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Abstract: Environmental stochasticity and toxin-producing phytoplankton (TPP) are the key factors
that affect the aquatic ecosystems. To investigate the effects of environmental stochasticity and TPP
on the dynamics of plankton populations, a stochastic phytoplankton-zooplankton system with two
TPP is studied theoretically and numerically in this paper. Theoretically, we first prove that the
system possesses a unique and global positive solution with positive initial values, and then derive
some sufficient conditions guaranteeing the extinction and persistence in the mean of the system.
Significantly, it is shown that the system has a stationary distribution when toxin liberation rate reaches
some a critical value. Additionally, numerical analysis shows that the white noise can affect the
survival of plankton populations directly. Furthermore, it has been observed that the increasing one
toxin liberation rate can increase the survival chance of phytoplankton and reduce the biomass of
zooplankton, but the combined effects of two liberation rates on the changes in plankton populations
are stronger than that of controlling any one of the two TPP.
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1. Introduction

Plankton, the organisms that the freely floating and weakly swimming in aquatic environments,
occupy the first tropic level and the second trophic level of any aquatic food chains. Phytoplankton
are the photosynthetic microorganisms and commonly unicellular and microscopic in size, and
zooplankton are the heterotrophic plankton that live on phytoplankton. In addition to recognizing the
importance of plankton for the wealth of the aquatic ecosystems and ultimately for the planet
itself [1], the variation of plankton biomass is an important factor influencing the real aquatic
environments, and understanding of plankton dynamics can be helpful to estimate the productivity of
aquatic ecosystems [2, 3] and regulate the balance of plankton ecosystem. However, planktonic
blooms can occur under some conducive environments, which may cause seriously environmental
issues and threat to human health. But the processes underlying the formation of planktonic blooms
are not yet well understood. In this respect, thus, the great effort has been made towards the
understanding of the complex dynamics of plankton, and then mathematical models can be acted as a
useful tool to investigate the dynamics of plankton ecosystem, which can provide a deeper
understanding of the dynamic mechanisms of changes in plankton populations.

Actually, many mathematical models have been constructed to study the dynamical behaviors of
plankton since the pioneering work of Riley et al. [4], and many physical and biological processes
underlying the mechanisms of plankton dynamics in the aquatic environments have been
investigated [1, 5–10]. For example, in order to study how the nutrient affects the dynamics of
phytoplankton blooms, Huppert et al. [1] presented a simple nutrient-phytoplankton model and
identified an important threshold effect that a bloom will only be triggered when nutrients exceed a
certain defined level using mathematical model analysis. Caperon [6] concluded that the time-lag
effect exists in the growth process of phytoplankton, and further suggested that models play an
important role in understanding the growth dynamics of phytoplankton characterized by time delays.
Lin et al. [8] used a nutrient-phytoplankton-zooplankton model to examine the patterns and
consequences of adaptive changes in plankton body size and suggested that evolutionary interactions
between phytoplankton and zooplankton may have contributed to observed changes in phytoplankton
sizes and associated biogeochemical cycle over geological time scales.

In recent years, the dynamical behaviors of phytoplankton-zooplankton systems with various
biological factors, such as stability, bifurcation and spatiotemporal pattern, have been explored
extensively [6, 10–12]. Nevertheless, some phytoplankton species are harmful phytoplankton that can
produce potent toxic or allelopathic substances during phytoplankton blooms [13], which can affect
species interaction by suppressing the growth and establishment of other phytoplankton species [14].
Moreover, some laboratory experiments [15, 16], as well as field observation [17] have suggested that
the toxicity may be as a strong mediator in the zooplankton feeding rate. As a result, some researchers
have taken this important factor of toxic production released by TPP into account when studying the
phytoplankton-zooplankton systems [18–20]. For example, Scotti et al. [18] indicated that a toxic
phytoplankton may destabilize the spatially homogeneous coexistence and trigger the formation of
spatial pattern, and further concluded that local blooms more likely occur when the strength of the
toxicity is of a certain level. Additionally, some results from field observations and model analysis
concluded that the toxic substances can affect the interaction between phytoplankton and zooplankton
and reduce the growth of zooplankton, indicating TPP may act as a biological control way for the
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termination of planktonic blooms [21–24]. Sarkar et al. [25] proposed the following mathematical
model consisting of two harmful phytoplankton and zooplankton species:


dP1(t)

dt = r1P1(t)
(
1 − P1(t)

K1

)
− a1P1(t)P2(t) − αP1(t)Z(t),

dP2(t)
dt = r2P2(t)

(
1 − P2(t)

K2

)
− a2P1(t)P2(t) − βP2(t)Z(t),

dZ(t)
dt = mP1(t)Z(t) + nP2(t)Z(t) − γP1(t)Z(t)

a+P1(t) −
δP2(t)Z(t)
b+P2(t) − dZ(t),

(1)

where P1(t), P2(t) and Z(t) are the population densities of two harmful phytoplankton and
zooplankton species at time t, respectively; r1 and r2 denote the intrinsic growth rates of two TPP,
respectively; K1 and K2 are their corresponding environmental carrying capacities; a1 and a2 represent
be the inhibitory effects of two harmful phytoplankton species; α and β are the maximum zooplankton
ingestion rates for both two TPP species, respectively; m and n are the maximum zooplankton
conversion rates, respectively; d is the natural death rate of zooplankton; γ and δ are the rates of toxin
liberation by two TPP species, respectively; a and b denote the half-saturation constants for two TPP
species. In [25], the authors studied the asymptotic stability of the system (1) and claimed that the
presence of two harmful phytoplankton has a positive impact for the termination of planktonic
blooms.

In the real world, however, the unpredictability and ubiquity of environmental fluctuations in the
natural aquatic ecosystems, for example, the necessary nutrient availability, water temperature, light
and turbulence, can greatly cause the growths of plankton populations to experience random
fluctuations. Systems with such kinds of environmental fluctuations can be described by stochastic
differential equations, which play a significant role in the population dynamics as they can provide
some additional degree of realism compared to their corresponding deterministic counterparts [26].
Thus, stochastic population systems, as an important application in ecological and biological systems,
have attracted increasing attention [27–33]. Especially, stochastic plankton systems with white noise
have been the common area of interest among researchers [9, 23, 30, 34–42] in recent years and many
interesting results have been shown. For example, Sarkar and Chattopadhayay [34] proposed a toxic
phytoplankton-non-toxic phytoplankton-zooplankton with stochastic perturbation around the positive
equilibrium, and they concluded that TPP and stochastic fluctuations can significantly affect the
coexistence of species. Yu et al. [41] investigated a nutrient-phytoplankton system with TPP under
environmental fluctuations, and they obtained some conditions for extinction, persistence and the
existence of ergodic stationary distribution. All these works greatly stimulate researchers to explore
the way how environmental stochasticity and toxin production affect the coexistence and survival
prospect of plankton populations in the presence of harmful phytoplankton. Obviously, it is
meaningful to further incorporate the environmental fluctuations into the underlying model (1).
Moreover, there are few literatures to study the dynamics of the stochastic phytoplankton-zooplankton
system with two harmful phytoplankton, and the dynamics of the stochastic
phytoplankton-zooplankton system with two harmful phytoplankton is still not very clear currently.
Hence, we mainly present the influence of the effects of environmental white noise and toxic
liberation rates produced by two TPP on the dynamics of phytoplankton-zooplankton system in this
paper. Motivated by the works above, we assume that the intrinsic growth rates of two harmful
phytoplankton and the death rate of zooplankton are influenced by the environmental fluctuations
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effect, and thus introduce the white noise into underlying system (1), resulting in the following form:

dP1(t) = P1(t)
[
r1

(
1 − P1(t)

K1

)
− a1P2(t) − αZ(t)

]
dt

+σ1P1(t)dB1(t),
dP2(t) = P2(t)

[
r2

(
1 − P2(t)

K2

)
− a2P1(t) − βZ(t)

]
dt

+σ2P2(t)dB2(t),
dZ(t) = Z(t)

[
mP1(t) + nP2(t) − γP1(t)

a+P1(t) −
δP2(t)

b+P2(t) − d
]

dt

+σ3Z(t)dB3(t),

(2)

where Bi(t) are mutually independent standard Brownian motions with Bi(0) = 0 [43], and dBi(t) are
standard white noise and σ2

i (t) are their intensities, i = 1, 2, 3.
By now, we have successful introduced a stochastic phytoplankton-zooplankton system with two

toxic phytoplankton focusing on the effects of environmental stochasticity and TPP, and our research
questions include: (i) How does environmental stochasticity affects the dynsmics of plankton
populations? (ii) What influences the peak of the outbreaks of planktonic blooms in a fluctuating
environment? The rest of this paper is organized as follows: Section 2 presents the basic assumptions
firstly, and then we investigate the existence and uniqueness of global positive solutions, and apply the
Itô’s formula to obtain the sufficient conditions for the extinction and persistence in the mean of
system (2), and the existence of a unique ergodic stationary distribution by establishing a appropriate
stochastic Lyapunov function. A series of numerical simulations are carried out to further study the
dynamics of system (2) in section 3. In section 4, we summarize the results and present our
conclusions.

2. Main results

In this section, we investigate mainly the existence and uniqueness of global positive solutions, the
extinction and persistence in the mean of system (2), and discuss the positive recurrence and ergodic
property of system (2) as well.

2.1. Preliminaries

Denote R+ = [0,+∞) and Rn
+ = {(x1, · · · , xn) ∈ Rn : xi > 0, i = 1, 2, · · · , n}, and |x| =

√∑n
i=1 x2

i .
Throughout this paper, unless otherwise indicated, we always assume that (Ω,Ft, {Ft}t≥0,P) is a
completed probability space with a filtration {Ft} satisfying the usual normal conditions (i.e., it is
right-continuous and increasing while {F0} contains all P-null sets). For convenience, if ϕ(t) is a
integrable function on R+, we define 〈ϕ〉 = 1

T

∫ T

0
ϕ(s)ds,T > 0.

Generally, we consider the n-dimentional stochastic differential equation:

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), t ∈ [t0,T ] (3)

with initial value x(t0) = x0 ∈ R
n, where B(t) denotes a n-dimentional standard Brownian motion

defined on the completed probability space (Ω,Ft, {Ft}t≥0,P). Denote by C2,1(Rn×R+;R) the family of
all non-negative functions V(x, t) defined onRn×R+ such that they are continuously twice differentiable
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in x and once in t. Define a differential operator L associated with Eq (3) by [44] as follows:

L =
∂

∂t
+

n∑
i=1

fi(x, t)
∂

∂xi
+

1
2

n∑
i, j=1

[gT (x, t)g(x, t)]i j
∂2

∂xi∂x j
.

Let V(x, t) ∈ C2,1(Rn × R,R), then

L V = Vt + Vx f (x, t) +
1
2

trace[gT (x, t)Vxxg(x, t)],

where

Vt =
∂V
∂t
,Vx =

(
∂V
∂x1

, · · · ,
∂V
∂xn

)
,Vxx =

(
∂2

∂xi∂x j

)
n×n
.

By Itô’s formula, if x(t) ∈ Rn, then

dV = L V(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t).

Next, we introduce the criterion of positive recurrent and the ergodic properties. Before it, we
consider the stochastic equation:

dx(t) = f (x(t))dt +

k∑
r=1

σr(x)dB(t), (4)

where x(t) is a homogeneous Markov process in n-dimentional Euclidean space Rn. The diffusion
matrix is D(x) = (di j(x)) and (di j) =

∑k
r=1 σ

i
r(x)σ j

r(x). Thus, a lemma which describes the criterion of
stationary distribution can be given.
Lemma 2.1 (see [45]) Suppose that there exists a bounded open set E ⊂ Rn with a smooth regular
boundary Θ satisfying the following conditions:

(i) the diffusion matrix D(x) is strictly positive definite for all x ∈ E;
(ii) there exists a non-negative C2-function V(x) and a positive constant M such that L V ≤ −M for

∀x ∈ Rn/E.
Then there exists a solution x(t) of the system (4) which is a stationary Markov process with a stationary
distribution µ(·) and for any integrable function g(·) with respect the measure µ, we have

P
(

lim
t→∞

1
t

∫ t

0
g(x(t))dt =

∫
Rn

g(x)µ(dx)
)

= 1.

2.2. Existence and uniqueness of global positive solutions

Before investigating the stochastic dynamics of system (2), we should first guarantee whether the
solution is global and positive. Therefore, based on the biological interpretation, in this subsection,
we just take the non-negative solutions into account for system (2) and discuss the existence of global
positive solutions in system (2). The following result can be presented.

Theorem 2.2 For any given initial value (P1(0), P2(0),Z(0)) ∈ R3
+, system (2) exists a unique solution

(P1(t), P2(t),Z(t)) on R+ and the positive solution will remain in R3
+ with probability one, that is,

(P1(t), P2(t),Z(t)) ∈ R3
+ for all t > 0 almost surely.
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Proof. From the method of the Lemma 2.1 in [46], it is obvious to find that, for any given initial value
(P1(0), P2(0),Z(0)) ∈ R3

+, all coefficients of system (2) are locally Lipschitz continuous and the system
admits a unique local solution (P1(t), P2(t),Z(t)) on [0, τe), where τe represents the explosion time. In
the following, thus, we need to illustrate the solution is global, that is, we only need to prove τe = ∞

a.s. Let n0 ≥ 1 enough large such that (P1(0), P2(0),Z(0)) ∈ [ 1
n0
, n0], and for each integer n ≥ n0, we

define the stopping time by the following form:

τn = inf
{
t ∈ [0, τe) : max{(P1(t), P2(t),Z(t))} ≤

1
n

or min{(P1(t), P2(t),Z(t))} ≥ n
}
,

and the set inf ∅ = ∞ (∅ denotes the empty set). Obviously, one can obtain that τn is increasing as
n → ∞. Thus, let τ∞ = limt→+∞ τn, then τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞

and (P1(0), P2(0),Z(0)) ∈ R3
+ a.s. for all t ≥ 0. In other words, to complete the proof, we only need to

proof τ∞ = ∞ a.s. If the statement is false, then there exist two constants T > 0 and ε ∈ (0, 1) such
that P{τ∞ ≤ T } > ε. Hence, for all n ≥ n1, there exists an integer n1 ≥ n0 such that P{τ∞ ≤ T } ≥ ε.

Define a C2-function V̄ : R+
3 → R+ by

V̄(P1, P2,Z) =
m
α

(P1 − 1 − log P1) +
n
β

(P2 − 1 − log P2) + (Z − 1 − log Z).

Obviously, the function V̄(P1, P2,Z, ) is non-negative since the inequality x − 1 − log x > 0 holds for
all x > 0. Applying Itô’s formula to V̄(P1, P2,Z) yields

dV̄(P1, P2,Z) =L V̄(P1, P2,Z)dt +
m
α
σ1(P1 − 1)dB1(t)

+
n
β
σ2(P2 − 1)dB2(t) + σ3(Z − 1)dB3(t),

where L V̄ : R3
+ → R is defined by

L V̄1(P1, P2,Z) =
m
α

(P1 − 1)
[
r1

(
1 −

P1

K1

)
− a1P2 − αZ

]
+

m
α

σ2
1

2

+
n
β

(P2 − 1)
[
r2

(
1 −

P2

K2

)
− a2P1 − βZ

]
+

n
β

σ2
2

2

+ (Z − 1)
(
mP1 + nP2 − d −

γP1

a + P1
−

δP2

b + P2

)
+
σ2

3

2

≤γ + δ −
m
α

(
r1 −

σ2
1

2

)
−

n
β

(
r2 −

σ2
2

2

)
+

(
d +

σ2
3

2

)
+

m
α

[(
r1 +

r1

K1
+ a2 − m

)
P1 −

r1

K1
P2

1

]
+

n
β

[(
r2 +

r2

K2
+ a1 − n

)
P2 −

r2

K2
P2

2

]
+ |m + n − d|Z

≤M + |m + n − d|Z.

where

M =γ + δ −
m
α

(
r1 −

σ2
1

2

)
−

n
β

(
r2 −

σ2
2

2

)
+

(
d +

σ2
3

2

)
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+ max
P1∈(0,+∞)

{
m
α

[(
r1 +

r1

K1
+ a2 − m

)
P1 −

r1

K1
P2

1

]}
+ max

P2∈(0,+∞)

{
n
β

[(
r2 +

r2

K2
+ a1 − n

)
P2 −

r2

K2
P2

2

]}
.

Notice that
Z ≤ 2(Z − 1 − ln Z) + 2 ln 2 ≤ 2V(P1, P2,Z) + 2 ln 2

for all Z > 0, then one can obtain that

L V ≤ M + 2 | m + n − d | ln 2 + 2 | m + n − d | V ≤ Υ(1 + V),

where
Υ = max {M + 2 | m + n − d | ln 2, 2 | m + n − d |} .

The remainder of the proof follows that in the Theorem 3.3 [37], here, we omit it. This completes the
proof. �

2.3. Persistence in the mean and extinction

Based on Theorem 2.2, we will discuss the extinction and persistence in the mean of system (2)
and derive sufficient conditions for them in this subsection.

Theorem 2.3 Suppose that (P1(t), P2(t),Z(t)) is the solution of system (2) with initial value
P1(0), P2(0),Z(0)) ∈ R3

+, then we have the following results:
I Let A = r1 −

σ2
1

2 , θ1 = A − a1K2
r2

B − αD, the species P1(t) is
(i) extinct if A < 0;
(ii) persistence in the mean if θ1 > 0.

II Let B = r2 −
σ2

2
2 , θ2 = B − a2K1

r1
A − βD, the species P2(t) is

(i) extinct if B < 0;
(ii) persistence in the mean if θ2 > 0.

III Let C = d +
σ2

3
2 ,D = mK1

r1
A + nK2

r2
B −C, the species Z(t) is

(i) extinct if D < 0;
(ii) persistence in the mean if

Γ =
K1

r1

(
m −

na2K2

r2

)
A +

K2

r2

(
n −

ma1K1

r1

)
B −C − γ − δ > 0.

Proof. I. Applying the Itô’s formula to system (2) yields

d ln P1(t) =

[
r1

(
1 −

P1(t)
K1

)
− a1P2(t) − αZ(t) −

1
2
σ2

1

]
+ σ1dB1(t),

d ln P2(t) =

[
r2

(
1 −

P2(t)
K2

)
− a2P1(t) − βZ(t) −

1
2
σ2

2

]
+ σ2dB2(t),

and

d ln Z(t) =

(
mP1(t) + nP2(t) − d −

γP1(t)
a + P1(t)

−
δP2(t)

b + P2(t)
−

1
2
σ2

3

)
+ σ3dB3(t).
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Integrating the above from 0 to t and dividing t on both sides, we have

1
t

ln P1(t)
ln P1(0)

= A −
r1

K1
〈P1(t)〉 − a1〈P2(t)〉 − α〈Z(t)〉 +

M1(t)
t

, (5)

1
t

ln P2(t)
ln P2(0)

= B −
r2

K2
〈P2(t)〉 − a2〈P1(t)〉 − β〈Z(t)〉 +

M2(t)
t

, (6)

and
1
t

ln Z(t)
ln Z(0)

= −C + m〈P1(t)〉 + n〈P2(t)〉 −
〈
γP1(t)

a + P1(t)

〉
−

〈
δP2(t)

b + P2(t)

〉
+

M3(t)
t

. (7)

where

Mi(t) =

∫ t

0
σiPi(s)dBi(s), i = 1, 2, M3(t) =

∫ t

0
σ3Z(s)dB3(s).

Moreover, the quadratic variation of Mi(t) (i = 1, 2, 3) satisfy

〈Mi(t),Mi(t)〉t =

∫ t

0
σ2

i ds ≤ (σ∗i )2t, i = 1, 2, 3.

By the strong law of large numbers for martingales [45] yields

lim
t→+∞

Mi(t)
t

= 0 a.s. i = 1, 2, 3. (8)

Thus, according to (5), we have

lim sup
t→∞

ln P1(t)
t

≤ A < 0 a.s.

which implies that limt→∞ P1(t) = 0 a.s. This completes the proof of (i).
Next, we give the prove of (ii). By making some estimations of (5), we have

1
t

ln P1(t)
ln P1(0)

≥ A −
r1

K1

1
t

∫ t

0
P1(s)ds −

a1K2

r2
B − αD +

M1(t)
t

. (9)

where B and D will be determined later. In addition, since the fact that

lim
t→+∞

ln P1(0)
t

= lim
t→+∞

M1(t)
t

= 0.

Thus, from the properties of the limit, for arbitrary ε1, there exists a constant T1 > 0 such that

〈P2(t)〉 ≤
K2

r2
B +

ε1

2a1
, 〈Z(t)〉 ≤ D +

ε1

2α
,

ln P1(0)
t

≥ −
ε1

2
,

M1(t)
t
≥ −

ε1

2
.

Substituting above inequalities into (9) and for all t ≥ T1, we have

1
t

ln P1(t) ≥ θ1t −
r1

K1

1
t

∫ t

0
P1(s)ds +

M1(t)
t

,
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where θ1 = A − a1K2
r2
− αD. From the Lemma 4 in [47], we have

lim inf
t→∞

1
t

∫ t

0
P1(s)ds ≥

K1

r1
θ1 > 0.

This completes the proof of (ii).
II. The case II are similar to the case I, here we omit it.
III. From (I), (II), one can obtain that

lim sup
t→∞

〈P1(t)〉 ≤
K1

r1
A, lim sup

t→∞
〈P2(t)〉 ≤

K2

r2
B. (10)

According to Eq (7), we have
1
t

ln Z(t)
ln Z(0)

≤ −C + m〈P1(t)〉 + n〈P2(t)〉 +
M3(t)

t
. (11)

Combining with (8) and (10), and taking upper limit on both sides of (11) yields

lim sup
t→∞

ln Z(t)
t
≤

mK1

r1
A +

nK2

r2
B −C = D < 0 a.s.

which implies limt→∞ Z(0) = 0 a.s. This completes the proof of (i).
Now, we show the proof of (ii). Computing (5) × mK1

r1
+ (6) × nK2

r2
+ (7), we have

mK1

r1

1
t

ln
P1(t)
P1(0)

+
nK2

r2

1
t

ln
P2(t)
P2(0)

+
1
t

ln
Z(t)
Z(0)

≥
K1

r1

(
m −

na2K2

r2

)
A +

K2

r2

(
n −

ma1K1

r1

)
B

−C + γ + δ −

(
mαK1

r1
+

nβK2

r2

) ∫ t

0
Z(s)ds

+
mK1

r1

M1(t)
t

+
nK2

r2

M2(t)
t

+
M3(t)

t
. (12)

By the strong law of large numbers for martingales, we can derive that

lim
t→∞

mK1

r1

M1(t)
t

= 0, lim
t→∞

nK2

r2

M2(t)
t

= 0, lim
t→∞

M3(t)
t

= 0 a.s.

From the Lemma 2.3 in [48], we can obtain that

lim
t→∞

mK1

r1

1
t

ln
P1(t)
P1(0)

≥ 0, lim
t→∞

nK2

r2

1
t

ln
P2(t)
P2(0)

≥ 0, lim
t→∞

1
t

ln
Z(t)
Z(0)

≥ 0.

Thus, taking the limit superior in (12) and from the lemma 4 in [49], one can see that

lim inf
t→∞

Z(t) ≥
(
mαK1

r1
+

nβK2

r2

)−1 [
K1

r1

(
m −

na2K2

r2

)
A

+
K2

r2

(
n −

ma1K1

r1

)
B −C − γ − δ

]
> 0.

which implies
lim inf

t→∞
Z(t) > 0.

This completes the proof of (ii). �
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2.4. Positive recurrence and ergodic property

In this subsection, by constructing a suitable Lyapunov function, we discuss the positive recurrence
of system (2) and some sufficient conditions for the existence and uniqueness of stationary distribution
are obtained.

Theorem 2.4 If the following condition

Π =
mK1

r1
A +

nK2

r2
B −C − γ − δ > 0

holds. Then for any given initial value (P1(0), P2(0),Z(0)) ∈ R3
+, the solution (P1(t), P2(t),Z(t)) of

system (2) admits a unique ergodic stationary distribution.

Proof. In order to prove this theorem, we only need to prove both two conditions of Lemma 2.1 one
by one. Obviously, we can obtain that the diffusion matrix di j(x,K) = diag{σ2

1, σ
2
2, σ

2
3} of system (2) is

positive definite, which implies that the condition (i) in Lemma 2.1 holds.
Next, we prove the condition (ii) in Lemma 2.1. We construct a C2-function Ṽ : R3

+ → R as follows:

Ṽ(P1, P2,Z) =
1

p + 1

(
m
α

P1 +
n
β

P2 + Z
)p+1

− M
(
mK1

r1
ln P1 −

nK2

r2
ln P2 − ln Z

)
− Z

where p is a positive constant satisfying 0 < p < d
3p2[σ2

1∨σ
2
2∨σ

2
3] and M > 0 will be determined later.

Since the function Ṽ(P1, P2,Z) is continuous, then there exists a unique point (P̃1, P̃2, Z̃) in R3
+ which

is the minimum value of Ṽ(P1, P2,Z). Thus, construct a non-negative C2-function V : R3
+ → R by

V(P1, P2,Z) =Ṽ(P1, P2,Z) − Ṽ(P̃1, P̃2, Z̃) =
1

p + 1

(
m
α

P1 +
n
β

P2 + Z
)p+1

− M
(
mK1

r1
ln P1 −

nK2

r2
ln P2 − ln Z

)
− Z − Ṽ(P̃1, P̃2, Z̃)

=V1(P1, P2,Z) + V2(P1, P2,Z) + V3(P1, P2,Z).

Using the generalized Itô’s formula, one can see that

L V1(P1, P2,Z) =

(
m
α

P1 +
n
β

P2 + Z
)p [

mr1

α
P1 −

mr1

αK1
P2

1 −
ma1

α
P1P2

+
nr2

β
P2 −

nr2

βK2
P2

2 −
na2

β
P1P2 − dZ −

γP1Z
a + P1

−
δP2Z

a + P2

]
+

p
2

(
m
α

P1 +
n
β

P2 + Z
)p−1 σ2

1

(m
α

P1

)2
+ σ2

2

(
n
β

P2

)2

+ σ2
3Z2


≤

mr1

α
P1

(
m
α

P1 +
n
β

P2 + Z
)p

−
m2r1

α2K1
Pp+2

1

+
nr2

β
P2

(
m
α

P1 +
n
β

P2 + Z
)p

−
n2r2

β2K2
Pp+2

2
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− dZ p+1 +
p
2

(
m
α

P1 +
n
β

P2 + Z
)p+1

(σ2
1 ∨ σ

2
2 ∨ σ

2
3).

Noting that the inequality |
∑n

i=1 ci|
n ≤ kn−1 ∑n

i=1 |ci|
n, we can obtain that

L V1(P1, P2,Z) ≤ −
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 −
d
4

Z p+1

+
3p p
2

(
Pp+1

1 + Pp+1
2 + Z p+1

)
[σ2

1 ∨ σ
2
2 ∨ σ

2
3]

−
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
4

Zp+1

+
mr1

α
P1

(
m
α

P1 +
n
β

P2 + Z
)p

+
nr2

β
P2

(
m
α

P1 +
n
β

P2 + Z
)p

= −
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1

−

(d
4
−

3p p
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3)
)
Zp+1 + H

≤ −
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H,

where

H = sup
(P1,P2,Z)∈R3

+

{
−

m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
4

Zp+1

+
mr1

α
P1

(
m
α

P1 +
n
β

P2 + Z
)p

+
nr2

β
P2

(
m
α

P1 +
n
β

P2 + Z
)p

+
3p p
2

(
Pp+1

1 + Pp+1
2

)
(σ2

1 ∨ σ
2
2 ∨ σ

2
3)
}
< ∞.

and

L V2(P1, P2,Z) = −
mK1

r1
ln P1 −

nK2

r2
ln P2 − ln Z

= −

(
mK1

r1
A +

nK2

r2
B −C − γ − δ

)
+

a2nK2

r2
P1

+
a1mK1

r1
P2 +

(
αmK1

r1
+
βnK2

r2

)
Z

= − Π +
a2nK2

r2
P1 +

a1mK1

r1
P2 +

(
αmK1

r1
+
βnK2

r2

)
Z,

L V3(P1, P2,Z) = − mP1Z − nP2Z + dZ +
γP1Z
a + P1

+
δP2Z

b + P1

≤
γ

a
P1Z +

δ

b
P2Z + dZ.
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Thus,

L V(P1, P2,Z) ≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P1Z +

δ

b
P2Z

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z −

m2r1

2α2K1
Pp+2

1

−
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H.

Considering the following compact subset E:

E =

{
(P1, P2,Z) ∈ R3

+ : ε < P1 <
1
ε
, ε < P2 <

1
ε
, ε < Z <

1
ε

}
.

where ε is a sufficiently small constant satisfying the following conditions:

−ΠM +

(
na2K2M

r2
+
γ

a

)
ε + S 1 ≤ −1, (13)

−ΠM + S 2 −
m2r1

4α2K1
ε−p−2 ≤ −1, (14)

−ΠM +

(
ma1K1M

r1
+
δ

b

)
ε + S 3 ≤ −1, (15)

−ΠM + S 4 −
n2r2

4β2K2
ε−p−2 ≤ −1, (16)

−ΠM +

[(
mαK1

r1
+

nβK2

r2

)
M + d + γ + δ

]
ε + S 5 ≤ −1, (17)

−ΠM + S 6 −
d
4
ε−p−1 ≤ −1, (18)

where

S 1 = sup
(P1,P2,Z)∈R3

+

{
ma1K1M

r1
P2 +

δ

2b
P2

2 +

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z

+

(
γε

a
+
δ

2b

)
Z2 + H

}
,

S 2 = sup
(P1,P2,Z)∈R3

+

{
na2K2M

r2
P1 +

α

2a
P2

1 +
ma1K1M

r1
P2 +

δ

2b
P2

2

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z +

(
γ

2a
+
δ

2b

)
Z2

−
m2r1

4α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H
}
,

S 3 = sup
(P1,P2,Z)∈R3

+

{
na2K2M

r2
P1 +

γ

2a
P2

1 +

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z
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+

(
γ

2a
+
δε

b

)
Z2 + H

}
,

S 4 = sup
(P1,P2,Z)∈R3

+

{
na2K2M

r2
P1 +

α

2a
P2

1 +
ma1K1M

r1
P2 +

δ

2b
P2

2

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z +

(
γ

2a
+
δ

2b

)
Z2

−
m2r1

2α2K1
Pp+2

1 −
n2r2

4β2K2
Pp+2

2 −
d
2

Z p+1 + H
}
,

S 5 = sup
(P1,P2,Z)∈R3

+

{
na2K2M

r2
P1 +

γε

a
P2

1 +
ma1K1M

r1
P2 +

δε

b
P2

2 + H
}
,

S 6 = sup
(P1,P2,Z)∈R3

+

{
na2K2M

r2
P1 +

α

2a
P2

1 +
ma1K1M

r1
P2 +

δ

2b
P2

2

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z +

(
γ

2a
+
δ

2b

)
Z2

−
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
4

Z p+1 + H
}
.

Then
R3

+/E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6,

where

E1 =
{
(P1, P2,Z) ∈ R3

+ : 0 < P1 < ε
}
, E2 =

{
(P1, P2,Z) ∈ R3

+ : P1 ≥
1
ε

}
,

E3 =
{
(P1, P2,Z) ∈ R3

+ : 0 < P2 < ε
}
, E4 =

{
(P1, P2,Z) ∈ R3

+ : P2 ≥
1
ε

}
,

E5 =
{
(P1, P2,Z) ∈ R3

+ : 0 < Z < ε
}
, E6 =

{
(P1, P2,Z) ∈ R3

+ : Z ≥
1
ε

}
.

Now, we need to prove the negativity of L V(P1, P2,Z) for any (P1, P2,Z) ∈ R3
+/E.

Case I: If (P1, P2,Z) ∈ E1, then P1Z ≤ εZ ≤ ε
(
1 + Z2

)
, and one can obtain that

L V(P1, P2,Z) ≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P1Z +

δ

b
P2Z

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z −

m2r1

2α2K1
Pp+2

1

−
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM +
na2K2M

r2
ε +

ma1K1M
r1

P2 +
γ

a
ε
(
1 + Z2

)
+
δ

b
P2

2 + Z2

2
+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z
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−
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM +

(
na2K2M

r2
+
γ

a

)
ε + S 1 ≤ −1.

By (13), we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E1.

Case II: If (P1, P2,Z) ∈ E2, we have

L V(P1, P2,Z) ≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P1Z +

δ

b
P2Z

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z −

m2r1

2α2K1
Pp+2

1

−
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P2

2 + Z2

2

+
δ

b
P2

2 + Z2

2
+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z

−
m2r1

4α2K1
Pp+2

1 −
m2r1

4α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM + S 2 −
m2r1

4α2K1
ε−p−2 ≤ −1.

By (14), we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E2.

Case III: If (P1, P2,Z) ∈ E3, the similar analysis to case I, we can obtain that

L V(P1, P2,Z) ≤ −ΠM +

(
ma1K1M

r1
+
δ

b

)
ε + S 3 ≤ −1.

By (15), we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E3.

Case IV: If (P1, P2,Z) ∈ E4, the similar analysis to case II, we have

L V(P1, P2,Z) ≤ −ΠM + S 4 −
n2r1

4β2K1
ε−p−2 ≤ −1.

which follows from (16), then we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E4.

Case V: If (P1, P2,Z) ∈ E5, then P1Z ≤ εP1 ≤ ε
(
1 + P2

1

)
, P2Z ≤ εP2 ≤ ε

(
1 + P2

2

)
, we have

L V(P1, P2,Z) ≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P1Z +

δ

b
P2Z

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z −

m2r1

2α2K1
Pp+2

1
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−
n2r2

2β2K2
Pp+2

2 −
d
2

Zp+1 + H

≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
ε
(
1 + P2

1

)
+
δ

b
ε
(
1 + P2

2

)
+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
ε

−
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM +

[(
mαK1

r1
+

nβK2

r2

)
M + d + γ + δ

]
ε + S 5 ≤ −1.

According to (17), we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E5.

Case VI: If (P1, P2,Z) ∈ E6, we have

L V(P1, P2,Z) ≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
P1Z +

δ

b
P2Z

+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z −

m2r1

2α2K1
Pp+2

1

−
n2r2

2β2K2
Pp+2

2 −
d
2

Z p+1 + H

≤ −ΠM +
na2K2M

r2
P1 +

ma1K1M
r1

P2 +
γ

a
ε
(
1 + P2

1

)
+
δ

b
ε
(
1 + P2

2

)
+

[(
ma1K1

r1
+

na2K2

r2

)
M + d

]
Z

−
m2r1

2α2K1
Pp+2

1 −
n2r2

2β2K2
Pp+2

2 −
d
4

Z p+1 + H

≤ −ΠM + S 6 −
d
4

Z−p−1 ≤ −1.

From (18), we have L V(P1, P2,Z) ≤ −1 for any (P1, P2,Z) ∈ E6.
Hence, the condition (ii) of Lemma 2.1 is verified. Thus, system (2) admits a unique ergodic

stationary distribution. This completes the proof. �

3. Numerical simulations

In this section, based on the Milstein’s Higher Order Method mentioned in [50], some numerical
simulations are carried out to further study the effects of the environmental noise and toxin rate
released by TPP on the dynamics of system (2). Due to in a phytoplankton-zooplankton system that
takes toxic phytoplankton into consideration, the intrinsic growth rates of two toxic phytoplankton
and the death rate of zooplankton are parameters that are most susceptible to environmental influences
and are relatively important. Therefore, we only consider the intrinsic growth rates and death rate
affected by white noise. In the following numerical simulations, unless otherwise specified, the
following parameter values are always used: r1 = 0.55, r2 = 0.5, a1 = 0.005, a2 = 0.004, α = 0.15,
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β = 0.15, m = 0.09, n = 0.075, d = 0.09, a = 0.1, b = 0.12, K1 = 2, K2 = 5, the initial value
(P1(0), P2(0),Z(0)) = (0.5, 0.5, 0.5), and other parameters are chosen as control parameters. In order
to study how the white noise and two TPP affect the dynamics of system (2), we firstly consider
system (2) does not experience the white noise, that is, system (2) becomes its corresponding
deterministic system. According to [25], we can obtain that the system (1) possesses a unique positive
interior equilibrium E∗(0.8178, 1.8066, 2.1071) which is locally asymptotically stable, depicting the
coexistence of all three species.

(a)
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Figure 1. The effect of σ2 on the stochastic dynamic behaviors of the system (2) with γ =

0.06, δ = 0.07, σ1 = 0.1, σ3 = 0.1, 0 ≤ σ2 ≤ 1.2. (a) The stochastic dynamical behaviors of
species P2(t) change from the persistence in the mean to extinction in different areas of I, II
and III for 0 ≤ σ2 ≤ 1.2. (b) The sample pathes of species P2(t) for system (2) with respect
to Figure 1(a) for σ2 = 0.1, σ2 = 0.8, σ2 = 1.1 and t on [1000,2000] and its corresponding
deterministic system (1).

Next, the impact of white noise on the stochastic dynamics of system (2) will be shown. We first
fix σ1 = 0.1 and σ3 = 0.1, and let σ2 (0 ≤ σ2 ≤ 1.2) vary to see how the white noise influences the
survival of plankton populations. According to the Theorem 2.3, we can obtain that all three species of
system (2) will undergo extinction when the white noise reaches some a critical value. Obviously, we
can find from Figure 1(a) that the species P2(t) of system (2) is always persistence in the mean in the
area of I and persistence in the mean or extinct alternating in the area of II, but species P2(t) becomes
die out rapidly in the space III when σ2 is beyond σ2 = 1. Figure 1(b) depicts that the stochastic
dynamical behaviors of species P2(t) with respect to Figure 1 (a) for σ2 = 0.1, σ2 = 0.8, σ2 = 1.1 and t
on [1000, 2000], respectively. Moreover, we can observe from Figure 1(b) that, with the increase in the
magnitude of the environmental fluctuations, the random variation of plankton density becomes more
significant, which implies that white noise can accelerate the stochastic oscillation of plankton density.
For example, let σ2 = 0.1, it is not difficult to find that the two TPP and zooplankton of system (2) can
coexist at a relatively stable state and their densities exhibit oscillation around the deterministic steady
state values P∗1 = 0.8178, P∗2 = 1.8066 and Z∗ = 2.1071, respectively (see Figure 2(a)–(c)). Actually,
following the Theorem 2.3 and Theorem 2.4, system (2) is persistence in the mean and has a unique
ergodic stationary distribution, which are consistent with our numerical analysis. From the stationary
distribution of all three species, it can be seen clearly that they are distributed normally around the
values 0.8, 1.8 and 2.1, respectively, which illustrates that the standard deviation σ1, σ2 and σ3 can

Mathematical Biosciences and Engineering Volume 18, Issue 4, 4101–4126.



4117

0 200 400 600 800 1000

t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
1
(t

)

(a)

Stochastic system

Deterministic system

0 200 400 600 800 1000t
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
2
(t

)
(b)

Stochastic system

Deterministic system

0 200 400 600 800 1000

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Z
(t

)

(c)

Stochastic system

Deterministic system

0 0.5 1 1.5 2 2.5
P

1
(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F
re

q
u

e
n

c
y

(d)
0 1 2 3 4 5 6

P
2
(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

q
u

e
n

c
y

(e)
0 1 2 3 4 5 6

Z(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

q
u

e
n

c
y

(f)

Figure 2. (a)–(c) The solution trajectories of system (2) with σ1 = σ2 = σ3 = 0.1, γ = 0.06,
δ = 0.07 and its corresponding deterministic system (1). (d)–(f) The probability density
function diagrams of P1(t), P2(t) and Z(t) for the system (2). Here, the red smoothed carves
are probability density functions for system (2).

keep processes P1(t), P2(t) and Z(t) moving around the solution of system (1). In other words, system
(2) can preserve some stability in the random sense when the intensities of white noise are relatively
weak. Now let σ2 vary within some a level, it can be concluded that the weaker the environmental
fluctuations are, the closer the solutions of system (2) are to steady state E∗ (The Figures here are
not given due to the similarity to Figure 2). However, when we increase the density of environmental
forcing to σ2 > 1, for example σ2 = 1.1, we can easily get from Theorem 2.3 that B = −0.105 < 0,
which implies that species P2(t) of system (2) tends to go rapid extinct, even if its corresponding
deterministic system (1) still presents obvious stability, indicating a different phenomenon from its
deterministic system (see Figure 3). This also shows that white noise intensity can help to control the
density of toxic phytoplankton. Comparing Figures 1, 2 and 3, it is obvious to find that the intensity of
white noise can not only aggravate the stochastic oscillation of plankton density, but also significantly
change the dynamics of the plankton system. That is, a high white noise intensity can accelerate the
extinction of the plankton populations, which implies that the white noise can help control the biomass
of plankton populations and provide a guide for us to the termination of planktonic blooms. This is
consistent with the results obtained by the work of Sarkar and Chattopadhayay [34], who demonstrated
the controlling of plankonic blooms by artifical eutrophication or the intensity of white noise from their
experimental and field observations. Thus, it is worth pointing out that the results from the Figures 1,
2 and 3 can support that the plankton systems incorporating white noise can better simulate planktonic
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blooms than its corresponding deterministic counterparts. Similarly, if we impose the intensities of
white noise on species P1(t) and Z(t), respectively, we can easily obtain the similar results, thus here
we omit it.
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Figure 3. Stochastic dynamical behaviors of system (2) with σ1 = σ3 = 0.1, σ2 = 1.1,
γ = 0.06, δ = 0.07, and its corresponding deterministic counterparts on t ∈ [0, 1000]. (a) The
persistence in the mean of species P1(t) and Z(t) and extinction of species P2(t) of stochastic
system (2). (b) The persistence of deterministic system (1).
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Figure 4. The effect of toxin rate γ produced by population P1(t) on the stochastic dynamic
behaviors of the system (2) with σ1 = σ2 = σ3 = 0.1, δ = 0.07, 0 ≤ γ ≤ 1. (a),(b) The
persistence in the mean of species P1(t) and P2(t); (c) The persistence in the mean of
population Z(t) for 0 ≤ γ ≤ 0.3706 and extinction for 0.3706 ≤ γ ≤ 1.

On the one hand, in order to study how the effect of one toxin liberation rate on population density
dynamic evolution trend under the environmental fluctuations, we choose γ as a control parameter
and all other parameters are the same as Figure 2. Clearly, we can observe from Figure 4 that the
species P1(t) and P2(t) are persistence in the mean and their biomass will increase as the increasing
value of γ, while species Z(t) undergoes extinction when γ beyond a certain value, here the colorbars
denote the biomass of species P1(t), P2(t) and Z(t), respectively. Actually, it is easy to obtain that
Π > 0 under the condition of 0 ≤ γ < 0.3846 and Π = 0 if and only if γ ≈ 0.3846, which indicates
that system (2) is persistence in the mean and exists the stationary distribution under the condition of
γ < 0.3846. In contrast, species Z(t) of system (2) will die out. Therefore, it can be asserted that TPP
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can significantly affect the coexistence of all the three species. For precisely, we take three different
values of γ (γ = 0.1, 0.2, 0.35), then system (2) has a unique stationary distribution. Figure 5 depicts
the relative frequency density of P1(t), P2(t) and Z(t) with these different values, respectively, where
the smoothed curves are the probability density functions of system (2). More importantly, we can
obtain the result from the Figure 5 that with the increasing value of γ, the distributions of two TPP
appear closer to the normal distribution, but the distribution of zooplankton becomes more skewness,
which implies that the increase of the liberation rate γ can increase the survival chance of two harmful
phytoplankton but decrease the biomass of zooplankton. Additionally, it can be seen from Figure 5 that
the peak value of the probability density functions of system (2) will be higher as γ increases. All these
results indicate that for the value of the toxin liberation rate γ satisfying the condition of Theorem 2.4,
its enhancement will contribute to the persistence in the mean of system (2) though the termination
of planktonic blooms. In addition, from the Theorems 2.3 and 2.4, we want to know what happens if
Π < 0? Selecting γ = 0.39, we can easily check Π ≈ −0.0054 < 0 and Γ ≈ −0.0194 < 0, which
imply that the conditions of the Theorems 2.3 and 2.4 are not satisfied, but system (2) has a stationary
distribution, indicating all the three species are persistence in the mean (see Figure 6). However, when
we choose γ = 0.42, similarly, we can obtain that Π ≈ −0.0354 < 0 and Γ ≈ −0.0494 < 0. Obviously,
the two toxic phytoplankton can coexist while the zooplankton tends to go extinct (see Figure 7). For
the case of γ = 0.06 and changing the value of δ, we can easily get the similar results, which are
omitted here.

Finally, the combined effects of two toxin liberation rates on the dynamics of system (2) are
studied as well. Figure 8 depicts how the combined role of γ and δ affect the dynamics of system (2),
where the red smoothed curves are probability density functions of system (2). By a straightforward
computation, the condition of Theorem 2.4 can be verified, which means system (2) has a unique
stationary distribution (see Figure 8). Comparing Figure 5 and Figure 8, one can see that the mean
values of two harmful phytoplankton are larger than the case of γ = 0.2, δ = 0.07, while that of
zooplankton is smaller than that case, indicating the high abundance of toxic phytoplankton because
of the low level or the absence of other toxic phytoplankton, while the peaks of zooplankton
population come down. Thus, we can obtain that, by controlling two harmful phytoplankton, the
mean values of both the harmful phytoplankton are larger than the value observed when considering
in the case of any one of toxic phytoplankton, while that of zooplankton is smaller than the case of
any one of toxic phytoplankton is present, which imply that a considerable decrease in the biomass
accumulations of plankton as compared with the case of in the presence of a single toxic
phytoplankton. Therefore, the introduction of two harmful phytoplankton is contribute to the
persistence of system (2) and plays an important role in the termination of planktonic blooms.

4. Conclusions

It is now well recognized that stochastic population dynamics play a significant role in population
dynamics, since environmental fluctuations can affect the growth process of species, such as the
growth rate and death rate, which can be described by white noise [51]. And the Gaussian white noise
can been theoretically preferred to model environmental fluctuations because of its irregularity and
thus a good approximation to the phenomena of rapid fluctuations [52]. The study of stochastic
population dynamics goes back to the pioneering work by Haminskii [53], who introduced two white
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Figure 5. The effect of one toxin rate γ on the dynamics of system (2). (a)–(c) The
histograms of probability density functions for P1(t), P2(t) and Z(t) with different values of
γ. Here, δ = 0.07, σ1 = σ2 = σ3 = 0.1.

noise to stabilize a linear system. After that, lots of attention has been paid on stochastic population
dynamics studies [54–56]. Mao et al. [54] pointed out that stochastic noise can suppress potential
explosion in population dynamics. Wang et al. [55] showed that time-periodic forcing can lead to the
transitions from a spatially homogeneous stationary state to a periodic oscillation in time.
Additionally, lots of stochastic plankton growth systems have been derived by numerous
researchers [40, 42, 57], and stochastic plankton systems involve toxin-producing phytoplankton have
become a hot topic in ecological studies due to harmful phytoplankton can significantly affect the
dynamics of plankton systems [18–25, 34, 41].

In this paper, therefore, we first propose a stochastic phytoplankton-zooplankton system with two
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Figure 6. The effect of one toxin rate γ on the dynamics of system (2). (a)–(c) The
histograms of probability density functions for P1(t), P2(t) and Z(t). Here, γ = 0.39, δ = 0.07,
σ1 = σ2 = σ3 = 0.1.
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Figure 7. Stochastic dynamical behaviors of system (2) and its corresponding deterministic
counterparts on t ∈ [0, 1000]. Here, γ = 0.42, σ1 = σ2 = σ3 = 0.1, δ = 0.07.
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Figure 8. The combined effects of two toxin rates γ and δ on the dynamics of system (2).
(a)–(c) The histograms of probability density functions for P1(t), P2(t) and Z(t) with γ = 0.2,
δ = 0.2, σ1 = σ2 = σ3 = 0.1, respectively.
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harmful phytoplankton populations, where the intrinsic growth rates of two harmful phytoplankton
and the natural death rate of zooplankton are influenced by the environmental noise, and we then
study the effects of TPP and white noise on the dynamics of system (2) theoretically and numerically.
In order to ensure that the system is biologically meaningful, the existence and uniqueness of global
positive solutions of system is discussed, and the results demonstrate that for any initial value
(P1(0), P2(0),Z(0)) ∈ R3

+, the solution will remain in R3
+ with probability one. Based on this situation,

we derive some sufficient conditions for the extinction and persistence in the mean of the system.
Obviously, those conditions are great significance to study the extinction and persistence in the mean
for the phytoplankton-zooplankton system [30, 34]. Significantly, when the system is persistence in
the mean, we also investigate the existence and uniqueness of positive recurrent of solution for the
system, which implies the system has a unique stationary distribution under some conditions.
Numerical analysis illustrates our theoretical results and further indicates that both two TPP and
environmental fluctuations have a significant effect on the controlling of planktonic blooms.

On the one hand, from Theorems 2.3 and 2.4, which follows that, when the low level intensity of
white noise satisfies the conditions θ1 > 0, θ2 > 0, and Π > 0, system (2) is persistence in the mean
and exists a ergodic stationary distribution, indicating the coexistence of all those three species in the
random sense for a long time (see Figure 2). However, when we increase the intensity of environmental
forcing such that the condition of θ2 < 0 holds, the species P2(t) undergoes rapid extinction while other
two species are persistence in the mean, as it is shown in Figure 3. Comparing Figures 2 and 3, it can be
asserted that white noise can aggravate the stochastic oscillation of plankton density and significantly
change the dynamics of phytoplankton-zooplankton system. Especially, a high intensity of white noise
can accelerate the extinction of plankton populations. Consequently, these results may be more realistic
than that of in [25], which implies that the controlling of rapid environmental fluctuations may be a
good way in the termination of planktonic blooms. Therefore, it is great ecological significance to
consider environmental noise when studying phytoplankton-zooplankton interaction in the presence of
harmful phytoplankton.

On the other hand, it is investigated how the dynamics of system (2) strongly depends on TPP. By
controlling one toxin liberation rate, the dynamic behaviours of system (2) can be changed. That is,
when the toxin liberation rate is beyond some a critical value, two harmful phytoplankton can coexist,
while zooplankton tends to extinction (see Figure 4). Moreover, when controlling any one of the
two TPP, it is obvious to survey from Figure 5 that the increasing value of one toxin liberation rate
can reduce the biomass of zooplankton, while increase the survival chance of two phytoplankton. In
addition, in the presence of both two TPP, it can be seen from Figures 5 and 8 that the combined effects
of two liberation rates on the changes in plankton populations are stronger than that of controlling any
one of the two TPP. Thus, the introduction of two harmful phytoplankton is conducive to the persistence
of the system (2) through the termination of planktonic blooms. Therefore, TPP has a profound impact
on the dynamics of phytoplankton-zooplankton systems and may be used as a biological way to control
planktonic blooms.

There are some interesting topics waiting for us to further explore. For example, the zooplankton
mortality will occur after some time lapse due to the bloom of toxic phytoplankton [58], it seems to
more reasonable to study a stochastic toxic-producing phytoplankton-zooplankton system with time
delay. Another problem of interest is to consider impulsive perturbations or regime switching into the
system. We leave those for our future research goals.
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