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Abstract: Objectives: Getting to Zero (GTZ) initiatives focus on expanding use of antiretroviral
treatment (ART) and pre-exposure prophylaxis (PrEP) to eliminate new HIV infections.
Computational models help inform policies for implementation of ART and PrEP continuums. Such
models, however, vary in their design, and may yield inconsistent predictions. Using multiple
approaches can help assess the consistency in results obtained from varied modeling frameworks,
and can inform optimal implementation strategies. Methods: A study using three different modeling
approaches is conducted. Two approaches use statistical time series analysis techniques that
incorporate temporal HIV incidence data. A third approach uses stochastic stimulation, conducted
using an agent-based network model (ABNM). All three approaches are used to project HIV
incidence among a key population, young Black MSM (YBMSM), over the course of the GTZ
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implementation period (2016-2030). Results: All three approaches suggest that simultaneously
increasing PrEP and ART uptake is likely to be more effective than increasing only one, but
increasing ART and PrEP by 20% points may not eliminate new HIV infections among YBMSM.
The results further suggest that a 20% increase in ART is likely to be more effective than a 20%
increase in PrEP. All three methods consistently project that increasing ART and PrEP by 30%
simultaneously can help reach GTZ goals. Conclusions: Increasing PrEP and ART uptake by about
30% might be necessary to accomplish GTZ goals. Such scale-up may require addressing
psychosocial and structural barriers to engagement in HIV and PrEP care continuums. ABNMs and
other flexible modeling approaches can be extended to examine specific interventions that address
these barriers and may provide important data to guide the successful intervention implementation.

Keywords: HIV infections; pre-exposure prophylaxis; computer simulation; sexual and gender
minorities; preventive medicine

1. Introduction

Two seminal HIV prevention policy guidelines were released in 2010: the UNAIDS strategic
plan [1] and the United States National HIV/AIDS Strategy (NHAS) [2]. These guidelines
precipitated the development of “Getting to Zero” (GTZ) and related HIV elimination initiatives in
the United States (US). Following these guidelines, initiatives that focus on HIV elimination within
local jurisdictions have been proposed [3]. These plans focus on achieving expanded antiretroviral
treatment (ART) and pre-exposure prophylaxis (PrEP) uptake within defined periods. As more
ambitious goals are being set to eliminate new HIV infections, the need for improvement at multiple
stages of the HIV prevention continuum has been increasingly recognized [4,5]. It is also understood
that HIV epidemics in different countries are composed of “microepidemics”, driven by
disproportionately large numbers of transmissions occurring within some subpopulations [6]. Indeed,
data show lower levels of success in the improvement of the ART and PrEP continuums among
younger Black gay, bisexual and other MSM (YBMSM) in the US compared with younger white
MSM [7,8]. YBMSM have experienced relatively stable incidence rates, even as overall HIV
incidence in the United States has declined [9].

Computational models provide tools to predict the trajectory of localized HIV epidemics, assess
the potential effects of interventions, and inform policies for improved implementation of
continuums of ART and PrEP care [10,11]. Several computational models demonstrating the
potential impact of PrEP, ART and other interventions to promote HIV elimination efforts have been
published [12-16]. These models, however, vary in their design, formulation, and input data, and
provide predictions that may not always agree [17,18]. Understanding the underlying assumptions of
various prediction strategies is important for the interpretation and contextualization of the
conflicting findings.

Applying two or more methodological approaches can help compare the impact of model
assumptions on model outputs [19-21]. For instance, one can assess the extent to which results from
varied approaches are consistent with each other [22] or use data from a variety of sources to
examine the range of projected efficacies of prevention mechanisms [23,24]. Studies that compare
multiple modeling approaches have been useful in informing HIV prevention policies in Sub Saharan
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Africa [25,26], but more such studies should be used to guide GTZ planning in the US.

This paper aims to compare predictions from three different modeling approaches that consider
ART and PrEP scale-up among YBMSM in Illinois, a population experiencing an ongoing HIV
microepidemic. Two of these approaches are derived from statistical time series techniques and
project the number of new HIV infections given recent trends in incidence. A third approach uses
stochastic simulations generated from an agent-based network model (ABNM), developed previously,
that explicitly simulates person-to-person HIV transmission within sexual networks that were
parameterized using empirical data [27]. Results from all three approaches are assessed to
determine if a “functional zero” HIV incidence is achieved, defined as fewer than 200 new
infections annually [28]. Multi-model comparison approaches such as this may offer a powerful tool
for implementation scientists interested in rigorously examining the efficacy of interventions before
they are implemented.

2. Methods

Three approaches are used to project the number of new infections over the 2016-2030 GTZ
implementation period [29]. The two statistical approaches use aggregated incidence data obtained
through public health surveillance (further information below). These methods are less computationally
intensive compared to most dynamic simulation methods used in HIV intervention planning. The third
model type described here is an ABNM, described in detail previously [27], that incorporates more of
the real-world complexities affecting HIV transmission rates, particularly parameters that describe
behavioral, sexual network, demographic, biological, and treatment-related processes.

All three approaches are used to project HIV incidence among YBMSM over the course of the
[llinois GTZ implementation period under the following intervention scenarios: (i) PrEP uptake
increased by 20 and 30 percentage points (with no change in ART uptake from the control levels); (ii)
ART uptake scaled up by 20 and 30 percentage points (with no change in PrEP uptake from the
control levels); (ii1) both PrEP and ART scaled up by 20 percentage points each and 30 percentage
points each. The increased levels of ART and PrEP use were aligned with the recommended increase
in ART and PrEP coverage by the GTZ committee [29]. In addition to the intervention scenarios
listed above, a “control” setting assuming baseline uptake levels for PrEP and ART was implemented
over the duration of the GTZ implementation. For all interventions, the final outcome was the
number of new HIV infections in the last year of GTZ implementation.

2.1. Data sources for model inputs

The two statistical approaches used the annual incidences of HIV diagnoses for YBMSM
(18-34 years) obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a database
maintained by the Illinois Department of Public Health [30]. Baseline PrEP and ART uptake levels
were estimated from a population-based cohort study of YBMSM using data collected between June
2013 and July 2016 [31,32]. Input parameters for the ABNM were selected from several different
sources which included systematically sampled data representative of YBMSM. Projected numbers
of new infections for each year of the GTZ implementation period as per the three interventions
considered here were computed using scaling factors, as described in 2.2.1 below. Derivations for the
model equations are detailed in the Appendix.
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2.2. Statistical methods
2.2.1. Loess

The Loess technique is a robust local regression technique [33] which optimizes a weighted
function that accounts for the closeness of two points in a dataset. The assigned weight is larger if the
two points are close to each other and smaller if the points are farther apart. This procedure allows
for models to be fit to clusters of data that are close to each other, and specification of a global
function that fits all the data is not necessary [33—35]. The flexibility that Loess affords in analyzing
trend data has led to its use in a number of public health studies, including the incidence of
melanoma [36] and celiac disease [37], as well as in projecting the impact of an HPV vaccination
program [38]. Besides its flexibility, Loess is also capable of providing residual standard error,
allowing the analyst to quantify the uncertainty of predicted values by using the estimated variance
of the prediction at that point.

In the control scenario (where background ART and PrEP does not change), the number of new
infections can be projected using the slope parameter which is estimated using existing incidence
data. To measure the effect of the various interventions this slope parameter is adjusted by a scaling
factor, derived in the Appendix, that accounts for the annual change in ART and PrEP scale-up.

2.2.2.  Bonacci-Holtgrave (B&H)

Recent trends in HIV incidence have been used to model whether the goals of the 2010 US
National HIV/AIDS Strategy (NHAS) were achieved and to inform future implementation efforts [39].
This analysis projected US HIV incidence from 2013 to 2015, using observed data on HIV incidence
from 2010-2012. This approach is implemented by computing the ratios of observed year-to-year
change in HIV incidence using the formula, where the annual change is the ratio of the HIV
incidence in year ¢ to the HIV incidence in year (#-1), for the three most recent years for which data
are available. In the work introducing this method [39], the mean of the observed incidence ratios
from 2010 to 2012 was computed and the incidence for 2013-2015 was projected by multiplying this
mean by the HIV incidence in the prior year. Studies have used this approach to call for revisions to
policies to reduce HIV incidence [40—43].

In the current work, observed HIV incidence ratios for YBMSM in Illinois were computed using
data from 2013-2016. HIV incidence for 2017 was computed by multiplying this mean by the
observed HIV incidence in 2016. Projected incidences for each of the subsequent years were iteratively
computed by considering the mean of the observed incidence ratios for the previous three years.

2.2.3. Agent-based network model

An agent-based network model (ABNM) was used to simulate baseline HIV transmission to
capture existing epidemic features among BMSM (age 18 to 34 years). The model was populated
with 10,000 individuals at the start of the dynamic simulations. The simulation proceeded in daily
time step increments. The substantive model components included arrivals due to agents aging into
the model, departures (due to agent mortality or aging out of the model), dynamic sexual network
structure, the temporal evolution of CD4 counts and HIV RNA (“viral load”), HIV testing and
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diagnosis, dynamics of ART and PrEP use, external HIV infections, and HIV transmission dynamics.
The ABNM is illustrated in a flow diagram in Figure 1.

Demography Sexual Networks
Initialization + Add agents due to births « Agents form partnerships, consistent with empirical
i .| - Age existing agents by 1 timestep R parameters
s 4+ + Remove existing agents due to death « Partnerships dissolve, consistent with mean
(natural and infection-related) partnership length
Biology

« Update viral load in HIV-infected agents
« Update of CD4 counts in HIV-infected agents (both
parameters contingent upon ART-status)

Treatment/PrEP

Ke:
v « HIV-infected agents initiate ART (with testing or time

since diagnosis) consistent with data on initiation
« Partners of HIV-infected initiate PrEP
Statnet Infection

| Transmission

No

- List serodiscordant partners

- Compute infectivity of positive partner, adjusted by
- viral load

Max Time? - stage of infection

« ART status

« PrEP status (of uninfected partner)

- circumcision of susceptible partners

Simulation Yes
End

Figure 1. Flowchart illustrating the various components of the agent-based network
model (ABNM). Sexual networks are programmed using the statnet [45] package in the
R programming language. All other model components are programmed in the
C++-based Repast HPC toolkit [46,47].

The sexual network structure was modeled using exponential random graph models (ERGMs) [44],
a statistically robust approach to model complex network evolution over time, implemented using the
statnet [45] suite of packages in the R programming language. The ABM components were
developed with the C++-based Repast HPC ABM toolkit [46,47]. Parameters and computer code to
reproduce results are available in a public GitHub repository [48]. A full description of these
parameters and the process of model calibration has been published previously [27], and the
modeling of engagement in the ART and PrEP continuums, as per the intervention scenarios of
interest, is described in the Appendix.

All intervention scenarios and the control were each simulated about 30 times. The primary
outcome was the number of new infections per year, averaged across the 30 simulations, along with
standard error values calculated over 30 replications at each time point to quantify the uncertainty
across the 30 simulations of each scenario (Table 1).

2.2.4. Ethics approval of research
The Institutional Review Board of the Biological Sciences Division at The University of
Chicago provided approval for the study and waivers of the consent process, where necessary.

Appropriate Data User Agreements with the Chicago and Illinois Departments of Public Health for
de-identified eHARS data were established.
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3. Results

The numbers of new infections, projected over the 14 years of GTZ implementation in Illinois,
are shown in Figure 2 below. The numbers of new infections in 2030—the last year of GTZ
implementation—are given in Table 1. All three models predict somewhat different HIV incidences
in the last year of GTZ implementation without any PrEP or ART scale-up. Therefore, the percent
decline associated with all three interventions, relative to the infections in the control scenario
projected by each approach, is also provided.

Table 1. Projected numbers of new infections among younger Black MSM, ages 18-34
years, in the final year (2030) of Getting to Zero implementation in Illinois. Square brackets
show the 1-standard error confidence intervals and the round parentheses show the decline
in mean number of infections between the control and the intervention scenarios.

Loess Bonacci and Holtgrave® Agent-based network model
Control
383349, 418] 369 418 [413, 422]
Baseline ART and PrEP coverage®
Interventions
362 [308,417] 181 288 [285, 292]
ART coverage only increased by 20%°
(5%) (51%) 31%)
367 [317,417] 202 366 [362, 369]
PrEP coverage only increased by 20%°
(4%) (45%) (12%)
320 [226,414] 99 252 [248, 256]
ART and PrEP coverage increased by 20%
17%) (73%) (40%)
339 [263,415] 121 246 [242, 251]
ART coverage only increased by 30%¢
(12%) (67%) (41%)
351 [287,416] 145 324 (320, 329]
PrEP coverage only increased by 30%°
(8%) (61%) (22%)
186 [-35, 406] 48 186 [184, 189]
ART and PrEP coverage increased by 30%
(52%) (87%) (55%)

*Baseline ART and PrEP coverage are 50 and 10% respectively
PART coverage only increased from 50 to 70%
°PrEP coverage only increased from 10 to 30%
4ART coverage only increased from 50 to 80%
°PrEP coverage only increased from 10 to 40%

fBonacci and Holtgrave is a deterministic method and no confidence intervals can be computed.

As expected, all three approaches are consistent in predicting that increasing both ART and
PrEP by 20% will be more effective in reducing new HIV infections than increasing only one
exclusively. The same pattern was observed for the scenarios where a 30% increase was considered.
The approaches, however, differ in their predictions of the effectiveness of each intervention. Except
for B&H, the other two approaches suggest that a 20% simultaneous PrEP and ART scale-up among
YBMSM may not yield a functional zero HIV incidence. The Loess approach predicted the smallest
declines, and the B&H showed the largest declines in the cases when ART was scaled up exclusively
and when both ART and PrEP were scaled up simultaneously.
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Figure 2. Projected numbers of new infections among younger Black MSM (ages
18-34) in each year of Getting to Zero implementation in Illinois: (a) Loess, (b)
Bonacci and Holtgrave, (c) Agent-based network model under baseline and PrEP and

ART scale-up interventions.
4. Discussion

4.1. Primary findings

We conclude that a 20% increase in current ART and PrEP coverage levels is unlikely to
eliminate new HIV infections among YBMSM in Illinois by the end of the GTZ implementation
period. However, all three approaches agree that a 30% scale-up in both ART and PrEP uptake levels
may help to reach the GTZ targets by 2030. Of the two statistical time series approaches, B&H
projected greater efficacy than Loess. The ABNM, which was based on detailed demographic,
behavioral, biological and network parameters, projected an intermediate level of efficacy relative to
the two time-series approaches. These differences in results are likely driven by the fundamental
assumptions behind the approaches: whereas the projections based on the statistical time series
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methods are highly dependent on trends in recent incidence, the ABNM incorporates a more granular
representation of the processes, and the interactions between these processes.

Moreover, of the two time series approaches, the B&H method projected a greater decline than
the Loess method. This is because the B&H method projects forward “multiplicatively”, i.e., by
computing the mean of the ratios of the HIV incidence for the past three years and multiplying this
ratio by a factor that accounts for the increase in ART and PrEP coverage relative to baseline (Eqs (4)
and (5) in the Appendix). The Loess approach, on the other hand, projects forward “linearly”, i.e., by
considering the slope of the line fitted through the last cluster of points, determined by their
closeness, and modifying the slope of this straight line by the increase in ART and PrEP scale-up.
The Loess method thus projected minimal change in HIV incidence over 14 years, likely driven by
the smaller declines in HIV incidence among YBMSM over recent years. In populations with larger
recent declines, Loess would predict greater efficacy of proposed interventions, but using the
approach as such might mask important considerations that are specific to populations that are
experiencing a disproportionate burden of HIV.

The finding that ART and PrEP scale-up by 20% points is unlikely to eliminate new HIV
infections among YBMSM is, however, consistent across all three approaches. Indeed, previous
research has suggested that exclusively scaling up HIV care and treatment would not accomplish
NHAS goals [49] and neither would a 20% scale up in PrEP uptake [27]. This conclusion suggests
that scale-up of biomedical prevention interventions will need to be intensified among
subpopulations where HIV incidence is highest. Some subpopulations where current ART and PrEP
scale-up levels have had substantial impact, for instance, may need lower than 20% scale-up. Other
subpopulations experiencing higher incidence may require higher than the 20% scale-up currently
planned under the GTZ implementation guidelines.

In scenarios where a 30% scale-up was considered, all three methods show that simultaneous
increase in both ART and PrEP uptake levels might help reach GTZ targets, as defined by a
functional zero, as described above. Similar to the 20% scale-up level, a 30% increase in ART while
keeping PrEP uptake at baseline levels is more effective compared to a 30% increase in PrEP with
baseline ART levels.

4.2. Benefits of a comparative modeling approach

Applying multiple methodological approaches allows for an assessment of consistency in the
projected findings. The Loess and B&H methods are easier to implement computationally, while the
ABNM provides possibilities for a deeper examination of HIV and PrEP continuum variables.
Determination of the modeling approach likely depends upon the availability of data and
methodological expertise, as well as the projected timelines for modeling findings prior to the
implementation of interventions. Our recommended strategy for implementation scientists is to first
compute statistical time series type models (for instance, the Loess or B&H, as described in this work),
to generate upper and lower bounds of the estimated intervention efficacy. This preliminary work can
be followed by longer-term development of more complex ABNM-type models that allow for a more
granular examination of specific processes, subpopulations and interventions. The ABNM’s primary
advantages are that it provides the capacity to incorporate a wider representation of underlying
transmission processes, including network mixing, and to examine specific interventions mechanisms
explicitly, and investigate how these interventions might impact different population segments.
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Each modeling framework also draws attention to specific contextual considerations. For
instance, within Loess and B&H, the uptake of PrEP and ART can be directly controlled, but neither
approach has the capacity to model person-to-person transmission explicitly. The impact of ART and
PrEP scale-up is realized by considering the multiplicative effects of the number of users at any
given time. The ABNM, by contrast, accounted for the HIV care continuum factors that influence
ART uptake: testing, linkage, and adherence, but does not provide the flexibility to directly control
the number of ART users at any given time. Thus, while the two time-series approaches provided the
flexibility of directly controlling an important parameter and were more quickly implemented, the
ABNM provided more fine-grained control allowing for explicit examination of key input variables.
Identification of a “gold standard” modeling technique is beyond the scope of this study. Rather, this
study hopes to compare three modeling frameworks used to project HIV incidence to determine how
PrEP and ART scale-up may impact projected HIV incidence. Other modeling approaches, such as
deterministic-stochastic modeling choices are available and might be useful in related model
comparison studies, depending upon the research questions of interest and the availability of input
data [50,51].

4.3. Limitations

All of the modeling approaches described here use recent data to make projections over 14
years of GTZ implementation. Thus, these models assume that other baseline trends will continue to
hold, and the changes that occur will be limited to scale-up of ART and PrEP as per the GTZ
strategies considered. Therefore, any structural or policy changes that occur over the GTZ
implementation period will not be accounted for in the model. Future model iterations must account
for such policies, especially if these policy goals are revised. Computation of all models was based
upon approximations about how baseline projections might adapt in response to changes in ART and
PrEP coverage. Further work in improving these approximations might be necessary, especially if the
resources to develop agent-based simulation models are unavailable. A version of the B&H approach
that explicitly allows for a consideration of the 90-90-90 goal to improve engagement the ART
continuum has been proposed [52]. A similar version for PrEP scale-up, especially to guide GTZ
efforts in the U.S., might be helpful in guiding HIV elimination efforts. Finally, the definition of the
functional zero might need to be updated as interventions are rolled out in reality and we approach
the later stages of the GTZ planning period.

5. Conclusions

Accomplishing GTZ goals will require increased scale-up of ART and PrEP; however, such
scale-up may be constrained in part because of the many barriers that prevent effective
implementation. Racism, addiction, criminalization, unemployment, lack of access to quality
education and health care, and residential segregation are some of the barriers that disproportionately
impact young Black men and YBMSM in particular [53,54]. Addressing these barriers is vital to
accomplishing HIV elimination goals [55,56]. Indeed, this need to address structural barriers to HIV
and PrEP care continuums is recognized in the US [57] and globally [58—61]. The ABNM provides
the flexibility to model interventions that are designed to address these barriers and allows for
projected effects of interventions before they are implemented. New modeling approaches that can
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improve our understanding of the underlying mechanisms by which socio-structural and systemic
factors impact HIV transmission and that can quantify the effects of interventions to address them
can make a critical contribution to the implementation of interventions [62]. The models described
here are being expanded to begin the process of incorporating socio-structural and systemic factors.
Next-generation modeling tools can help formulate effective strategies that aid in the design of
interventions focused on reducing the impact of these barriers. Triangulation studies allow for
increasing amounts of complexity to be examined iteratively in order to make the underlying
assumptions behind various approaches more explicit and to derive policy prescriptions that utilize
the combined strengths of multiple methodological approaches and data sources.
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Appendix
A. 1. Introduction

This Appendix provides additional methodological details of the models described in the main
body of the manuscript. Below, model equations for the Loess and Bonacci and Holtgrave (B&H)
methods are derived and the modeling of ART and PrEP continuums in the agent-based network
model is described.

A.2. Loess method

The Loess technique is a robust local regression technique [33], which optimizes a weighted
function that accounts for the closeness of two points in the dataset. The assigned weight is large if
the two points are close to each other and small if the points are farther apart. This procedure allows
for models to be fit to clusters of data that are close to each other, and specification of a global
function that fits all the data is not necessary [33-35].

A Loess curve was fit to annual incidence data for YBMSM in Illinois, using the loess function
in R (version 3.5.3). For any given point, the fitting procedure uses points in the “neighborhood” of
that point, defined here as 75% of the points that are closest to it, in accordance with the
recommended default value in the R function [63]. These points are weighted by their distance from
the point in consideration.

Incidence data were obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a
database maintained by the Illinois Department of Public Health [30]. A slope parameter p, . was
computed from the fitted values obtained from the last three years (2013-2016), under the
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assumption that both PrEP and ART were being used in those years, whereas prior to 2013 PrEP was
not being used. The projected number of new infections is iteratively computed as

41 = e T PLe+1 (1)

where i; is the HIV incidence in the “current” year ¢, and i;,; is the HIV incidence in the
following year, t+1. The slope pp (1, is computed as

PLt+1 = PLt®t+1 (2)

where a is a factor that scales the slope parameter when ART and PrEP are scaled up. The

parameter a,,; was set to
<1—kAAO>(1—kRR0> ;
1 Kadgsr) \1— Ry ps 3

where A; is the proportion of HIV-positive individuals using ART in year ¢, R; is the proportion of
HIV-negative individuals using PrEP in year ¢. Thus, parameters A; and R; represent ART and
PrEP coverage in year ¢ respectively. The parameters A, and R, denote ART and PrEP coverage in
the first year of the projection, respectively. When ART coverage is scaled up in year ¢+1, the number
of new infections prevented is assumed to be proportional to the relative reduction in the population

1-Aps1’

of the infected individuals, approximated as

Similarly, when PrEP coverage in a given year, R;, is scaled up, the number of new infections
prevented is assumed to be proportional to the population of HIV-negative individuals, approximated
as 11__TI:21. (Note that when ART and PrEP coverage are not scaled up, 49 = 4; = - = A; and
Ry =R; =+ =Ry, then a;,; reducesto 1.)

The factor k, is a weighted average of the protection conferred on individuals who are always,
usually, sometimes, and never adherent to ART. From YBMSM cohort data in Illinois, these
proportions were estimated to be 32, 28, 30 and 10% respectively [31,32], and the four respective
groups was assumed to receive 100, 67, 33 and 0% protection. The factor kp indicates PrEP
protection, where data from a PrEP demonstration project were used to estimate that 21.1% of men
took 0 pills/week (non-adherent), 7.0% took < 2 pills/week (low adherence), 10.0% took 2-3
pills/week (moderate adherence), and 61.9% took 4+ pills/week (high adherence) [64]. PrEP use is
assumed to reduce HIV infection probability in these adherence groups by 0, 31, 81, and 95%, for non,
low, moderate, and high adherence, respectively, in accordance with previous modeling work [12].
These protection estimates were assumed to be constant across all models.

Equation (2) is iteratively solved over the course of the projection period to yield the number of
new HIV infections for each projection time point.

A.3. Bonacci and Holtgrave method

A recent study modeled trends in HIV incidence to assess whether the goals of the 2010 US
National HIV/AIDS Strategy (NHAS) were achieved and to inform future implementation efforts [39].
This method is implemented by computing the average of the ratios of observed year-to-year change

in HIV incidence using the formula: [annual change = HIV incidence in year ¢ / HIV incidence in
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year (z-1)] for the three most recent years that data are available for. Thus, the incidence can be
iteratively projected as

le+1 = PBHtLt 4)

where ppy . 1s the average of the annual change values at the three most recent years as defined
above, and i; is the HIV incidence in the “current” year ¢. The number of new infections when ART
and PrEP are scaled up is given as

1- kAAt+1> <1 - kRRt+1>

lt+1 = PBHtlt ( 1— k,4, 1— kgR,

)
where parameters are as defined above. Equation (5) is iteratively solved over the course of the
projection period to yield the number of new HIV infections for each projection time point.

A.4. Agent-based network model

An agent-based network model (ABNM) was used to simulate baseline HIV transmission to
capture existing epidemic features among adolescents and young adults (age 18 to 34 years). The
model was populated with 10,000 individuals at the start of the dynamic simulations. The simulation
proceeded in daily time step increments. The model was calibrated using published HIV incidence
and prevalence estimates. A detailed description of the agent-based network model (ABNM) and its
parameterization is available elsewhere [27].

The ABNM is designed to allow for a deeper examination of PrEP and ART care continuums.
PrEP uptake was maintained at the base levels by computing a daily initiation probability for
HIV-negative individuals not using PrEP. Further, it was assumed that PrEP initiators were retained
for an average of one year, consistent with local PrEP continuum data [65]. A dynamic equilibrium
was set to balance the PrEP initiation and retention processes to maintain uptake at desired levels.
Additionally, PrEP users were divided into four adherence categories, with protection dependent
upon adherence. ART uptake, on the other hand, was determined by three care continuum parameters:
(a) HIV testing frequency; (b) linkage, defined in the model as distribution of times between HIV
diagnosis and ART initiation; (¢) ART adherence, modeled by assuming 32, 28, 30, and 10% of ART
initiators were always, usually, sometimes, and never adherent, respectively, as estimated from
cohort data [31,32].

The PrEP scale-up intervention was implemented by considering a uniform annual increase
from base uptake levels to 30 and 40%. Twenty percent ART scale-up level was modeled by
assuming an increase in the proportion of individuals who were always adherent to 80% of ART
initiators, and a decline in the proportion of individuals who were usually and sometimes adherent
to 10% of ART initiators each. (The impact of increased ART adherence on overall ART uptake is
further discussed below.) A similar adherence adjustment approach was used to model the 30% ART
scale-up. The six interventions and the baseline scenario were simulated 30 times over the course of
the GTZ implementation period to account for inherent uncertainty due to the stochastic nature of
this model. In addition, standard error values were also calculated over 30 replications at each time
point to quantify the uncertainty (Table 1).

Since ART uptake in the ABNM was determined by three care continuum parameters described
above, the overall uptake was increased by 20% by assuming an increase in the proportion of
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individuals who were always adherent to 80% of ART initiators, and a decline in the proportion of
individuals who were usually and sometimes adherent to 10% of ART initiators each. In the Loess
and B&H methods, on the other hand, ART uptake was controlled by specifying the A, parameter,
as described above. In Figure Al below, we plot the ART uptake over time in the ABNM, to
demonstrate that the increased adherence resulted in a temporal ART scale-up that was comparable to
the assumption in the statistical time series methods.
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Figure Al. Percentage of HIV-positives using antiretroviral treatment under various
scenarios of scale-up.
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