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Abstract: Common spatial pattern (CSP) as a spatial filtering method has been most widely applied 
to electroencephalogram (EEG) feature extraction to classify motor imagery (MI) in brain-computer 
interface (BCI) applications. The effectiveness of CSP is determined by the quality of interception in 
a specific time window and frequency band. Although numerous algorithms have been designed to 
optimize CSP by splitting the EEG data with a sliding time window and dividing the frequency bands 
with a set of band-pass filters, simultaneously. However, they did not consider the drawbacks of the 
rapid increase in data volume and feature dimensions brought about by this method, which would 
reduce the classification accuracy and calculation efficiency of the model. Therefore, we propose an 
optimal channel-based sparse time-frequency blocks common spatial pattern (OCSB-CSP) feature 
extraction method to improve the model classification accuracy and computational efficiency. 
Comparative experiments on two public EEG datasets show that the proposed method can quickly 
select significant time-frequency blocks and improve classification performance. The average 
classification accuracies are higher than those of other winners’ methods, providing a new idea for the 
improvement of BCI applications. 
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1. Introduction 

As one of the emerging technologies in the field of neurorehabilitation, the brain-computer 
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interface (BCI) aims to provide a new non-muscular channel for paralyzed people to communicate 
with outside world [1]. Electroencephalography (EEG) is widely used for BCI systems owing to its 
convenience, low cost, and high temporal resolution. At present, the commonly used paradigms for 
BCI system control include steady-state visual evoked potentials (SSVEPs) [2,3], event-related 
potentials (ERPs) [4,5], and motor imagery (MI) [6–8]. Compared with BCIs that requires external 
active stimulation, MI-based BCI systems are easier to implement [9,10]. Sensory Motor Rhythm 
(SMR) is characterized as a band power change within a particular EEG frequency band appearing 
over a sensorimotor area of the brain during MI. Accordingly, BCI systems can be designed to use 
EEG band power changes associated with MI tasks as control signals [11]. Since EEG is a non-
stationary, low amplitude and low signal-to-noise ratio bioelectric signal [12,13], and MI is an unstable, 
easily disturbed, and no obvious characteristic paradigm [14,15], which poses a huge challenge for 
correctly identifying MI intentions. Therefore, how to design reasonable algorithms to extract -
discriminative features is particularly critical for MI-EEG recognition. 

CSP is widely used for feature extraction of MI-related tasks [16–18]. However, the performance 
of CSP on specific subjects is closely related to the selection of time windows and frequency bands, 
so that some CSP methods for time windows and frequency bands improvements are proposed to 
increase the robustness and classification performance of the model [19–21]. Temporally constrained 
sparse group spatial pattern (TSGSP) [22] further enhance classification accuracy of MI EEG by the 
simultaneous optimization of filter bands and time window. Sparse linear discriminant analysis (GSDA) 
[23] extracted CSP features from the divided time-frequency blocks and used the generalized method 
to simultaneously select features and classify to improve the classification accuracy. And wrapped 
time-frequency combined selection in the source domain (WTFS-SD) [19] applied weighted minimum 
norm estimate and CSP based sub-band feature extraction to decode the MI-tasks. 

The main idea of above these algorithms is to extract, fuse and select the CSP features of EEG 
signals from multiple specific time windows and subbands in a single trail of specific subjects, so as 
to make up for the defects of high sensitivity to noise and low generalization capacity of CSP, and 
improve the representation ability of different motor imagery tasks. However, they did not consider 
the sharp increase of data volume and feature dimension, which will increase the computational 
complexity of the model, which is not conducive to the development and application of online BCI. In 
addition, the excessive division of time-frequency blocks will in turn lead to information redundancy, 
resulting in the reduction of classification accuracy. 

To solve the above problem, we propose an optimal channel-based sparse time-frequency block 
common spatial pattern (OCSB-CSP) feature extraction method to reduce the computational burden 
and increase the classification accuracy of the model. First, a correlation-based method is implemented 
to select channels and mark the optimal one. Second, the discriminative ability of each time-frequency 
block is calculated based on the one-dimensional EEG data of the optimal channel, and the block 
selection is performed with this index. Then, feature extraction and selection are executed for sparse 
time-frequency blocks. Finally, support vector machine (SVM) is used for classification. 

The rest of this paper is organized as follows. Section 2 explains the proposed method. Section 3 
describes the experiment study. Section 4 provides the discussion. Finally, the conclusion is drawn in 
section 5. 
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2. Methods 

Our proposed framework consists of three main parts, Correlation-based channel selection, 
Optimal channel-based sparse time-frequency blocks selection, and CSP feature extraction and 
selection. Firstly, redundant information is removed, and the data dimensionality is initially reduced 
by step 1, and the optimal channel for subsequent processing is determined. Secondly, we select the 
time-frequency blocks rapidly and efficiently by step 2. Then the feature extraction and selection of 
sparse time-frequency blocks are performed by step 3. Finally, the classification is performed with 
SVM. The overall framework of the proposed method is illustrated in Figure 1. 
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Figure 1. The overall framework of the proposed OCSB-CSP method for MI classification. 
It includes three main parts: correlation-based channel selection, optimal channel-based 
sparse time-frequency blocks selection, and CSP feature extraction and selection. 

2.1. Correlation-based channel selection 

As the number of electrodes for recording EEG data increases, it is essential to adopt effective 
channel selection algorithms to reduce the computational complexity and channels redundancy. 
Different criteria functions are predefined, and different channel selection evaluation algorithms are 
generated, such as [24,25] proposed a filter method to select the significant channels by using Pearson 
correlation coefficient and bispectrum analysis; [26] adopted a wrapper method to select the important 
channels by genetic algorithms (GA) and adjust it according to the classification results of fisher 
discriminant analysis (FDA); [27] raised a hybrid method of two-stage channel selection. In the first 
stage, a single channel was formed by averaging the channels were combined according to the 
neurophysiological information about brain functions acquired from the literature, and in the second 
stage, selective channels were specified with the common spatial pattern-linear discriminant analysis 
(CSP-LDA)-based sequential channel removal. 

The aim of this paper is to propose a method that can rapidly select time-frequency blocks to 
reduce the computational burden and improve the classification accuracy. Therefore, we use a filtering 
method in the first step to efficiently select the channels related to MI, which removes the redundant 
information between channels and facilitates the improvement of classification accuracy; on the other 
hand, we mark the optimal channel by this step and use the one-dimensional data based on the optimal 
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channel for the subsequent time-frequency block selection, which significantly reduces the 
computational complexity of the model compared to using multi-channel data. The combination of 
these two points shows the reasonableness and necessity of the method. As the specific subjects 
perform the same MI task, MI-related channels should contain common information, while other 
channels contain less common information. Based on this principle, we use the Person correlation 
coefficient, a classic method to quantify the statistical relationship between two or more variables, to 
measure the similarity between any two channels in reference [28]. In the following, we discuss the 
necessary steps: 

Firstly, in order to reduce the error caused by individual variability or external interference, the 
raw broadband (1–42 Hz) EEG data is normalized with Z-score, so that the mean of each channel data 
is equal to 0 and the variance is equal to 1: 

                    𝑆௖ ൌ ൫𝑋௖ െ 𝑚𝑒𝑎𝑛ሺ𝑋௖ሻ൯/𝑠𝑡𝑑ሺ𝑋௖ሻ, 𝑐 ൌ 1,⋯ , 𝐶,               (1) 

where 𝑋௖ and 𝑆௖ are the 𝑐௧ℎ channel time series before and after normalizing, and 𝐶 is the total 
number of channels. 

Secondly, the Person correlation coefficient between the two channels is calculated by the 
following formula: 

𝜌൫𝑆௜, 𝑆௝൯ ൌ
ଵ

ேିଵ
∑ ቀௌ೔

ሺ௡ሻି௠௘௔௡ሺௌ೔ሻ

௦௧ௗሺௌ೔ሻ
ቁ ൬

ௌೕሺ௡ሻି௠௘௔௡൫ௌೕ൯

௦௧ௗ൫ௌೕ൯
൰ே

௡ୀଵ , 𝑖, 𝑗 ൌ 1,2,⋯ , 𝐶,           (2) 

where 𝑆௜ and 𝑆௝ are the time series of the 𝑖௧ℎ and 𝑗௧௛ channels normalized by formula (1), and 𝑁 
is the number of sampling points in the sequence. 

Thirdly, the correlation coefficient matrix 𝑅 ∈ ℝ஼ൈ஼ is calculated: 

                          𝑹 ൌ ൥
𝜌ሺ𝑆ଵ, 𝑆ଵሻ ⋯ 𝜌ሺ𝑆ଵ, 𝑆஼ሻ

⋮ ⋱ ⋮
𝜌ሺ𝑆஼, 𝑆ଵሻ ⋯ 𝜌ሺ𝑆஼, 𝑆஼ሻ

൩.                         (3) 

Then the average common information of each channel and all remaining channels is obtained by 
averaging each row of 𝑅 , and the channel corresponding to the maximum value among them is 
regarded as the selection result of this trail. Repeat all trails as described above to obtain cumulative 
selection results for all channels. 

Finally, count the selection results of all trials, the 𝐾  channels with the most selections are 
regarded as the final channel selection results, and the channel corresponding to the maximum value 
is marked as the optimal channel 𝑘∗. The selection of channels by the way of this statistical voting 
does not generate additional hyperparameters that cause an increase in the computational burden. 

2.2. Optimal channel-based sparse time-frequency blocks selection 

For improving classification accuracy of MI-related EEG, we optimize the filter bands and time 
windows within CSP simultaneously. Specifically, with regards to bandpass filtering, 𝐾  channels 
EEG data determined by section 2.1 is first decomposed into multiple specific frequencies signals at 
𝐹 overlapping filter bands. Each of the specific frequency signals is further segmented into multiple 
subseries using 𝑇 overlapping sliding windows. Finally, 𝐹 ൈ 𝑇 time-frequency blocks are formed. 

The time series of the optimal channel are taken out from each time-frequency block, and the 
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time-domain power feature and frequency-domain power spectral density (PSD) feature are extracted. 
Then, the two-dimensional features are projected to one-dimension through Fisher ratio, to characterize 
the MI classification ability of each time-frequency block, and to select the time-frequency blocks 
based on this. Fisher ratio is a statistic parameter that can be used to measure the discriminant ability 
of classes by projecting high-dimensional features into one dimension [29], It is defined as: 

                        𝑠𝑐𝑜𝑟𝑒ி ൌ
ൣ௠௘௔௡ሺிషሻି௠௘௔௡൫ிశ൯൧

మ

௩௔௥ሺிషሻା௩௔௥ሺிశሻ
,                        (4) 

where 𝐹ି and 𝐹ା are feature vectors from two different classes. 
For the time series of the optimal channel in 𝑖௧ℎ trail 𝑋௜,௞∗ from the each time-frequency block, 

its power feature is defined as 𝑇௜,௞∗, PSD feature is defined as 𝑃௜,௞∗ [30]: 

                              𝑇௜,௞∗ ൌ 𝑙𝑜𝑔ൣ𝑣𝑎𝑟൫𝑋௜,௞∗൯൧,                           (5) 

                           𝑃௜,௞∗ ൌ
ଵ

ே
ห∑ 𝑋௜,௞∗ሺ𝑛ሻே

௡ୀଵ 𝑒ି௝ఠ௡ห
ଶ
.                        (6) 

According to the definition of Fisher ratio in formula (4) and the above two features, we define 
the value of the binary classification capability of each time-frequency block as 𝑠𝑐𝑜𝑟𝑒ி by calculating 
the ratio of the Euclidean distance between classes to the intra-class variances. The specific formula 
is: 

𝑠𝑐𝑜𝑟𝑒ி ൌ
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మ
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,      (7) 

where 𝑁ଵ and 𝑁ଶ are the number of trails in class 1 and class 2, respectively. The 𝑠𝑐𝑜𝑟𝑒ி of all 
𝐹 ൈ 𝑇  time-frequency blocks are obtained by the above formula, and the high-quality 𝑀  time-
frequency blocks are selected by setting reasonable threshold. A reasonable threshold setting will have 
a significant impact on the subsequent CSP performance. If the threshold is set too large, the number 
of selected time-frequency blocks will be less, resulting in the loss of a large number of effective 
information; adversely, if the threshold is set too small, the number of selected time-frequency blocks 
will be more, resulting in a large number of invalid redundant information. The power features in the 
time domain and the PSD features in the frequency domain of each time-frequency block are extracted 
and compressed into a one-dimensional indicator using the Fisher ratio to characterize the binary 
classification capability of each block. This method also ensures the rationality and efficiency of block 
selection to a certain extent. 

2.3. CSP feature extraction and selection 

As we all know, CSP is very sensitive to noise, and the CSP feature extraction and fusion of 
multiple time-frequency blocks are easy to make the model over-fitting. Therefore, many improved 
CSP feature extraction and selection methods have been proposed [31–33]. We perform CSP feature 
extraction and selection on the 𝑀 time-frequency blocks selected by the method in section 2.2 above. 
For the 𝑖௧௛  EEG data 𝑿௜ ∈ ℝ௄ൈ், 𝑖 ∈ 𝑁௟, 𝑙 ൌ 1,2  (𝐾  is the number of channels after channel 
selection in section 2.1, 𝑇 is the number of sampling points from any time-frequency block, and 𝑁௟ 
is the number of trails corresponding to class 𝑙). The average spatial covariance matrix of class 𝑙 is: 

                                𝜮௟ ൌ
ଵ

ே೗
∑ 𝑿௜𝑿௜

்ே೗
௜ୀଵ ,                             (8) 
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where 𝑇 denotes the transpose operator. The purpose of CSP is to find the optimal spatial filter to 
maximize the variance ratio between the two classes of data: 

                      𝑚𝑎𝑥
௪

𝐽ሺ𝑤ሻ ൌ ௪೹𝜮భ௪

௪೹𝜮మ௪
𝑠. 𝑡. ‖𝑤‖ଶ ൌ 1,                  (9) 

Where 𝑤 ∈ ℝ௄ is a spatial filter, ‖⋅‖ଶ is the 𝑙ଶ norm. This maximization solution is equivalent to 
solving the generalized eigenvalue problem 𝜮ଵ𝑤 ൌ 𝜆𝜮ଶ𝑤. A set of spatial filters 𝑊 ൌ ሾ𝑤ଵ,⋯ ,𝑤ଶ௉ሿ 
is obtained by combining the eigenvectors corresponding to the 𝑃 largest and P smallest generalized 

eigenvalues. Finally, the feature vector 𝑧ሺ௠ሻ ൌ ቂ𝑧ଵ
ሺ௠ሻ,⋯ , 𝑧ଶ௉

ሺ௠ሻቃ of the 𝑚௧ℎ time-frequency block is 

extracted by the following formula: 

                        𝑧௣
ሺ௠ሻ ൌ 𝑙𝑜𝑔 ቀ𝑣𝑎𝑟൫𝑤௣ఁ𝑿௜൯ቁ , 𝑝 ൌ 1,⋯ ,2𝑃.             (10) 

According to the above steps, CSP features are extracted from all selected 𝑀 time-frequency blocks, 
and the fusion feature 𝑍 ∈ ℝଶ௉ெ is obtained: 

                                𝑍 ൌ ൣ𝑧ሺଵሻ,⋯ , 𝑧ሺெሻ൧.                             (11) 

LASSO (Least Absolute Shrinkage and Selection Operator), as a filter method for feature 
selection, uses specific statistical criteria to select features without relying on any classifier, and has 
been widely used in MI based BCI [34,35]. Lasso aims to minimize the sum of squares of residuals 
and is constrained that the sum of absolute values of coefficient vectors is less than the given constant. 
The specific functions are as follows: 

                        𝑔 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛
௚

ଵ

ଶ
∑ ‖𝑍௜𝑔 െ 𝑦௜‖ଶ

ଶ ൅ 𝜆‖𝑔‖ଵ
ே
௜ୀଵ ,               (12) 

where 𝑍௜  and 𝑦௜  are the fusion features and labels corresponding to the 𝑖௧௛  trail, and 𝜆  is a 
nonnegative hyperparameter that controls the sparsity of the coefficient vector 𝑔. The features in 𝑍௜ 
corresponding to those non-zero entries in 𝑔 are selected to form an optimized feature vector. 

After correlation-based channel selection, optimal channel-based sparse time-frequency blocks 
selection and CSP feature extraction and selection, the final feature vectors are obtained and input into 
SVM with the radial basis function (RBF) kernel for the classification. 

3. Experiment study 

3.1. EEG data description 

1) Dataset 1: This dataset is from BCI competition IV dataset 1 [36], which records 59 channels 
EEG data of 4 healthy subjects (a, b, f, g), and each subject was asked to complete 100 trails of left 
hand and foot motor imagery. For the first 6 seconds of each trail, a fixed cross will be displayed in 
the center of the computer screen. The arrow with direction (left: left hand motor imagery; down: 
foot motor imagery) will be superimposed on the cross in 2–6 seconds as a hint, and the subjects 
performed the motor imagery tasks according to the cue during this period. Then the screen appears 
black in 6–8 s. 

2) Dataset 2: This dataset is from BCI Competition III dataset Iva [37], which records 118 
channels EEG data of 5 healthy subjects (aa, al, av, aw, ay)，and each subject was asked to complete 
140 trails of right hand and foot motor imagery. For the first 3.5 seconds of each trail, an arrow with 
direction (right: right hand motor imagery; down: foot motor imagery) is displayed in the center of the 
computer screen as a prompt, and the subjects performed the motor imagery tasks according to the cue 
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during this period. The subjects were then allowed to relax for 1.75 to 2.25 s. 

3.2. Experimental evaluation and result 

To investigate the performance of the proposed method on the above two datasets, we performed 
a uniform preprocessing using the channel selection algorithm described in section 2.1, followed by 
feature extraction using the FBCSP, B-CSP, B-SCSP and OCSB-CSP methods, respectively (as 
implemented below), and finally classification using an SVM based on the RBF kernel, where the 
penalty parameter C was determined by a 5-fold cross-validation is determined. The above experiments 
were repeated 5 times to evaluate the classification accuracy and computation time.  

(1) FBCSP (Filter band CSP): By extracting and fusing CSP features from different filter bands. 
Specifically, the 4–40 Hz broadband raw data was decomposed into 17 overlapping subbands (4–8 Hz, 
6–10 Hz, 8–12 Hz, 10–14 Hz, 12–16 Hz, 14–18 Hz, 16–20 Hz, 18–22 Hz, 20–24 Hz, 22–26 Hz, 24–
28 Hz, 26–30 Hz, 28–32 Hz, 30–34 Hz, 32–36 Hz, 34–38 Hz, 36–40 Hz) by the fourth order 
Butterworth bandpass filter. 

(2) B-CSP (Blocks-CSP): By extracting and fusing CSP features from each time-frequency block 
constructed by simultaneously sliding time windows and dividing frequency bands. Specifically, the 
data in Dataset 1 was divided into five overlapping time windows (i.e., 0–2 s, 0.5–2.5 s, 1–3 s, 1.5–3.5 
s, 2–4 s), and the data in Dataset 2 was divided into four overlapping time windows (i.e., 0–2 s, 0.5–
2.5 s, 1–3 s, 1.5–3.5 s). Then used the same method as in (1) to divide the frequency bands for each 
time window data. 

(3) B-SCSP (Blocks-Sparse CSP): Based on (2), features were selected through Lasso. 
Specifically, 5-fold cross-validation was used to determine the hyperparameters 𝜆 in Lasso regression. 

(4) OCSB-CSP: The construction method of time-frequency blocks was the same as (2). For 
specific subjects, optimal channel-based sparse time-frequency blocks CSP method was proposed, and 
the method described in (3) was used for feature extraction and selection. 

After the above four algorithms were used to extract and select the respective CSP features, SVM 
with RBF kernel function was used for classification, and the penalty factor was determined by 5-fold 
cross-validation. 

Table 1. Comparison of average classification accuracies ± standard deviation (%) 
obtained by repeating the experiment 5 times for Dataset 1. For each subject, the highest 
average accuracy is marked in boldface. 

Subjects FBCSP B-CSP B-SCSP OCSB-CSP 
a 80.23 ± 3.82 82.67 ± 3.91 84.76 ± 3.80 86.91 ± 3.58 
b 70.62 ± 5.34 70.86 ± 5.49 74.66 ± 4.93 74.17 ± 4.81 
f 80.92 ± 4.11 82.60 ± 4.01 82.63 ± 3.58 84.55 ± 3.49 
g 89.84 ± 2.13 91.34 ± 2.09 91.86 ± 2.00 93.46 ± 1.95 

ave 80.40 ± 3.85 81.87 ± 3.88 83.48 ± 3.58 84.78 ± 3.46 
p-value < 0.01 < 0.01 0.12 – 

Table 1 reports the comparison results of the classification accuracy rates for our proposed 
algorithm and three other algorithms on Dataset 1. We observe that our proposed method outperforms 
all these remaining methods. The average improvements achieved by our method were 4.37%, 2.91% 
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and 1.30% in comparison with FBCSP, B-CSP and B-SCSP, respectively. Our proposed method 
obtained very significant improvement on classification accuracy compared to FBCSP and B-CSP 
(𝑝 ൏ 0.01). 

Table 2 shows the comparison results on Dataset 2. The average improvements achieved by our 
proposed method were 3.7%, 1.35% and 1.01% in comparison with FBCSP, B-CSP and B-SCSP, 
respectively. Our proposed method obtained very significant improvement on classification accuracy 
compared to FBCSP (𝑝 ൏ 0.01). 

Table 2. Comparison of average classification accuracies ± standard deviation (%) 
obtained by repeating the experiment five times for Dataset 2. For each subject, the highest 
average accuracy is marked in boldface. 

Subjects FBCSP B-CSP B-SCSP OCSB-CSP 
aa 89.38 ± 2.82 90.81 ± 2.50 90.77 ± 2.60 91.85 ± 2.53 
al 96.87 ± 2.01 98.11 ± 1.89 99.18 ± 0.82 98.94 ± 1.06 
av 68.49 ± 6.13 72.11 ± 6.20 72.29 ± 6.19 71.71 ± 6.09 
aw 91.18 ± 2.65 91.98 ± 2.77 94.83 ± 2.49 97.14 ± 2.50 
ay 89.56 ± 2.24 90.22 ± 2.20 91.87 ± 2.10 94.34 ± 2.00 
ave 87.10 ± 3.17 88.65 ± 3.11 89.79 ± 2.84 90.80 ± 2.84 

p-value < 0.01 0.11 0.18 – 

Additionally, we also compared the computational efficiency of each algorithm. Figure 2 shows 
the computational time evaluated for 5 replicated experiments of the model training and testing phases 
under the environment of python 3.7.3 on a desktop with 2.80 GHz CPU (i5–8400, 8 GB RAM). It can 
be seen from Figure 2(a) that our algorithm has relatively more hyperparameters, so it takes most of 
time for inner loop cross-validation to select the hyperparameters. Although our algorithm requires a 
longer computational time than other methods, the inner loop cross-validation is not necessary for 
testing but only for model training. The computational time for testing is shown in Figure 2(b), the 
proposed OCSB-CSP algorithm not only substantially improves the classification accuracy compared 
to the conventional FBCSP, but also reduces the computational burden compared to the B-CSP and B-
SCSP that employ all time-frequency blocks, which is meaningful for the development and 
improvement of BCI applications. 
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Figure 2. The computational time spent for each comparison algorithm on training and 
testing by repeating the experiments 5 times respectively. 
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In order to demonstrate the superiority of the proposed method, it was also compared with existing 
winners’ methods, including LRFCSP [38], SGRM [39], CCS-RCSP [28], BCS-CSP [40], and OCS-
CSP [41]. Table 3 and Table 4 show the average classification accuracy of each method for multiple 
experiments on Dataset I and II, respectively. As shown in the tables, although the average 
classification accuracy of our proposed method does not display a significant advantage over existing 
methods, our method does not lose classification performance after a drastic dimensionality reduction 
process, but has some enhancement, especially in Dataset 2. 

Table 3. Classification accuracies of the proposed OCSB-CSP method and other winners' 
methods on Dataset 1. 

Subjects methods 
LRFCSP CCS-RCSP BCS-CSP OCS-CSP OCSB-CSP 

a 87.0 85.5 78.5 86.5 87.1 
b 69.0 67.0 77.5 69.5 74.2 
f 87.5 79.5 92.0 87.5 84.6 
g 92.5 94.5 87.0 94.0 94.6 

ave 84.0 81.6 83.8 84.4 85.1 
std 8.9 10.0 6.0 9.1 7.3 

p-value 0.56 0.11 0.75 0.66 – 

Table 4. Classification accuracies of the proposed OCSB-CSP method and other winners' 
methods on Dataset 2. 

Subjects methods 
SGRM CCS-RCSP BCS-CSP OCS-CSP OCSB-CSP 

aa 73.9 80.7 82.1 89.3 91.9 
al 94.5 96.8 95.0 98.2 98.9 
av 59.5 70.4 72.1 73.5 71.7 
aw 80.7 92.9 90.7 92.9 97.1 
ay 79.9 92.1 91.8 89.3 94.3 
ave 77.7 86.6 86.3 88.6 90.8 
std 11.3 9.7 8.3 8.2 9.8 

p-value <0.01 0.08 0.06 0.15 – 

4. Discussion 

4.1. Distribution of selected channels 

We used the Pearson correlation coefficient-based channel selection method proposed in section 
2.1 to count the channel selection results of all 160 training trails for each subject in the Dataset 1, as 
shown in Table 5. We can see that the results of channel selection for specific subjects are not the same, 
that is, different channels are selected, the number of channels selected is different, the number of 
times each channel is selected is different, and the optimal channels marked are different, so it is 
necessary to select channels for specific subjects. 
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Table 5. The specific channel selection results and the corresponding statistical times of 
four subjects in Dataset 1, and the selection results of the optimal channels are displayed 
in bold. 

a CFC4 CFC6 C3 C1 Cz C2 C4 CCP3 CCP1 CCP2
num 6 4 18 13 1 27 17 12 30 51 

 CCP4 CP3 CP1 CPz CP2      
 10 1 4 3 3      
b FCz CFC3 CFC1 CFC2 CFC4 C3 C1 Cz C2 C4 

num 1 13 2 3 14 3 18 1 9 7 
 CCP5 CCP3 CCP1 CCP2 CCP4 CP3 CP1 CPz CP2 CP4 
 2 26 23 14 5 6 37 1 12 3 
f FC3 FC2 FC4 CFC5 CFC3 CFC1 CFC4 CFC6 C3 Cz 

num 2 1 2 11 32 8 21 1 2 2 
 C4 C6 CCP5 CCP3 CCP1 CCP4 CCP6 CP3 CP1 CP2 
 2 1 11 1 15 82 1 1 3 1 
g FC1 FC2 FC4 CFC3 CFC1 CFC2 CFC4 C3 C1 Cz 

num 1 1 1 4 1 2 19 7 49 8 
 C2 C4 CCP3 CCP1 CCP2 CCP4 CP3 CP1 CP2  
 41 10 13 5 26 8 1 2 1  

 

Figure 3. Brain topographic maps of channel selection distribution from four subjects in 
Dataset 1, the warmer the channel color, the more choices, that is, the higher the quality of 
the channel. 

To intuitively reflect the distribution results of channel selection and the quality of each channel. 
We normalize the statistical results of each subject and draw brain topographic maps, as shown in 
Figure 3. It can be seen that the results of channel selection are indeed related to the specific subjects, 
but without exception, the channels selected by each subject are located in the motor perception region 
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of the cerebral cortex, and the optimal channel (the warmest channel in the brain topographic map) 
appears near the CCP3 or CCP4. 

4.2. Sparse time-frequency blocks comparison 

To improve the performance and efficiency of time-frequency blocks selection, as shown in 3.2, 
we propose a method that uses one-dimensional data of the optimal channel to calculate the Fisher 
ratio of each block as the basis for blocks selection. For the four subjects in Dataset 1, we set different 
thresholds to ensure that 45 blocks are selected for synchronous comparison, as shown in Figure 4. 
The blue blocks are the selected time-frequency blocks. The darker the color, the larger the Fisher ratio, 
which means that it has better MI classification ability. It can be found that the time-frequency blocks 
selected by our proposed algorithm from specific subjects are different, and the positions of significant 
time-frequency blocks are also different. Since MI tasks are usually unknown and varies between 
subjects, it is determined that a fixed time-frequency block cannot capture the most distinctive features, 
resulting in suboptimal accuracy, which further confirms the necessity of selecting time-frequency 
blocks. Furthermore, we consider that the EEG signal between adjoining sliding windows will not 
change too much, and the corresponding CSP features will not change too much, so the selection blocks 
of adjoining sliding windows should also ensure a certain consistency. The results presented in Figure 
4 are consistent with the above. 

 

Figure 4. Visualization of sparse time-frequency blocks by the OCSB-CSP algorithm for 
all subjects from Dataset 1. The blue blocks are the selected time-frequency blocks, and 
the darker the color, the larger the Fisher ratio and the better the MI classification ability. 
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Figure 5. Effects of varying time-frequency blocks selection number on the average 
classification accuracies of 5-fold cross-validation for all subjects in Dataset 1. 

We used 5-fold cross-validation to determine a reasonable threshold for specific subjects. 
Figure 5 shows the impact of the change in the number of time-frequency blocks on the classification 
accuracies for all subjects in Dataset 1. It can be seen from this figure that when the number of blocks 
exceeds a certain number, the classification accuracy of each subject decreases to varying degrees. 
That is, we need to determine the number corresponding to the highest classification accuracy. Thus, 
the selection of sparse time-frequency blocks is very significant in improving the performance and 
operation speed of the model. 

4.3. Sparse feature selection 

The regularization parameter 𝜆 plays an important role in the selection of CSP features based on 
lasso regression. A too large 𝜆  may exclude effective features while a too small one could not 
eliminate redundancy effectively. In this paper, the appropriate subject-specific 𝜆 was determined by 
5-fold cross-validation, and the optimal sparse coefficient vector 𝒈 can be eventually learned from 
formula (12) to select the significant CSP features extracted from the sparse time-frequency blocks. 
Figure 6. reflects sparse coefficient vector and the most significant spatial filter learned by OCSB-CSP 
algorithm for each subject in Dataset 1. We can see that the significant features are sparse and subject-
specific, and the brain topographic map of the most significant spatial filter further indicates the 
effectiveness of the proposed method for capturing the dynamical changing of SMRs. 

In summary, we arrived at the following conclusions: 
1) The channel selection section, for a single trail on a specific subject, using a filtered approach 

called Pearson correlation coefficient [17] to quickly eliminate redundant information between 
channels and diminish the dimensions of the data. In addition, all trails are counted in the form of 
voting, and the optimal channel with the most votes is marked. The experimental results show that the 
optimal channel is all from the area around CCP3 and CCP4 where ERD/ERS [42,43] is most obvious. 

2) Aiming at the problem that the existing CSP feature extraction methods based on multiple time-
frequency blocks have heavy computational burden, we propose an optimal channel-based sparse time-
frequency blocks CSP feature extraction method to reduce the computational complexity and improve 
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the classification accuracy of the model. The specific innovations are as follows: the sparsity of time-
frequency blocks based on one-dimensional data of the optimal channel, which ensures the accuracy 
of classification to a certain extent and improves the computational efficiency of the model. The 
innovative combination of extracting time-domain and frequency-domain features with Fisher ratio to 
define a reasonable indicator for time-frequency blocks selection, which has achieved better 
experimental results. 

2-4s/10-14Hz

1-3s/8-12Hz

0.5-2.5s/8-12Hz

1.5-2.5s/20-24Hz

 

Figure 6. Weight of coefficient corresponding to each CSP feature and most significant 
spatial filter learned by the OCSB-CSP algorithm for each subject in Dataset 1. 

3) The proposed framework involves more hyperparameters, such as the number of time-
frequency blocks, penalty parameter of Lasso regression, penalty factor of SVM classifier, etc., and all 
these hyperparameters need to be determined according to specific subjects, and to some extent lead 
to an increased computational burden, which cannot be well applied across subjects, and this is not 
conducive to the development and application of BCI system. Future enhancements to the model are 
needed to improve the generalization capability of the model. 
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5. Conclusions 

In this paper, an optimal channel-based sparse time-frequency blocks common Spatial pattern 
feature extraction method is introduced to enhance the classification accuracy and computational speed 
of MI tasks by efficiently selecting time-frequency blocks. In this proposed method framework, the 
channel selection method based on Pearson correlation coefficient was firstly cited to initially reduce 
the redundant information between channels and to mark the optimal channel for subsequent 
processing. The selection results show the reasonableness and efficiency of this method. Then the 
discriminative ability of each time-frequency block measured by defining Fisher ratio index based on 
the optimal channel of the one-dimensional EEG data was achieved to sparse the time-frequency 
blocks. The results indicate that the suggested method not only significantly reduces the data 
dimensionality, but also the selected time-frequency blocks are mostly distributed in the frequency 
bands relevant to the MI tasks. Finally, Lasso regression was performed to select the extracted multi-
blocks CSP features and SVM was used for classification.  Significant advantages were obtained 
when compared with the existing superior methods on both public datasets. The proposed OCSB-CSP 
algorithm achieves higher classification accuracy while reducing the computational burden of the 
model, which provides a new idea for the development and improvement of BCI applications. 
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