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Abstract: Computer-aided diagnosis (CAD) of pulmonary nodules is an effective approach for early 

detection of lung cancers, and pulmonary nodule classification is one of the key issues in the CAD 

system. However, CAD has the problems of low accuracy and high false-positive rate (FPR) on 

pulmonary nodule classification. To solve these problems, a novel method using intelligent immune 

clonal selection and classification algorithm is proposed and developed in this work. First, according 

to the mechanism and characteristics of chaotic motion with a logistic mapping, the proposed method 

utilizes the characteristics of chaotic motion and selects the control factor of the optimal chaotic state, 

to generate an initial population with randomness and ergodicity. The singleness problem of the initial 

population of the immune algorithm was solved by the proposed method. Second, considering on the 

characteristics of Gaussian mutation operator (GMO) with a small scale, and Cauchy mutation operator 

(CMO) with a big scale, an intelligent mutation strategy is developed, and a novel control factor of the 

mutation is designed. Therefore, a Gauss-Cauchy hybrid mutation operator is designed. Ultimately, in 

this study, the intelligent immune clonal optimization algorithm is proposed and developed for 

pulmonary nodule classification. To verify its accuracy, the proposed method was used to analyze 90 

CT scans with 652 nodules. The experimental results revealed that the proposed method had an 

accuracy of 97.87% and produced 1.52 false positives per scan (FPs/scan), indicating that the proposed 

method has high accuracy and low FPR. 

Keywords: computer-aided diagnosis (CAD); pulmonary nodule; immune clonal selective; feature 

selection; classification 
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1. Introduction 

Lung cancer is one of the highest rates of morbidity and mortality in patients among the 

worldwide, and an effective approach for lung nodule detection and classification is very important 

for the early computer-aided diagnosis of lung cancer [1,2]. In this regard, the methods based on 

artificial intelligence have been proposed and developed, such as artificial neural network [3], 

evolutionary computation [4], and artificial immune system (AIS) [5]. Notably, AIS is inspired by 

human immune system, which has the characteristics of adaptability, robustness, homeostasis, memory, 

and immunity. Inspired by the human immune system, some new modes, algorithms, technologies and 

theoretical understandings were presented in the literation [6–8]. Feature selection is one of the most 

important tasks in many engineering problems. Importantly, AIS has a better performance in feature 

selection, which has the advantages of global optimization, parallel computing, noise tolerance, etc. 

It is widely applied in scientific computation and solving engineering problems of the existing 

literatures [8–10]. The feature selection algorithms based on immune-inspired have the advantage of 

parallel computing in multi-dimensional space.  

Computer-aided lung cancer diagnosis mainly includes lung parenchyma extraction, the region 

of interest segmentation, the feature extraction and classification. In the image processing, feature 

selection and classification are important issues for the early detection of lung cancers [11–14]. In the 

past few years, many different models and approaches were designed for feature selection and 

classification, each with its own strengths and weaknesses. For instance, the method of kernel 

optimization was used for feature selection in the high-dimensional data, experimental results 

demonstrated the efficiency and accuracy [15]. The fuzzy clustering and hybrid intelligent methods 

were used for the diagnosis of pulmonary nodules [16]. In addition, Froz et al. [4] used an expert 

system for lung nodule classification, obtained an accuracy of 94.3% and a specificity of 94.78%. Lu 

et al. [5] used the genetic algorithm for feature selection, and support vector machine (SVM) for 

pulmonary nodule classification, obtained an accuracy of 99%. Similarly, Deep learning methods also 

have good performance in feature selection and classification. For example, the deep reinforcement 

learning method was adopted for lung nodule detection and obtained the accuracy of 64.4% [17]. In 

order to improve the accuracy of classification, the deep learning and swarm intelligence of 

computational intelligence techniques were used to develop types of nodule detection and classification, 

which achieved up to 93.71% accuracy [18]. In other respects, a novel convolutional neural networks 

with carefully designed loss function regularization was proposed for thyroid nodule detection in the 

ultrasound images, the proposed model can detect various types of thyroid nodules [19].  

From the analysis of literature, it was observed that most of the studies thought that feature 

selection and classification were the independent processes, whereupon the feature selection and 

classification were done separately. Although the process is the local optimization, the final results are 

not global optimum. Actually, the processes are closely related and mutually influential, which could 

be performed simultaneously. In this regard, many methods have been proposed. For example, the 

genetic algorithm was used for feature selection and the SVM parameter optimization [20]. But genetic 

algorithm has an issue of the degradation phenomenon in the solving process of global optimal, which 

is easily premature convergence. Here, an immune algorithm can solve the problem by produces 

excellent antibodies through the memory function. However, immune algorithm also has some 

shortcomings that the initial population is insufficient diversity, and the variation scale is big or small. 

To solving these issues, tremendous research efforts have done in the past few years. For instance, 
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Jordehi [21] introduced the chaotic strategies into the immune algorithm and designed to solve the 

global continuous optimization problems. Wu et al. [22] used the chaotic producers to replace the 

random generators and used the parallel mutation strategy for the hypermutation of antibodies. Liang 

et al. [23] used the logistic mapping to generate the initial antibody populations for the diversity of 

antibodies, etc. While most of the approaches thought that the value of a control factor of the chaotic 

motion is randomly. Recently, we found that it takes an appropriate value of the control factor will 

generate the exciting results. 

In this work, we focused on improving the performance of immune clonal optimization algorithm 

for pulmonary nodule classification in chest CT images. Therefore, the method of intelligent immune 

clonal selection is proposed and developed by the population diversity and intelligent mutation. First, 

according to the mechanism and characteristics of chaotic motion, the proposed method utilizes the 

characteristics of chaotic motion and selects the control factor of optimal chaotic state, to generate the 

initial population with randomness and ergodicity. Second, the proposed method solved the singleness 

problem of the initial population of immune algorithm. Then based on the characteristics of the 

Gaussian mutation operator with a small scale, and Cauchy mutation operator with a big scale, the 

intelligent mutation strategy is developed, and the control factor of intelligent mutation is designed. 

Especially, the intelligent Gauss-Cauchy hybrid mutation operator is designed and implemented. 

Additionally, the Hessian information and multi-scale reverse LoG (Hessian-MRLoG) method were 

used to detect and locate the lesion area in the image preprocessing, and the candidate nodule areas are 

extracted by an algorithm of the lung nodule segmentation. Therefore, the computational amount of 

feature extraction and classification is greatly reduced, the data quality is improved and the 

computational complexity is reduced. 

The remainder of this paper is organized as follows. Section 2 describes the method and approach 

of the proposed intelligent immune clonal for feature selection and parameter optimization. Section 3, 

the experimental results obtained by the proposed method. Lastly, Section 4 presents the final remarks 

of this work.  

2. Materials and methods 

2.1. The method of intelligent mutation 

2.1.1. Population initialization operator with chaotic maps 

The chaotic mapping was adopted for antibody population initialization in the immune clonal 

selection algorithm. According to the theoretical study of population models, the logistic mapping 

model is described as follows: 

1 (1 ), 1,2,...n n nx x x n                              (1) 

where μ is a regulation factor of the chaotic behavioral and μ > 0, x(n) is the chaotic variable and n is 

the number of iterations. Let the initial condition x0∈[0,1], μ∈[0,4], then the diagram of chaotic 

motion bifurcation is shown in Figure 1. 
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Figure 1. The bifurcation diagram of the logistic model. 

From Figure 1, if 0 < μ < 3, then the chaotic motion shows single-cycle sequence converges. 

If 3 < μ < 3.449, then the chaotic motion converges with a period of 2 times. If 3.449 < μ < 3.57, then 

the chaotic motion converges with a 4-fold period. If 3.57 < μ < 4, the chaotic motion comes into a 

chaotic state. If μ = 4, then the system enters a completely chaotic state. Based on the analysis, it is 

shown that a system evolves into chaotic state when the regulation factor 3.57 < μ ≤ 4. Therefore, let 

the initial conditions of x0∈[0,1], μ∈[0,4], and μ = 4, n = 200, then the random sequence is generated 

by the logistic model, which is shown in Figure 2. 

 

Figure 2. The ergodicity of the logistic mapping. 

Figure 2 shows the ergodicity of the logistic mapping with a suitable regulation factor, which was 

generated an initial antibody population with diversity. Thus, we utilize the characteristics of chaotic 

motion and select the regulation factor of optimal chaotic state, to generate an initial antibody 

population with randomness and ergodicity. It solved the singleness problem of the initial population 

generation of the immune clonal selection algorithm. 
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2.1.2. The method of intelligent mutation 

According to the literature [24], the combination of Gauss-Cauchy is written as: 

0( ( , ) ( , ))gc gaussian cauchyf k f f x                                 (2) 

where k is an adjustment factor. fgaussian (μ, σ) is a Gaussian distribution function, where σ is the standard 

deviation and σ > 0, μ is the mathematical expectation. fcauchy (x0, γ) is a Cauchy distribution function, 

where x0 is the length setting of x-axis, γ is a window scale, and x∈( -∞, +∞ ). Let k = 1/2, μ = 0, σ = 1; 

x0 = 0, γ = 1, respectively, then the average distribution curve of Gauss-Cauchy combination is shown 

in Figure 3. 

 

Figure 3. The average distribution curve of the Gauss-Cauchy combination. 

Therefore, the hybrid Gauss-Cauchy mutation operator is described as follows: 

                     (3) 

More importantly, we designed an intelligent strategy for the mutation, which is described below: 

In early phase, the mutation rate has the characteristics of large-scale variation; in the intermediate 

phase, the mutation rate has a middle-scale variation; in the late stage, the mutation rate has a small-

scale variation. Thus, the mutation rate reduced gradually with the increase of evolutionary iterations. 

The mutation rate is designed by: 

max1 ( / )v t t                                  (4) 

where t is the current evolutionary iterations, tmax is the maximum iterations. The mutation rate of ν is 

a monotonically decreasing function, and ν∈[0,1]. Consequently, the intelligent mutation operator 

(IMO) is given as: 

 0( , ) ( , )gaussian cauchyx x k f f x      
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                   (5) 

where k is an adjustment factor, fgaussian (μ, σ) is a Gaussian distribution function, fcauchy (x0, γ) is a 

Cauchy distribution function. With the guidance of intelligent mutation strategy, the IMO not only has 

the local convergence characteristics of Gaussian mutation, but also the global convergence 

characteristics of Cauchy mutation. 

2.2. Feature extraction  

Table 1. Feature description. 

Classification Feature name Number Formulas 

I.The intensity 

features (f1–f5) 

Mean value f1 ∑
L  

i=1 [i·I(i)] 

Variance f2 ∑L  

i=1 [(i-μ)2·I(i)] 

Deviation f3 (1/σ2) · ∑L  

i=1 [(i-μ)3·I(i)] 

Energy f4 ∑L  

i=1 I
2(i) 

Gray-scale entropy f5 ∑L  

i=1 [I(i)·log2 I(i)] 

II. The shape 

features (f6–f10) 

Circularity f6 P0
2/S0 

Compactness f7 4π·Area/(Circumference)2 

Elongation f8 rmax / rmin 

Convex degree f9 Area / Convex_Area 

Rectangularity f10 Wr / Lr 

Compactness f11 rinside / routside 

Moment f12 ∑M  

i=1 ∑N  

j=1 [I2(i,j)/(1+|i-j|)] 

III.Text features 

(f1–f14) 

Angular second moment f13 ∑Ng  

i=1 ∑Ng  

j=1 [p2(i,j)] 

Contrast f14 ∑Ng  

n=1 n2{∑Ng  

i=1 ∑Ng  

j=1 p(i,j)} 

Correlation f15 (σxσy)
-1 ·∑Ng  

i=1 ∑Ng  

j=1 {(ij)p(i,j)-μxμy} 

Variance f16 ∑Ng  

i=1 ∑Ng  

j=1 {(i-μx)(i-μy)p(i,j)} 

Inverse difference moment f17 ∑Ng  

i=1 ∑Ng  

j=1 [1/(1+(i-j)2) ·p(i,j)] 

Sum average f18 ∑2N g  

i=2 (ipx+y(i)) 

Sum variance f19 ∑2N g  

i=2 [(i-f8)
2·px+y(i)] 

Sum entropy f20 -∑2N g  

i=2 [px+y(i)·log(px+y(i))] 

Entropy f21 -∑Ng  

i=1 ∑Ng  

j=1 {p(i, j)·log(p(i, j))} 

Difference variance f22 Var(∑Ng  

i=1 ∑Ng  

j=1 p(i, j)) 

Difference entropy f23 ∑Ng  

n=1 {px-y (i)log(px-y(i))} 

Information measures of 

correlation 1 
f24 

{-∑Ng  

i=1 ∑Ng  

j=1 p(i,j)log(p(i, j))+ ∑Ng  

i=1 ∑Ng  

j=1 p(i,j) log(∑Ng  

j=1

p(i,j)·∑Ng  

i=1 p(i,j))}·{max(∑Ng  

j=1 p(i,j), ∑Ng  

i=1  p(i,j))}-1 

Information measures of 

correlation 2 
f25 {1-exp(2∑Ng  

i=1 ∑Ng  

j=1 (px(i)py(j)·log(px(i)py(j))+ f9)}
1/2 

Maximal correlation 

coefficient 
f26 

(Second largest eigenvalue of Q)1/2, where 

Q(i,j) = ∑k{ p(i,k) p(j,k) / (px(i) py(j))} 

The compound features were extracted in this work from three aspects, which include the 

 0( , ) ( , )gaussian cauchyx x k f f x        
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intensity features, shape features, and texture features [25]. The character representation is listed in 

Table 1.Though the feature combination, 26 feature vectors were extracted for feature selection. Then 

the 26-dimensional feature space was constructed. 

2.3. Immune clonal optimization 

(1) Radial basis kernel function (RBF) 

According to the study of lung nodule model in our previous study [26], we know that the 

intensity distribution of a lung nodule in the CT image, gradually increases from the periphery to the 

center. Therefore, this paper adopts RBF as the kernel function, which has a better performance on 

nonlinear mapping. A 2-dimensional (2D) Gaussian kernel function is represented by: 

                               (6) 

Let γ = 1/(2σ2), then the Eq (6) is instead by a RBF 

                              (7) 

(2) Chromosome coding method 

The antibody coding is the combining process of feature subsets and SVM parameters. An 

antibody is a result of the combination of feature subsets and SVM parameters. The synchronous 

optimization of the feature selection and SVM parameter is to find the optimal antibodies. It is 

noteworthy that an antibody has multiple gene positions, the number of gene positions is equal to the 

length of the coding string. In the chromosome coding, 1 is a dominant gene, which indicates the 

selected feature; 0 is a recessive gene, which indicates the unselected feature. In this work, the 

chromosome coding includes the penalty factor of C, the kernel parameter of r, and the feature set of 

f. While, the corresponding number of genes are represented by I, J and K, respectively. L denotes the 

string length, the encoded string is given by (xc1, xc2,…, xci, … , xcI ; xγ1, xγ2, … , xγj, … , xγJ ; xf1, xf2, … , 

xfk, … , xfK), and I + J + K = L. The chromosome encoding is shown in Figure 4.  

fC γ

xc1 xci xcI xγ1 xγj xγJ xf1 xfk xfK

 

Figure 4. Chromosome coding. 

From Figure 4, it should be noted that the first eight bits of (xc1, xc2,…, xci, … , xcI) are the coding 

of the penalty factor C, the following eight bits of (xγ1, xγ2, … , xγj, … , xγJ) are the coding of the kernel 

parameter γ, the last 26 bits of (xf1, xf2, … , xfk, … , xfK) are the coding of the feature set f. 

2

2
( , ) exp

2

i

iK


 
  

 
 

x x
x x

 2
( , ) expi iK   x x x x
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(3) The affinity function 

Affinity = SVM_Accuracy                            (8) 

(4) Antibody selection and cloning 

If the population size is N, the probability of antibody fitness is: 

1
( )

fit N

i

Fitness
p

Fitness i





                               (9) 

The number of clone is: 

( ) ( / )c fitN i Round p N i                              (10) 

1 1 0 0 1 0 1 1 

1 0 0 1 1 0 0 1 

0 1 0 0 0 1 1 0 
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Figure 5. Flowchart of the ICOA-SVM. 
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Additionally, the intelligent mutation was implemented by the proposed intelligent mutation 

operator. From the above analysis, the method of immune clonal optimization algorithm (ICOA) for 

parameter optimization in support vector machine (ICOA-SVM) was proposed and developed. The 

flowchart of the developed method is shown in Figure 5. 

It should be noted that the implementation procedure can be obtained from the Figure 5. The input 

is the candidate feature set of F: F = {(xi, yi)∣x∈Fn
L}, y∈(1,2,…,L), i = 1, … , n}. The output are 

the optimized parameters of (C, γ), and the selected feature subsets of f = {f1, f2, …, fk}, 1 ≤ k ≤ K. The 

implementation of the proposed algorithm includes the training and the testing stages. In the process 

of immune clonal optimization, the antibodies with high affinity were selected and cloned, and 

generated the offspring of Ab′(l) = {Ab(l), Ab1′(l),…, Abi′(l), …, Abn′(l)}, Abi′(l) = (xi1, xi2, xi(Nc-1)), 

Nc(i) = Round(pfit·N/i). Additionally, the others new individuals were generated by the low affinity 

antibodies though the mutation of Ab′ = Ab + 0.5·(1 - t/tmax) (fgaussian(0,1) + fcauchy(0,1)). 

3. Results and discussion 

The proposed method was implemented in Matlab (R2015a; MathWorks, Inc., Natick, MA, USA) 

on a machine with Core i3 M 350 @ 2.27GHz, 6G RAM, 64-bit operating system, the CT images that 

we adopted were obtained from the international public LIDC database [27]. The 90 scans of CT 

images with the number of 652 lung nodules were randomly selected from the LIDC database. One 

scan has the number of 100~400 CT images. Thus, more than 20,000 images were used in the 

experiments of this study. 

3.1. Classification of lung nodules 

There are several steps for the image processing. First, medical images are usually noisy, 

especially the low-dose spiral CT images, which mainly have the quantum noise, electronic noise, 

Gaussian noise, and speckle noise [28]. Therefore, a hybrid filtering strategy was developed, which 

used the median filter for the isolated noise reduction, and the multi-scale windowed Fourier filtering 

for the noise reduction [29]. Second, the multi-scale elliptic rolling-ball method, which was proposed 

and developed in our previous work [30], was used for pulmonary parenchyma extraction. Third, the 

Hessian-MRLoG method [2] was used for the detection and location of pulmonary nodule candidates, 

then the candidate nodule areas were extracted by an algorithm of the lung nodule segmentation [29]. 

Four, the features of the regions of interest (ROI) were extracted to construct the 42-dimensional 

coding space. Especially, there are 26-dimensional feature vectors in feature subsets, which include 5 

gray features, 7 shape features, and 14 texture features. The experimental dataset was used to verify 

the effectiveness of the proposed method, and the experimental adjustment parameters of the proposed 

method were shown in Table 2. 

Especially, the penalty factor of C∈[0.001, 2.2 × 104], the kernel parameter of γ∈[1 × 10-5, 5]. 

The initial population was generated by the chaotic mapping. The feature subsets and SVM parameters 

were selected and optimized by the developed method of ICO. The optimal feature subsets and the 

best matching parameters were obtained by five times of 5-fold cross-validation. According to the 

number of selected feature dimensions, the optimal feature subsets and best match parameters are 

shown in Table 3. 
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Table 2. Parameter settings of the ICOA-SVM. 

Parameters Name of the parameters Value 

N Population size 60 

tmax Maximum iterations 100 

L The length of chromosome genes 34 

m The number of elites 5 

Nc_max Maximum number of clones 120 

w Mutation probability 0.5 

ξi The relaxation variable 0.5 

k The number of k-fold cross 5 

 

Table 3. Optimal feature subsets and best match parameters. 

Serial numbers Parameters of SVM Selected subsets of features Accuracy 

1 C = 3985, γ = 0.0432 f6, f7, f3, f25, f9 0.920 

2 C = 6591, γ = 0.0332 f6, f7, f4, f11, f9, f26, f14 0.965 

3 C = 6730, γ = 0.0436 f6, f7, f4, f5, f8, f9, f26, f14 0.978 

4 C = 8390, γ = 0.0529 f6, f7, f3, f5, f9, f26, f25, f2, f17, f14 0.940 

5 C = 8534, γ = 0.0623 f6, f7, f3, f4, f5, f8, f9, f26, f25, f14, f11, f1, f18 0.935 

 

Figure 6. The relation curve. 
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In this experiment, the eight features of f6, f7, f4, f5, f8, f9, f26, and f14 constructing an optimal feature 

subset, and the corresponding parameters of SVM are C = 6730, γ = 0.0436, which obtained the highest 

accuracy of 97.8%. The experimental results revealed that the accuracy rate is not proportional to the 

dimensions of selected features. After ten times of 5-fold cross-validation, the relationship between 

the number of selected features and the classification accuracy is shown in Figure 6. 

From Figure 6, the results indicate that it is not the more selected feature dimensions, the higher 

of the classification accuracy. Actually, it has a better match between the classification accuracy and 

the number of selected features. In this work, when the dimensions of selected features are 8, the 

accuracy of classification is the highest. 

3.2. Performance evaluation 

The combination of the two-classification problems can be represented by a two-class confusion 

matrix [26]. If the practical situation is a nodule, and the prediction result is also a nodule, then it 

belongs to the nodule, this situation is the true positive (TP). If the practical situation is a non-nodule, 

and the prediction result is a nodule, then it belongs to the non-nodule, this situation is the false positive 

(FP). If the practical situation is a nodule, and the prediction result is a non-nodule, then it belongs to 

the situation of false negative (FN). If the practical situation is a non-nodule, and the prediction result 

is a non-nodule, then it belongs to the situation of true negative (TN). Generally speaking, the 

performance of classification algorithms are commonly evaluated by the receiver operating 

characteristic (ROC) curve and its area under the curve (AUC) value. The evaluation indicators are 

shown in Table 4. 

Table 4. Evaluation indicators and the corresponding meanings. 

Indexes Implication Formulas 

Sensitivity True positive rate Sens = TP / (TP + FN) 

Specificity True negative rate Spec = TN / (TN + FP) 

Accuracy Accuracy Acc = (TP + TN) / (TP + TN + FP + FN) 

FPR False positive rate FPR = TP / (TP + FP) 

AUC The area under the characteristic curve AUC = ∑i{(1-3y(i) / 2-y(i-1) / 2) * (x(i)-x(i-1))} 

Table 5. The comparison among different approaches. 

Methods Accuracy (%) Sensitivity (%) AUC (%) 

GA-SVM 91.37 92.25 94.92 

ICSA-SVM 93.25 94.75 96.54 

CNN 93.13 92.50 96.64 

The proposed 97.87 98.75 99.09 
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The bigger of the value of sensitivity, specificity, accuracy, and AUC, the better the performance 

of a classifier. Additionally, the lower the value of false positive rate (FPR), the better the performance 

of a classifier. In this work, at the same experimental conditions, we analyzed the properties of genetic 

algorithm (GA), immune clone selective algorithm (ICSA), and the proposed ICOA-SVM, 

respectively. Additionally, the approach of convolutional neural network (CNN) was used for the 

pulmonary nodule classification at the same experimental dataset. Especially, the initial learning rate 

is 0.001. After that, each generation of learning rate decays to 0.9 of the previous generation learning 

rate. After experiments, the experimental results were shown in Table 5. 

From Table 5, the proposed method has the best performance among the four approaches. 

Therefore, the proposed method is superior to the mentioned approaches. Besides, to more clearly 

represent the classification performance, the ROC was plotted in Figure 7. 

Table 6. Comparison of the results obtained in this study with those of other works. 

Literatures Scans Nodules Accuracy (%) Sensitivity (%) FPs/scan Dataset 

Lü et al. [3] 50 435 84.6 88.9 -- Private 

Liu et al. [31] 80 978 93.2 92.4 4.5 LIDC 

Liu et al. [32] 107 252 -- 89.4 2.0 LIDC 

Kaya [33] -- 439 84.7 67.4 -- LIDC 

Khan et al. [34] 84 103 97.5 98.9 -- LIDC 

Zhang et al. [35] -- 353 88.6 86.3 -- LIDC 

Jiang et al. [36] -- -- 90.24 92.04 11.06 LIDC 

Santos et al. [14] 28 252 -- 90.6 1.17 LIDC 

The proposed 90 652 97.87 98.75 1.52 LIDC 

As can be seen from Figure 7, the area under the cure value of GA-SVM, ICSA-SVM, CNN, and 

the proposed are 94.92, 96.54, 96.64, and 99.09%, respectively. The proposed method has the biggest 

AUC value among the four approaches. According to its analysis, the proposed method is superior to 

the mentioned methods in the performance of lung nodule classification. Additionally, the performance 

of the proposed method was also compared with other related approaches, which reported in the 

literature in the last five years, as summarized in Table 6. 

The comparison reveals that the proposed method in this work has the highest sensitivity, while 

the approach reported in another study has the lowest FPR [14]. But, regarding the overall performance, 

the proposed method in this study has the best performance. Thus, the proposed method is superior to 

the traditional approaches. Additionally, the Hessian-MRLoG method was used to detect and locate 

the lesion area, then the candidate nodule areas were extracted by an algorithm of the lung nodule 

segmentation. As a result, the computational amount of feature extraction and classification is greatly 

reduced, the data quality is improved and the computational complexity is reduced. Therefore, this study 

gives a reference for a novel light-weight method of computer-aided diagnosis of pulmonary nodules. 
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Figure 7. Comparison of the area under the curve of ROC. 

4. Conclusions 

Computer-aided pulmonary nodule diagnosis is an effective approach for the early detection of 

lung cancers. In this paper, an intelligent immune clonal optimization algorithm is proposed and 

developed to find the optimal feature subset and best match parameters of the classification algorithm, 

which makes the feature selection and classification be performed simultaneously. The initial 

population was generated by the randomness and ergodicity of the chaotic mapping. The singleness 

problem of the initial population of the immune clonal selection algorithm was solved in this work. 

The proposed method has the global and local convergence characteristics by the intelligent mutation 

operator. Therefore, a novel method based on an intelligent immune clonal optimization algorithm for 

pulmonary nodule classification was proposed and developed in this work. The proposed approaches 

of this work were used for the classification of 90 scans with 652 nodules, and the results revealed an 

accuracy of 97.87% with the 1.52 FPs/scan. Consequently, the experimental results demonstrated that 

the proposed approach can improve the accuracy and reduce the false positive rate in pulmonary nodule 

classification. This work has the potential for deployment in the early computer-aided diagnosis of 

lung cancer. 
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