(14)

The final objective function based on user friend closeness is defined as follows:

L = β(lossu + loss−1
u ) + (1 − β)(loss f + loss−1

f ) + lossatt (15)

where β is the equilibrium factor which is used to balance the weight of each part of the objective
function.

When the user vX
i in the source network GX can be mapped to the user vY

m in the target network GY ,

and the user vY
m in the target network GY can be reversely mapped to the user vX

i in the source network
GX, which means when Φ

(
~vi

X
)
7→ ~vm

Y and Φ−1
(
~vm

Y
)
7→ ~vi

X are satisfied at the same time, we think
that the user vX

i matches user vY
m. But in the real situation, it is very difficult to directly map the user

vX
i in the source network GX to the user vY

m in the target network GY . For this reason, we need to put
the matching value Φ

(
~vi

X
)

and the user vector ~vm of the target network as parameters into the cosine
similarity formula to generate the similarity value, and then rank the similarity from high to low. The
vector cosine similarity is calculated by

sim
(
Φ

(
~vX

i

)
,~vY

m

)
=

d∑
p=1

φ
(
~vX

i

)
× ~vY

m√
d∑

p=1
φ
(
~vX

i

)2
×

√
d∑

p=1

(
~vY

m
)2

(16)

The specific steps of bi-directional matching are shown in Algorithm 1.
From Algorithm 1, we can see that the bi-directional matching strategy has strict conditions. It can

ensure the credibility of the newly generated label users. Although there may be a very small number
of wrong label users, but our experiment is not obviously affected.

Finally, we add the newly matched user node pair to the labeled node pair set L, and remove the
corresponding user nodes from the network GX/Y : L = L ∪

(
vX

i , v
Y
m

)
,UX = UX\

{
vX

i

}
, UY = UY\

{
vY

m

}
.

In this way, the labeled node pair set can be continuously extended, and the model accuracy can be
gradually improved in subsequent iterative training.

4.5. The overall learning algorithm

Based on the models and concepts which are defined above, the overall method is proposed in
Algorithm 1.
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Algorithm 1: Pseudo-code of bi-directional matching
Input: Mapping function Φ and Φ−1, unlabeled user set U.
Output: All new label user pairs.

1 for vX
i in UX do

2 Forward mapping: Φ
(
~vi

X
)
7→ ~vm

Y , generate prediction vector ~va

3 Calculate the similarity between ~va and unmatched user vector in target network GY by Eq
(16)

4 Select the user vY
m with the highest similarity

5 Reverse mapping: Φ−1
(
~vm

Y
)
7→ ~vi

X, generate prediction vector ~vb

6 Calculate the similarity between ~vb and unmatched user vector in source network GX by Eq
(16)

7 Select the user vX
k with the highest similarity

8 if vX
k = vX

i then
9 Set

(
vX

i , v
Y
m

)
as a new label user pair

10 end
11 end
12 return all new label user pairs

Firstly, in the phase of network extension, the labeled node set L can be used to extend the friend
relationship of these users in line 3 and 4. In line 6 we use a random walk strategy to sample the
extended friend relationship to generate the social sequence of each user. After sampling, the vector
embedding technique is used to generate a user vector space based on the social sequence obtained
above in line 7, and each embedded vector in the space can represent a user in a network. In order to
fully mine the users friend relationship information, in line 8, we also use the graph attention
mechanism to quantify the closeness of users friend relationship, which is represented by the number
between [0,1]. And the closeness increases as the weight increases. Then we combine the friend
closeness with the user vector space, and obtain the user’s close friend vector through the aggregation
operation in line 9.

After that, we train the user embedding vector and the close friend vector at the same time from GX

to GY direction to obtain the matching function Φ. In the same way, reverse training from GY to GX can
obtain the reverse matching function Φ−1 between line 11 and 17. After obtaining the trained model,
we can use the forward matching function Φ and the reverse matching function Φ−1 to match the set of
unlabeled users in line 19 . Finally, in line 23 the matching results are merged into the labeled user set,
and new matching users are removed from the non-label user set.

We will repeat the above steps until the model has no new label users matched.

4.6. User-matching across multiple networks

The core of user matching across multiple networks is to use the chain rule to connect user matching
relationships in multiple social networks [13]. For example, if users of

(
GX,GY

)
and

(
GX,GZ

)
are

known matched through GX → GY → GZ, the match result of
(
GX,GZ

)
can be obtained from it. It is

even possible to use the above-mentioned ideas to indirectly match networks that are difficult to match
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Algorithm 2: Pseudo-code of FCUM
Input: Social networks GX and GY .
Output: The prediction result of U.

1 Initialize L′ = L
2 while (L′ , ∅) do
3 for (vX

i , v
Y
m) in L do

4 Extend the connecting edges of users vX
i and vY

m

5 Generate extended friends of users vX
i and vY

m by Eq (3)
6 end
7 Using random walk to generate the walking sequence of vX/Y

i

8 Generate the embedding vector ~vX/Y
i of user vX/Y

i by Eqs (4) and (5)
9 Calculate the edge weight wX/Y

i j of the edge eX/Y
i j by Eq (7)

10 Generate the close friend embedding vector ~f X/Y
i of vX/Y

i by Eq (11)
11 while (model not convergence) do
12 Using set L to train the model, each batch of data set size is h
13 for (vX

i , v
Y
m) in L[n : n + h] do

14 Find ~vX
i , ~f X

i ,~vY
m, ~f Y

m corresponding to (vX
i ,vY

m)
15 Train the model by Eq (16)
16 end
17 end
18 Obtain the forward model Φ and the reverse model Φ−1

19 L′ = ∅

20 for vX/Y
i in UX/Y do

21 if Φ
(
~vi

X
)
7→ ~vm

Y and Φ−1
(
~vm

Y
)
7→ ~vi

X then
22 L′ = L′ ∪

(
vX

i , v
Y
m

)
23 end
24 end
25 L = L ∪ L′,UX = UX\

{
vX

i : vX
i ∈ L′

}
,UY = UY\

{
vY

m : vY
m ∈ L′

}
26 end
27 return the prediction result of U
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Table 2. Data set statistics.

Social network Number of users Number of edges Number of labeled node pairs

Twitter 5220 164919
1609

Foursquare 5315 76972

DBLP-1 2151 6306
2151

DBLP-2 2151 5676

or cannot be matched, using matched network as “bridges”. Assuming that we cannot match the users
in

(
GX,GZ

)
, but the user matching of

(
GY ,GZ

)
is known, we can use

(
GX,GY

)
for matching, and in this

way, indirect user matching for
(
GX,GZ

)
is achieved through GX → GY → GZ.

5. Experiments

In this section, a series of comprehensive experiments are executed to evaluate the performance of
our proposed method for cross-network user matching. We will use different methods to verify our
algorithm.

5.1. Datasets

This experiment uses a real social network dataset collected from Twitter and Foursquare [14, 18].
For privacy reasons, all sensitive personal information in the data set is deleted. The set of labeled
user pairs is generated by crawling the Twitter account link on the user’s foursquare homepage. We
also used the real academic cooperation data set DBLP [83], which was constructed by the DBLP
digital library, in which each vertex represents the authors who has published at least one paper on
major conferences and journals in the data mining and database communities from January 1990 to
February 2011, each side connects two authors who have co-authored at least one paper. Table II lists
the statistics of these two data sets. Among them, DBLP-1 and DBLP-2 are the subsets generated after
sampling the author relationship in the data set DBLP.

5.2. Methods for comparison

We compared the proposed method with several existing methods based on network embedding,
which also only require network structure information.

CRW [14]: CRW (Collective Random Walk)predicts the formation of social links between target
network users and the alignment of anchor links between the target network and other external social
networks. CRW consists of two stages: (1) Collective link prediction of anchor links and social links;
(2) In a random network that is aligned across parts, the link prediction is propagated by methods of
collective random walks.

MAG [15]: MAG (Manifold Alignment on traditional Graphs) uses manifold alignment on the
graph to map users across the network. MAG constructs a social graph for each network by calculating
the paired weights between users and users, and the ranking results of users are obtained through flow
pattern alignment.
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MAH [15]: MAH (Manifold Alignment on Hypergraph) is a network embedding method which
represents a node as a common low-dimensional space. And it can infer the user’s correlation by
comparing the distance between two cross-network vectors in the embedding space. MAH uses
hypergraphs to model higher-order relationships. For target users in one network, MAH ranks all
users in another network for the same user based on the inferred probability of users.

INE [18]: INE (Input Network Embedding) is a simplified version of IONE, which only considers
the user node vector and the input vector representation to match.

IONE [18]: IONE (Input-Output Network Embedding) is a network embedding and partial network
alignment method. In IONE, the following relationship and the followed relationship are used as
input and output contexts, and three vector representations are generated together with user nodes.
The anchor link is predicted by simultaneously learning the user’s follower embedding vector and the
followed embedding vector.

ABNE [21]: ABNE (Attention Based Network Embedding) is an attention-based network
embedding model. The model includes a masking graph attention mechanism and a
structure-preserving embedding algorithm. Through the supervision of anchor pairs, the attention
mechanism is used to learn the weights between users. On the basis of learning weights, the algorithm
explicitly establishes the contribution probability model between followers and followed.

DeepLink [13]: DeepLink (Deep Learning based Approach) is an algorithm based on deep
reinforcement learning and end-to-end, and it is also a semi-supervised user matching learning
algorithm. It does not require a lot of feature engineering, uses unbiased random walks to generate
embeddings, then uses multi-layer perceptron to map users, and uses the duality of matching between
any two networks to study cross-network user matching problems.

5.3. Evaluation mgetrics

In this experiment, we use Hits@N as the evaluation criterion, which is calculated by

Hits@N =
| CorrUser@N|X+ | CorrUser@N|Y

| UnLabeledUsers | ∗2
(17)

where | CorrUser@N|X/Y represents the number of correct matching user pairs among the top N users
in the prediction result list in the social network GX and GY . And the total number of unmatched users
is represented by | UnLabeledUsers |.

In addition, MAP, AUC and Hit-Precision are used to evaluate the ranking performance of the
algorithm and are defined as follows:

MAP = (
∑n

1

1
ra

)/n (18)

AUC = (
∑n

1

m + 1 − ra
m

)/n (19)

Hit − Precision = (
∑n

1

m + 2 − ra
m + 1

)/n (20)

where n = |UnLabeledUsers|, ra is the ranking of positive sample users, and m is the number of
negative sample users. The higher the above three ranking performance indicators, the better the
ranking performance of the algorithm.
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Table 3. Comparison of matching accuracy on Twitter-Foursquare.

CRW MAG MAH INE IONE ABNE DeepLink FCUM
Hits@1 0 0.0638 0.05 0.1139 0.1899 0.2785 0.3447 0.4133
Hits@5 0.0219 0. 1362 0.1219 0.2342 0.3481 0.4525 0.5942 0.6014
Hits@9 0.0476 0. 1705 0.1886 0.2880 0.4494 0.5316 0.6609 0.6911
Hits@13 0.0538 0. 2081 0.2148 0.3418 0.4968 0.5823 0.6866 0.7253
Hits@17 0.07 0. 23 0.22 0.3766 0.5253 0.6203 0.69 0.7595
Hits@21 0.0909 0. 2708 0.2513 0.3956 0.5665 0.6392 0.7 0.7680
Hits@25 0.11 0. 29 0.285 0.4399 0.5854 0.6614 0.701 0.8108
Hits@30 0.1603 0. 3229 0.3 0.4462 0.6044 0.6677 0.7048 0.8279

Figure 2. Accuracy on different values of N.

5.4. Evaluation results

First of all, We conduct 10-fold cross-validation by default to test the final model’s ability to match
tasks across social network users. And then we set the demission to 128, the repeat times of random
walks t is 40, the length of random walks l is 80, and the window size of Skip-gram c is 10, the friend
closeness factor α to 5 and the equilibrium factor β to 0.2 respectively in our experiment. We will
analyze α, β, demission and the important parameters in detail later in this section.

As illustrated in Table III, we examine the performance of various methods on user matching
precision on Twitter-Foursquare dataset. Table III reports 8 different N values between 0 and 30,
while Figure 2 compares the performance of different methods by varying the value of N.

In Figure 2, we can observe that the CRW model performs the worst compared to several other
methods. One of possible reasons is that the adjacency matrix is linked based on the labeled user
pair. But in the case of no links between pairs of non-label nodes, the joint matrix will become very
sparse, introducing random walks into a “local trap” [21]. Comparing with CRW, the method based
on embedding vector shows better results in positioning tasks. For example, MAH tries to learn the
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(a) Hits@1 accuracy on different training rates (b) Hits@30 accuracy on different training rates

Figure 3. Matching accuracy on different training rates.

embedding vector from the incidence matrix of the hypergraph, and its performance is better than
CRW. Our proposed FCUM method is significantly better than all benchmark methods on different
Hits@N, except that the improvement is not obvious than DeepLink on Hits@5 where our method is
more stable than DeepLink.

In order to evaluate the performance of the model under different training ratios, we set the ratio
of training data varies [10%, 90%] on Twitter-Foursquare dataset. The experimental result show in
Figure 3.

As can be seen in Figure 3(a), it is obvious that for different training ratios, FCUM outperform all
baselines on Hits@1. Even if the ratio is set as low as 10 to 20%, the performance enhancement is
still significant. As the amount of training data increases, the accuracy is greatly improved. The reason
is that the ratio of labeled user pairs used for training will affect the performance of the algorithm.
And FCUM can utilize the existing labeled user pairs and the new labeled user pairs generated by
subsequent matching process at the same time.

Figure 3(b) shows the performance of FCUM on Hits@30. Although the improvement is not
obvious than the performance of FCUM on Hits@1 in Figure 3(a), but it is still ahead of DeepLink
and significantly than other benchmark methods.

As shown in Figure 4, we also studied the influence of the representation dimension of the vector
on the experimental accuracy. We can observe that IONE and INE perform better than other models.
When the dimension is around 64, it can achieve stable accuracy. When the dimension is greater
than 128, the hits of FCUM and ABNE tend to be stable. In fact, 128 is not a big dimension. The
dimensions of MAG and MAH need to be around 1000, which close to 10 times of the FCUM model.
In general, our FCUM model is stable in smaller dimensions and provides a more accurate embedding
for effective similarity calculations. As we all know, the complexity of the learning algorithm highly
depends on the dimensionality of the embedding vector. And a small dimension is sufficient for FCUM
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Figure 4. Accuracy on different dimensions.

Table 4. Comparison of ranking performance on Twitter-Foursquare.

MAP AUC Hit-Precision
INE 0.242 0.902 0.902

IONE 0.313 0.948 0.948
ABNE 0.374 0.957 0.957
FCUM 0.473 0.972 0.972

to achieve high accuracy, it is proved that our model is efficient.
In order to optimize the friend closeness factor α and the equilibrium factor β, the influence of α

and β on experimental matching accuracy were analyzed respectively in Figure 5.
We first set β to 0.2 to analyze α. In Figure 5(a), it can be observed that when α = 5, the highest

accuracy is achieved in different Hits@N. This means that aggregating the information of the five
closest friends can most effectively improve the matching accuracy. Too many or too few close friends
cannot achieve the best results.

Then set α to 5 for β analysis. Figure 5(b) illustrates that by setting β to 0.2, the influence of close
friends is increased, and the highest accuracy can be obtained. It also shows the importance of friend
closeness used in FCUM.

We also verified the generality and accuracy of our algorithm FCUM on the DBLP dataset in
Figure 6. In this experiment, we only used 10% of the labeled nodes to achieve 97.4% accuracy on
Hits@30, which is 47.2% higher than INE. At Hits@1, our algorithm FCUM is also better than
ABNE, significantly ahead of other methods. Therefore, our proposed FCUM method has good
robustness and effectiveness in cross-social network user matching tasks.

As shown in Table 4, the ranking performance of the algorithm was compared on the Twitter-
Foursquare dataset. The proposed algorithm FCUM is also excellent in ranking performance, and has
good performance on three indicators. FCUM has a significant lead in the MAP, demonstrating the
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(a) The influence of α on matching accuracy (b) The influence of β on matching accuracy

Figure 5. The influence of hyper parameters on matching accuracy.

Figure 6. Matching accuracy comparison on DBLP.
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(a) Repeat times of random walk t (b) Length of random walk l (c) Window size of Skip-gram c

Figure 7. The influence of important parameters on matching accuracy.

ability to rank absolutely. On the AUC and Hit-Precision that take into account the overall data set
size, the relative ranking ability of FCUM is also much better than other comparison methods.

5.5. Parameter analysis

As shown in Figure 7(a), we assign the repeat times of random walks t with values varies [10, 70] to
analysis the performance of FCUM. When t = 10, the matching accuracy is the lowest. As t gradually
increases, the matching accuracy is also greatly improved, reaching the highest value when t is between
40 and 50. Then the matching accuracy decreases, so FCUM can achieve the best performance around
c = 40.

As shown in Figure 7(b), we assign the length of random walk l with values varies [10, 160] to
analysis the performance of FCUM. When l = 10, the matching accuracy is the lowest. As l gradually
increases, the matching accuracy also increases, reaching the highest value when l = 80. Subsequently,
the matching accuracy did not increase significantly with the increase of l. And the larger l, the greater
the performance consumption of the machine, so it is appropriate to set l = 80.

As shown in Figure 7(c), we assign the window size of Skip-gram c with values varies [2, 30] to
analysis the performance of FCUM. When c = 2, the matching accuracy is the lowest. As c gradually
increases, the matching accuracy increases Significantly, and the matching accuracy can be maintained
at the highest point when c around 10. When c = 20 and 30, the matching accuracy shows a downward
trend, so c can be set to 10.

5.6. Complexity analysis

The time complexity of FCUM is as follows:

T = TEFR + TGUVS + TGCFVS + TBDM (21)

Where TEFR denotes the time complexity for the extension of friend relationship step.
TEFR = O(|L| · | fi|), where |L| is the number of labeled users, | fi| is the number of friends of the current
user vi. TGUVS denotes the time complexity for the generation of user vector space step.
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TGUVS = O(k1 · d · |E|), where k1 is the number of iterations, d is the dimension of user vector, |E| is
the number of edges in the network. TGCFVS denotes the time complexity for the generation of close
friend vector space step. TGCFVS = O(k2 · d · |V | · | fi|), where k2 is the number of iterations, |V | is the
number of social network users. TBDM denotes the time complexity for the bi-directional matching
step. TBDM = O(k3 · d · |L|) + O(|V |2), where O(k3 · d · |L|) is the time complexity for MLP training,
O(|V |2) is the time complexity for user matching, k3 is the number of iterations.

It can be seen that the complexity of TEFR is lower than the other three stages. The numbers of
iterations k1, k2, k3 are constant, |V | · | fi| = 2|E|. Therefore, the complexity of TGUVS and TGCFVS is
similar. So the complexity of TGUVS , TGCFVS and TBDM depends on k · d · | fi| and |V |. Therefore, in
large-scale social networks, TBDM is the dominant complexity. On the contrary, TGUVS and TGCFVS are
the dominant complexity.

We used a PC with Windows 10, 2.9-GHz CPU and 8-GB memory. The time cost for the extension
of friend relationship step is 3.89 s. The time cost for the generation of user vector space step is
25.73 min. The time cost for the generation of close friend vector space step is 22.41 min. The time
cost for the bi-directional matching step is 13.55 min.

6. Conclusions and future works

In this article, we propose a friend closeness based user matching algorithm-FCUM. It is a semi-
supervised and end-to-end user matching algorithm. FCUM first extends the social network, and then
use the attention mechanism to quantify the closeness between users and friends. After that FCUM
generates close friend vectors based on the user embedding vector space. The close friend vectors can
be used to avoid overfitting and increase the generalization ability of the model. In addition, we also
design a bi-directional matching mechanism to enhance the labeled user pairs set, thereby improving
user matching accuracy. Experiments on real-world social network datasets demonstrate that FCUM
outperforms various state-of-the-art user matching methods.

The proposed FCUM model’s applicability to different social network is a promising dimension.
Besides, user matching with multiple features is another interesting direction, such as users’ published
articles or conversations. But too many features are accompanied by noise, so it is a challenge to match
user cross networks. We leave these as future work.
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