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Abstract: Objectives: Getting to Zero (GTZ) initiatives focus on expanding use of antiretroviral 
treatment (ART) and pre-exposure prophylaxis (PrEP) to eliminate new HIV infections. 
Computational models help inform policies for implementation of ART and PrEP continuums. Such 
models, however, vary in their design, and may yield inconsistent predictions. Using multiple 
approaches can help assess the consistency in results obtained from varied modeling frameworks, 
and can inform optimal implementation strategies. Methods: A study using three different modeling 
approaches is conducted. Two approaches use statistical time series analysis techniques that 
incorporate temporal HIV incidence data. A third approach uses stochastic stimulation, conducted 
using an agent-based network model (ABNM). All three approaches are used to project HIV 
incidence among a key population, young Black MSM (YBMSM), over the course of the GTZ 
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implementation period (2016–2030). Results: All three approaches suggest that simultaneously 
increasing PrEP and ART uptake is likely to be more effective than increasing only one, but 
increasing ART and PrEP by 20% points may not eliminate new HIV infections among YBMSM. 
The results further suggest that a 20% increase in ART is likely to be more effective than a 20% 
increase in PrEP. All three methods consistently project that increasing ART and PrEP by 30% 
simultaneously can help reach GTZ goals. Conclusions: Increasing PrEP and ART uptake by about 
30% might be necessary to accomplish GTZ goals. Such scale-up may require addressing 
psychosocial and structural barriers to engagement in HIV and PrEP care continuums. ABNMs and 
other flexible modeling approaches can be extended to examine specific interventions that address 
these barriers and may provide important data to guide the successful intervention implementation. 

Keywords: HIV infections; pre-exposure prophylaxis; computer simulation; sexual and gender 
minorities; preventive medicine 

 

1. Introduction 

Two seminal HIV prevention policy guidelines were released in 2010: the UNAIDS strategic 
plan [1] and the United States National HIV/AIDS Strategy (NHAS) [2]. These guidelines 
precipitated the development of “Getting to Zero” (GTZ) and related HIV elimination initiatives in 
the United States (US). Following these guidelines, initiatives that focus on HIV elimination within 
local jurisdictions have been proposed [3]. These plans focus on achieving expanded antiretroviral 
treatment (ART) and pre-exposure prophylaxis (PrEP) uptake within defined periods. As more 
ambitious goals are being set to eliminate new HIV infections, the need for improvement at multiple 
stages of the HIV prevention continuum has been increasingly recognized [4,5]. It is also understood 
that HIV epidemics in different countries are composed of “microepidemics”, driven by 
disproportionately large numbers of transmissions occurring within some subpopulations [6]. Indeed, 
data show lower levels of success in the improvement of the ART and PrEP continuums among 
younger Black gay, bisexual and other MSM (YBMSM) in the US compared with younger white 
MSM [7,8]. YBMSM have experienced relatively stable incidence rates, even as overall HIV 
incidence in the United States has declined [9]. 

Computational models provide tools to predict the trajectory of localized HIV epidemics, assess 
the potential effects of interventions, and inform policies for improved implementation of 
continuums of ART and PrEP care [10,11]. Several computational models demonstrating the 
potential impact of PrEP, ART and other interventions to promote HIV elimination efforts have been 
published [12–16]. These models, however, vary in their design, formulation, and input data, and 
provide predictions that may not always agree [17,18]. Understanding the underlying assumptions of 
various prediction strategies is important for the interpretation and contextualization of the 
conflicting findings. 

Applying two or more methodological approaches can help compare the impact of model 
assumptions on model outputs [19–21]. For instance, one can assess the extent to which results from 
varied approaches are consistent with each other [22] or use data from a variety of sources to 
examine the range of projected efficacies of prevention mechanisms [23,24]. Studies that compare 
multiple modeling approaches have been useful in informing HIV prevention policies in Sub Saharan 
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Africa [25,26], but more such studies should be used to guide GTZ planning in the US. 
This paper aims to compare predictions from three different modeling approaches that consider 

ART and PrEP scale-up among YBMSM in Illinois, a population experiencing an ongoing HIV 
microepidemic. Two of these approaches are derived from statistical time series techniques and 
project the number of new HIV infections given recent trends in incidence. A third approach uses 
stochastic simulations generated from an agent-based network model (ABNM), developed previously, 
that explicitly simulates person-to-person HIV transmission within sexual networks that were 
parameterized using empirical data [27]. Results from all three approaches are assessed to 
determine if a “functional zero” HIV incidence is achieved, defined as fewer than 200 new 
infections annually [28]. Multi-model comparison approaches such as this may offer a powerful tool 
for implementation scientists interested in rigorously examining the efficacy of interventions before 
they are implemented. 

2. Methods 

Three approaches are used to project the number of new infections over the 2016-2030 GTZ 
implementation period [29]. The two statistical approaches use aggregated incidence data obtained 
through public health surveillance (further information below). These methods are less computationally 
intensive compared to most dynamic simulation methods used in HIV intervention planning. The third 
model type described here is an ABNM, described in detail previously [27], that incorporates more of 
the real-world complexities affecting HIV transmission rates, particularly parameters that describe 
behavioral, sexual network, demographic, biological, and treatment-related processes. 

All three approaches are used to project HIV incidence among YBMSM over the course of the 
Illinois GTZ implementation period under the following intervention scenarios: (i) PrEP uptake 
increased by 20 and 30 percentage points (with no change in ART uptake from the control levels); (ii) 
ART uptake scaled up by 20 and 30 percentage points (with no change in PrEP uptake from the 
control levels); (iii) both PrEP and ART scaled up by 20 percentage points each and 30 percentage 
points each. The increased levels of ART and PrEP use were aligned with the recommended increase 
in ART and PrEP coverage by the GTZ committee [29]. In addition to the intervention scenarios 
listed above, a “control” setting assuming baseline uptake levels for PrEP and ART was implemented 
over the duration of the GTZ implementation. For all interventions, the final outcome was the 
number of new HIV infections in the last year of GTZ implementation. 

2.1. Data sources for model inputs 

The two statistical approaches used the annual incidences of HIV diagnoses for YBMSM 
(18–34 years) obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a database 
maintained by the Illinois Department of Public Health [30]. Baseline PrEP and ART uptake levels 
were estimated from a population-based cohort study of YBMSM using data collected between June 
2013 and July 2016 [31,32]. Input parameters for the ABNM were selected from several different 
sources which included systematically sampled data representative of YBMSM. Projected numbers 
of new infections for each year of the GTZ implementation period as per the three interventions 
considered here were computed using scaling factors, as described in 2.2.1 below. Derivations for the 
model equations are detailed in the Appendix. 
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2.2. Statistical methods 

2.2.1. Loess 

The Loess technique is a robust local regression technique [33] which optimizes a weighted 
function that accounts for the closeness of two points in a dataset. The assigned weight is larger if the 
two points are close to each other and smaller if the points are farther apart. This procedure allows 
for models to be fit to clusters of data that are close to each other, and specification of a global 
function that fits all the data is not necessary [33–35]. The flexibility that Loess affords in analyzing 
trend data has led to its use in a number of public health studies, including the incidence of 
melanoma [36] and celiac disease [37], as well as in projecting the impact of an HPV vaccination 
program [38]. Besides its flexibility, Loess is also capable of providing residual standard error, 
allowing the analyst to quantify the uncertainty of predicted values by using the estimated variance 
of the prediction at that point. 

In the control scenario (where background ART and PrEP does not change), the number of new 
infections can be projected using the slope parameter which is estimated using existing incidence 
data. To measure the effect of the various interventions this slope parameter is adjusted by a scaling 
factor, derived in the Appendix, that accounts for the annual change in ART and PrEP scale-up. 

2.2.2. Bonacci-Holtgrave (B&H) 

Recent trends in HIV incidence have been used to model whether the goals of the 2010 US 
National HIV/AIDS Strategy (NHAS) were achieved and to inform future implementation efforts [39]. 
This analysis projected US HIV incidence from 2013 to 2015, using observed data on HIV incidence 
from 2010-2012. This approach is implemented by computing the ratios of observed year-to-year 
change in HIV incidence using the formula, where the annual change is the ratio of the HIV 
incidence in year t to the HIV incidence in year (t-1), for the three most recent years for which data 
are available. In the work introducing this method [39], the mean of the observed incidence ratios 
from 2010 to 2012 was computed and the incidence for 2013–2015 was projected by multiplying this 
mean by the HIV incidence in the prior year. Studies have used this approach to call for revisions to 
policies to reduce HIV incidence [40–43].  

In the current work, observed HIV incidence ratios for YBMSM in Illinois were computed using 
data from 2013–2016. HIV incidence for 2017 was computed by multiplying this mean by the 
observed HIV incidence in 2016. Projected incidences for each of the subsequent years were iteratively 
computed by considering the mean of the observed incidence ratios for the previous three years. 

2.2.3. Agent-based network model 

An agent-based network model (ABNM) was used to simulate baseline HIV transmission to 
capture existing epidemic features among BMSM (age 18 to 34 years). The model was populated 
with 10,000 individuals at the start of the dynamic simulations. The simulation proceeded in daily 
time step increments. The substantive model components included arrivals due to agents aging into 
the model, departures (due to agent mortality or aging out of the model), dynamic sexual network 
structure, the temporal evolution of CD4 counts and HIV RNA (“viral load”), HIV testing and 
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diagnosis, dynamics of ART and PrEP use, external HIV infections, and HIV transmission dynamics. 
The ABNM is illustrated in a flow diagram in Figure 1.  

 

Figure 1. Flowchart illustrating the various components of the agent-based network 
model (ABNM). Sexual networks are programmed using the statnet [45] package in the 
R programming language. All other model components are programmed in the 
C++-based Repast HPC toolkit [46,47]. 

The sexual network structure was modeled using exponential random graph models (ERGMs) [44], 
a statistically robust approach to model complex network evolution over time, implemented using the 
statnet [45] suite of packages in the R programming language. The ABM components were 
developed with the C++-based Repast HPC ABM toolkit [46,47]. Parameters and computer code to 
reproduce results are available in a public GitHub repository [48]. A full description of these 
parameters and the process of model calibration has been published previously [27], and the 
modeling of engagement in the ART and PrEP continuums, as per the intervention scenarios of 
interest, is described in the Appendix. 

All intervention scenarios and the control were each simulated about 30 times. The primary 
outcome was the number of new infections per year, averaged across the 30 simulations, along with 
standard error values calculated over 30 replications at each time point to quantify the uncertainty 
across the 30 simulations of each scenario (Table 1). 

2.2.4. Ethics approval of research 

The Institutional Review Board of the Biological Sciences Division at The University of 
Chicago provided approval for the study and waivers of the consent process, where necessary. 
Appropriate Data User Agreements with the Chicago and Illinois Departments of Public Health for 
de-identified eHARS data were established. 
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3. Results 

The numbers of new infections, projected over the 14 years of GTZ implementation in Illinois, 
are shown in Figure 2 below. The numbers of new infections in 2030—the last year of GTZ 
implementation—are given in Table 1. All three models predict somewhat different HIV incidences 
in the last year of GTZ implementation without any PrEP or ART scale-up. Therefore, the percent 
decline associated with all three interventions, relative to the infections in the control scenario 
projected by each approach, is also provided. 

Table 1. Projected numbers of new infections among younger Black MSM, ages 18–34 
years, in the final year (2030) of Getting to Zero implementation in Illinois. Square brackets 
show the 1-standard error confidence intervals and the round parentheses show the decline 
in mean number of infections between the control and the intervention scenarios. 

 Loess Bonacci and Holtgravef Agent-based network model

Control 

Baseline ART and PrEP coveragea 
383 [349, 418] 369 418 [413, 422] 

Interventions    

ART coverage only increased by 20%b 
362 [308, 417] 

(5%) 

181 

(51%) 

288 [285, 292] 

(31%) 

PrEP coverage only increased by 20%c 
367 [317, 417] 

(4%) 

202 

(45%) 

366 [362, 369] 

(12%) 

ART and PrEP coverage increased by 20% 
320 [226, 414] 

(17%) 

99 

(73%) 

252 [248, 256] 

(40%) 

ART coverage only increased by 30%d 
339 [263, 415] 

(12%) 

121 

(67%) 

246 [242, 251] 

(41%) 

PrEP coverage only increased by 30%e 
351 [287, 416] 

(8%) 

145 

(61%) 

324 [320, 329] 

(22%) 

ART and PrEP coverage increased by 30% 
186 [−35, 406] 

(52%) 

48 

(87%) 

186 [184, 189] 

(55%) 

aBaseline ART and PrEP coverage are 50 and 10% respectively 

bART coverage only increased from 50 to 70% 

cPrEP coverage only increased from 10 to 30% 

dART coverage only increased from 50 to 80% 

ePrEP coverage only increased from 10 to 40% 

fBonacci and Holtgrave is a deterministic method and no confidence intervals can be computed. 

As expected, all three approaches are consistent in predicting that increasing both ART and 
PrEP by 20% will be more effective in reducing new HIV infections than increasing only one 
exclusively. The same pattern was observed for the scenarios where a 30% increase was considered. 
The approaches, however, differ in their predictions of the effectiveness of each intervention. Except 
for B&H, the other two approaches suggest that a 20% simultaneous PrEP and ART scale-up among 
YBMSM may not yield a functional zero HIV incidence. The Loess approach predicted the smallest 
declines, and the B&H showed the largest declines in the cases when ART was scaled up exclusively 
and when both ART and PrEP were scaled up simultaneously. 
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Figure 2. Projected numbers of new infections among younger Black MSM (ages 
18–34) in each year of Getting to Zero implementation in Illinois: (a) Loess, (b) 
Bonacci and Holtgrave, (c) Agent-based network model under baseline and PrEP and 
ART scale-up interventions. 

4. Discussion 

4.1. Primary findings 

We conclude that a 20% increase in current ART and PrEP coverage levels is unlikely to 
eliminate new HIV infections among YBMSM in Illinois by the end of the GTZ implementation 
period. However, all three approaches agree that a 30% scale-up in both ART and PrEP uptake levels 
may help to reach the GTZ targets by 2030. Of the two statistical time series approaches, B&H 
projected greater efficacy than Loess. The ABNM, which was based on detailed demographic, 
behavioral, biological and network parameters, projected an intermediate level of efficacy relative to 
the two time-series approaches. These differences in results are likely driven by the fundamental 
assumptions behind the approaches: whereas the projections based on the statistical time series 
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methods are highly dependent on trends in recent incidence, the ABNM incorporates a more granular 
representation of the processes, and the interactions between these processes.  

Moreover, of the two time series approaches, the B&H method projected a greater decline than 
the Loess method. This is because the B&H method projects forward “multiplicatively”, i.e., by 
computing the mean of the ratios of the HIV incidence for the past three years and multiplying this 
ratio by a factor that accounts for the increase in ART and PrEP coverage relative to baseline (Eqs (4) 
and (5) in the Appendix). The Loess approach, on the other hand, projects forward “linearly”, i.e., by 
considering the slope of the line fitted through the last cluster of points, determined by their 
closeness, and modifying the slope of this straight line by the increase in ART and PrEP scale-up. 
The Loess method thus projected minimal change in HIV incidence over 14 years, likely driven by 
the smaller declines in HIV incidence among YBMSM over recent years. In populations with larger 
recent declines, Loess would predict greater efficacy of proposed interventions, but using the 
approach as such might mask important considerations that are specific to populations that are 
experiencing a disproportionate burden of HIV.  

The finding that ART and PrEP scale-up by 20% points is unlikely to eliminate new HIV 
infections among YBMSM is, however, consistent across all three approaches. Indeed, previous 
research has suggested that exclusively scaling up HIV care and treatment would not accomplish 
NHAS goals [49] and neither would a 20% scale up in PrEP uptake [27]. This conclusion suggests 
that scale-up of biomedical prevention interventions will need to be intensified among 
subpopulations where HIV incidence is highest. Some subpopulations where current ART and PrEP 
scale-up levels have had substantial impact, for instance, may need lower than 20% scale-up. Other 
subpopulations experiencing higher incidence may require higher than the 20% scale-up currently 
planned under the GTZ implementation guidelines. 

In scenarios where a 30% scale-up was considered, all three methods show that simultaneous 
increase in both ART and PrEP uptake levels might help reach GTZ targets, as defined by a 
functional zero, as described above. Similar to the 20% scale-up level, a 30% increase in ART while 
keeping PrEP uptake at baseline levels is more effective compared to a 30% increase in PrEP with 
baseline ART levels. 

4.2. Benefits of a comparative modeling approach 

Applying multiple methodological approaches allows for an assessment of consistency in the 
projected findings. The Loess and B&H methods are easier to implement computationally, while the 
ABNM provides possibilities for a deeper examination of HIV and PrEP continuum variables. 
Determination of the modeling approach likely depends upon the availability of data and 
methodological expertise, as well as the projected timelines for modeling findings prior to the 
implementation of interventions. Our recommended strategy for implementation scientists is to first 
compute statistical time series type models (for instance, the Loess or B&H, as described in this work), 
to generate upper and lower bounds of the estimated intervention efficacy. This preliminary work can 
be followed by longer-term development of more complex ABNM-type models that allow for a more 
granular examination of specific processes, subpopulations and interventions. The ABNM’s primary 
advantages are that it provides the capacity to incorporate a wider representation of underlying 
transmission processes, including network mixing, and to examine specific interventions mechanisms 
explicitly, and investigate how these interventions might impact different population segments. 
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Each modeling framework also draws attention to specific contextual considerations. For 
instance, within Loess and B&H, the uptake of PrEP and ART can be directly controlled, but neither 
approach has the capacity to model person-to-person transmission explicitly. The impact of ART and 
PrEP scale-up is realized by considering the multiplicative effects of the number of users at any 
given time. The ABNM, by contrast, accounted for the HIV care continuum factors that influence 
ART uptake: testing, linkage, and adherence, but does not provide the flexibility to directly control 
the number of ART users at any given time. Thus, while the two time-series approaches provided the 
flexibility of directly controlling an important parameter and were more quickly implemented, the 
ABNM provided more fine-grained control allowing for explicit examination of key input variables. 
Identification of a “gold standard” modeling technique is beyond the scope of this study. Rather, this 
study hopes to compare three modeling frameworks used to project HIV incidence to determine how 
PrEP and ART scale-up may impact projected HIV incidence. Other modeling approaches, such as 
deterministic-stochastic modeling choices are available and might be useful in related model 
comparison studies, depending upon the research questions of interest and the availability of input 
data [50,51]. 

4.3. Limitations 

All of the modeling approaches described here use recent data to make projections over 14 
years of GTZ implementation. Thus, these models assume that other baseline trends will continue to 
hold, and the changes that occur will be limited to scale-up of ART and PrEP as per the GTZ 
strategies considered. Therefore, any structural or policy changes that occur over the GTZ 
implementation period will not be accounted for in the model. Future model iterations must account 
for such policies, especially if these policy goals are revised. Computation of all models was based 
upon approximations about how baseline projections might adapt in response to changes in ART and 
PrEP coverage. Further work in improving these approximations might be necessary, especially if the 
resources to develop agent-based simulation models are unavailable. A version of the B&H approach 
that explicitly allows for a consideration of the 90-90-90 goal to improve engagement the ART 
continuum has been proposed [52]. A similar version for PrEP scale-up, especially to guide GTZ 
efforts in the U.S., might be helpful in guiding HIV elimination efforts. Finally, the definition of the 
functional zero might need to be updated as interventions are rolled out in reality and we approach 
the later stages of the GTZ planning period.  

5. Conclusions 

Accomplishing GTZ goals will require increased scale-up of ART and PrEP; however, such 
scale-up may be constrained in part because of the many barriers that prevent effective 
implementation. Racism, addiction, criminalization, unemployment, lack of access to quality 
education and health care, and residential segregation are some of the barriers that disproportionately 
impact young Black men and YBMSM in particular [53,54]. Addressing these barriers is vital to 
accomplishing HIV elimination goals [55,56]. Indeed, this need to address structural barriers to HIV 
and PrEP care continuums is recognized in the US [57] and globally [58–61]. The ABNM provides 
the flexibility to model interventions that are designed to address these barriers and allows for 
projected effects of interventions before they are implemented. New modeling approaches that can 
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improve our understanding of the underlying mechanisms by which socio-structural and systemic 
factors impact HIV transmission and that can quantify the effects of interventions to address them 
can make a critical contribution to the implementation of interventions [62]. The models described 
here are being expanded to begin the process of incorporating socio-structural and systemic factors. 
Next-generation modeling tools can help formulate effective strategies that aid in the design of 
interventions focused on reducing the impact of these barriers. Triangulation studies allow for 
increasing amounts of complexity to be examined iteratively in order to make the underlying 
assumptions behind various approaches more explicit and to derive policy prescriptions that utilize 
the combined strengths of multiple methodological approaches and data sources. 
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Appendix 

A.1. Introduction 

This Appendix provides additional methodological details of the models described in the main 
body of the manuscript. Below, model equations for the Loess and Bonacci and Holtgrave (B&H) 
methods are derived and the modeling of ART and PrEP continuums in the agent-based network 
model is described. 

A.2. Loess method 

The Loess technique is a robust local regression technique [33], which optimizes a weighted 
function that accounts for the closeness of two points in the dataset. The assigned weight is large if 
the two points are close to each other and small if the points are farther apart. This procedure allows 
for models to be fit to clusters of data that are close to each other, and specification of a global 
function that fits all the data is not necessary [33–35]. 

A Loess curve was fit to annual incidence data for YBMSM in Illinois, using the loess function 
in R (version 3.5.3). For any given point, the fitting procedure uses points in the “neighborhood” of 
that point, defined here as 75% of the points that are closest to it, in accordance with the 
recommended default value in the R function [63]. These points are weighted by their distance from 
the point in consideration. 

Incidence data were obtained from the Enhanced HIV/AIDS Reporting System (eHARS), a 
database maintained by the Illinois Department of Public Health [30]. A slope parameter ߩ௅,௧ was 
computed from the fitted values obtained from the last three years (2013–2016), under the 
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assumption that both PrEP and ART were being used in those years, whereas prior to 2013 PrEP was 
not being used. The projected number of new infections is iteratively computed as 

݅௧ାଵ ൌ ݅௧ ൅ ௅,௧ାଵߩ  (1) 

where ݅௧  is the HIV incidence in the “current” year t, and ݅௧ାଵ is the HIV incidence in the 
following year, t+1. The slope ߩ௅,௧ାଵ is computed as 

௅,௧ାଵߩ ൌ  ௧ାଵ (2)ߙ௅,௧ߩ

where ߙ is a factor that scales the slope parameter when ART and PrEP are scaled up. The 
parameter ߙ௧ାଵ was set to 

൬
1 െ ݇஺ܣ଴
1 െ ݇஺ܣ௧ାଵ

൰ ൬
1 െ ݇ோܴ଴
1 െ ݇ோܴ௧ାଵ

൰ (3) 

where ܣ௧ is the proportion of HIV-positive individuals using ART in year t, ܴ௧ is the proportion of 
HIV-negative individuals using PrEP in year t. Thus, parameters ܣ௧ and ܴ௧ represent ART and 
PrEP coverage in year t respectively. The parameters ܣ଴ and ܴ଴ denote ART and PrEP coverage in 
the first year of the projection, respectively. When ART coverage is scaled up in year t+1, the number 
of new infections prevented is assumed to be proportional to the relative reduction in the population 

of the infected individuals, approximated as 
ଵି஺బ
ଵି஺೟శభ

.  

Similarly, when PrEP coverage in a given year, ܴ௧, is scaled up, the number of new infections 
prevented is assumed to be proportional to the population of HIV-negative individuals, approximated 

as 
ଵିோబ
ଵିோ೟శభ

. (Note that when ART and PrEP coverage are not scaled up, ܣ଴ ൌ ଵܣ ൌ ⋯ ൌ  ௧ andܣ

ܴ଴ ൌ ܴଵ ൌ ⋯ ൌ ܴ௧,, then ߙ௧ାଵ reduces to 1.) 
The factor ݇஺ is a weighted average of the protection conferred on individuals who are always, 

usually, sometimes, and never adherent to ART. From YBMSM cohort data in Illinois, these 
proportions were estimated to be 32, 28, 30 and 10% respectively [31,32], and the four respective 
groups was assumed to receive 100, 67, 33 and 0% protection. The factor ݇ோ indicates PrEP 
protection, where data from a PrEP demonstration project were used to estimate that 21.1% of men 
took 0 pills/week (non-adherent), 7.0% took < 2 pills/week (low adherence), 10.0% took 2–3 
pills/week (moderate adherence), and 61.9% took 4+ pills/week (high adherence) [64]. PrEP use is 
assumed to reduce HIV infection probability in these adherence groups by 0, 31, 81, and 95%, for non, 
low, moderate, and high adherence, respectively, in accordance with previous modeling work [12]. 
These protection estimates were assumed to be constant across all models. 

Equation (2) is iteratively solved over the course of the projection period to yield the number of 
new HIV infections for each projection time point. 

A.3. Bonacci and Holtgrave method 

A recent study modeled trends in HIV incidence to assess whether the goals of the 2010 US 
National HIV/AIDS Strategy (NHAS) were achieved and to inform future implementation efforts [39]. 
This method is implemented by computing the average of the ratios of observed year-to-year change 
in HIV incidence using the formula: [annual change = HIV incidence in year t / HIV incidence in 
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year (t-1)] for the three most recent years that data are available for. Thus, the incidence can be 
iteratively projected as 

݅௧ାଵ ൌ  ஻ு,௧݅௧ (4)ߩ

where ߩ஻ு,௧ is the average of the annual change values at the three most recent years as defined 
above, and ݅௧ is the HIV incidence in the “current” year t. The number of new infections when ART 
and PrEP are scaled up is given as 

݅௧ାଵ ൌ ஻ு,௧݅௧ߩ ൬
1 െ ݇஺ܣ௧ାଵ
1 െ ݇஺ܣ௧

൰ ൬
1 െ ݇ோܴ௧ାଵ
1 െ ݇ோܴ௧

൰ (5) 

where parameters are as defined above. Equation (5) is iteratively solved over the course of the 
projection period to yield the number of new HIV infections for each projection time point. 

A.4. Agent-based network model 

An agent-based network model (ABNM) was used to simulate baseline HIV transmission to 
capture existing epidemic features among adolescents and young adults (age 18 to 34 years). The 
model was populated with 10,000 individuals at the start of the dynamic simulations. The simulation 
proceeded in daily time step increments. The model was calibrated using published HIV incidence 
and prevalence estimates. A detailed description of the agent-based network model (ABNM) and its 
parameterization is available elsewhere [27].  

The ABNM is designed to allow for a deeper examination of PrEP and ART care continuums. 
PrEP uptake was maintained at the base levels by computing a daily initiation probability for 
HIV-negative individuals not using PrEP. Further, it was assumed that PrEP initiators were retained 
for an average of one year, consistent with local PrEP continuum data [65]. A dynamic equilibrium 
was set to balance the PrEP initiation and retention processes to maintain uptake at desired levels. 
Additionally, PrEP users were divided into four adherence categories, with protection dependent 
upon adherence. ART uptake, on the other hand, was determined by three care continuum parameters: 
(a) HIV testing frequency; (b) linkage, defined in the model as distribution of times between HIV 
diagnosis and ART initiation; (c) ART adherence, modeled by assuming 32, 28, 30, and 10% of ART 
initiators were always, usually, sometimes, and never adherent, respectively, as estimated from 
cohort data [31,32]. 

The PrEP scale-up intervention was implemented by considering a uniform annual increase 
from base uptake levels to 30 and 40%. Twenty percent ART scale-up level was modeled by 
assuming an increase in the proportion of individuals who were always adherent to 80% of ART 
initiators, and a decline in the proportion of individuals who were usually and sometimes adherent 
to 10% of ART initiators each. (The impact of increased ART adherence on overall ART uptake is 
further discussed below.) A similar adherence adjustment approach was used to model the 30% ART 
scale-up. The six interventions and the baseline scenario were simulated 30 times over the course of 
the GTZ implementation period to account for inherent uncertainty due to the stochastic nature of 
this model. In addition, standard error values were also calculated over 30 replications at each time 
point to quantify the uncertainty (Table 1). 

Since ART uptake in the ABNM was determined by three care continuum parameters described 
above, the overall uptake was increased by 20% by assuming an increase in the proportion of 
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individuals who were always adherent to 80% of ART initiators, and a decline in the proportion of 
individuals who were usually and sometimes adherent to 10% of ART initiators each. In the Loess 
and B&H methods, on the other hand, ART uptake was controlled by specifying the ܣ௧ parameter, 
as described above. In Figure A1 below, we plot the ART uptake over time in the ABNM, to 
demonstrate that the increased adherence resulted in a temporal ART scale-up that was comparable to 
the assumption in the statistical time series methods. 

 

Figure A1. Percentage of HIV-positives using antiretroviral treatment under various 
scenarios of scale-up. 
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